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Abstract - This paper presents the design and development of 

an autonomous vehicle system aimed at enhancing smart 

mobility and public safety. The proposed system integrates 

multiple technologies, including deep learning-based lane 

detection, LiDAR and camera sensors for perception, GPS-

enabled navigation and real-time communication through a 

Raspberry Pi platform. To ensure robust performance, the system 

employs DeepLabV3 for semantic segmentation, optical flow for 

smooth motion tracking and a Kalman filter for prediction and 

stabilization of the vehicle’s path. A Proportional-Integral-

Derivative (PID) controller regulates steering and speed, 

ensuring accurate maneuverability in various road conditions. 

Obstacle detection and avoidance are achieved using LiDAR, 

enabling the system to respond to both static and dynamic 

objects. A Flutter-based mobile application provides GPS 

tracking, real-time monitoring and manual override control, 

enhancing usability and safety. Experimental validation on a 

scaled prototype demonstrates the effectiveness of the proposed 

system in handling lane detection, sharp turns, obstacle 

avoidance and traffic sign recognition under diverse conditions. 

The results highlight the feasibility of deploying low-cost, 

embedded autonomous systems capable of addressing urban 

transportation challenges. This work provides a foundation for 

future research and large-scale implementation of intelligent 

transportation systems in smart city environments. 
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1. INTRODUCTION   

 
Autonomous vehicles (AVs) have emerged as one of the most 

significant technological innovations in transportation, offering 
the promise of enhanced safety, efficiency and mobility. These 
vehicles are capable of sensing their environment and navigating 
without human intervention by combining multiple technologies 
such as LiDAR, cameras, radar, GPS and intelligent control 
systems. The increasing demand for intelligent transportation 
systems and the evolution of smart cities have further accelerated 
research in this area, positioning AVs as a critical enabler for 
future urban mobility. 

The primary driver for autonomous vehicle development is 
road safety. Human error accounts for over 90% of traffic 
accidents and automation offers the potential to drastically reduce 
these fatalities. According to Li and Ibanez-Guzman [1], LiDAR 
perception systems play a pivotal role in this transformation, 
providing highly accurate environmental sensing that supports 
real-time decision-making. Surveys such as those by Alaba and 
Ball [2] and Khosravi et al. [3] highlight the growing reliance on 
deep learning techniques for robust 3D object detection, enabling 
AVs to recognize and react to pedestrians, vehicles and obstacles 
with unprecedented accuracy. 

Reliable perception is the backbone of autonomous 
navigation. Sensor fusion integrating LiDAR, cameras and radar 
has been widely studied to achieve robust situational awareness. 
Marti et al. [4] reviewed sensor technologies for automated 
driving and concluded that no single sensor is sufficient to ensure 
reliability under all conditions. Instead, combining 
complementary modalities enhances resilience against 
environmental challenges such as rain, fog, or low light. 
Lightweight deep learning models, such as Lite-DeepLabv3+ [5], 
further enable real-time semantic segmentation for lane detection, 
even on embedded platforms with limited computational capacity. 
Xu et al. [6] also demonstrated how residual networks improve 
segmentation accuracy, directly benefiting road scene 
understanding in AVs. 

The success of autonomous driving depends heavily on deep 

learning for both perception and control. Guo et al. [7] surveyed 

deep learning for 3D point clouds, showing how neural networks 

have surpassed traditional feature-engineering approaches in 

handling complex environments. More recently, Boulch et al. [8] 

introduced self-supervised LiDAR learning methods, 

demonstrating scalable perception without the need for extensive 

labeled datasets. Similarly, Zeller et al. [9] proposed Radar 

Instance Transformers to segment moving objects, addressing 

the limitations of LiDAR in adverse conditions. These 

advancements signify a trend towards multimodal and self-

supervised learning strategies for more adaptive AV perception 

systems. Before deploying AVs in real traffic, simulation 

environments play a crucial role in validating performance. 

Dabbiru et al. [10] explored deep neural networks for high-

fidelity simulation, offering a means to accelerate testing and 

reduce real-world risks. Meanwhile, specialized perception tasks, 

such as traffic sign recognition [11] and pedestrian detection in 

adverse weather [12], continue to advance with machine learning 

methods that enhance safety-critical decision-making. 

Accurate localization is another cornerstone of AV performance. 

Henein et al. [13] introduced the concept of Dynamic SLAM 

(Simultaneous Localization and Mapping), emphasizing the 

importance of real-time processing in dynamic environments. 

Earlier efforts such as VoxelNet by Zhou and Tuzel [14] 

highlighted end-to-end learning for 3D object detection, bridging 

the gap between mapping and object recognition. Despite rapid 

advancements, several challenges remain. Issues such as 

interpretability, robustness under edge-case scenarios and energy 

efficiency on embedded platforms hinder real-world deployment. 

As Gupta et al. [15] noted, while deep learning has significantly 

improved object detection and scene perception, challenges such 

as scalability, data efficiency and uncertainty quantification 

remain open problems. The ethical and regulatory concerns 

including liability in case of accidents and data privacy must be 

addressed before large-scale adoption. 
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2. Methodology 
The methodology adopted for the design and implementation 

of the proposed autonomous vehicle system is centered on 

combining computer vision, deep learning and embedded 

hardware to enable intelligent navigation. The overall objective is 

to develop a low-cost prototype that demonstrates real-time lane 

detection, obstacle avoidance and GPS-based localization using 

Raspberry Pi, camera modules and LiDAR sensors. The 

methodology is divided into the following stages: 

1. System Architecture and Design 

2. Hardware Components and Integration 

3. Software Framework and Algorithms 

4. Lane Detection and Tracking 

5. Obstacle Detection and Avoidance 

6. Control System Implementation 

7. Communication and Mobile Application Integration 

8. Testing and Validation 

 

2.1 System Architecture and Design 

The proposed autonomous vehicle system is designed around 

a client–server architecture to balance computational efficiency 

and real-time responsiveness. A Raspberry Pi 4B, mounted on the 

vehicle chassis, acts as the client, while a laptop serves as the 

server. Client (Raspberry Pi) is responsible for interfacing with 

sensors, executing motor commands and maintaining 

communication with the server. Server (Laptop) executes the 

deep learning models, processes visual data and sends navigation 

commands. Mobile Application provides a user interface for GPS 

tracking, monitoring and manual override functionality. This 

architecture ensures real-time performance by offloading 

computationally intensive deep learning tasks to the server while 

keeping control tasks on the embedded platform. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig -1: Block diagram of the autonomous vehicle system 

 

2.2 Hardware Components and Integration 

The hardware components are selected to strike a balance 

between affordability and performance. Raspberry Pi 4B (4GB 

RAM) acts as the primary controller, interfacing with sensors and 

actuators. Pi Camera Module v2 captures real-time video for lane 

detection and traffic sign recognition. LiDAR Sensor (TFMini-S) 

provides distance measurements with accuracy up to ±6 cm, used 

for obstacle detection. Motor Driver (TB6612FNG) interfaces 

between Raspberry Pi and DC motors, allowing control of 

direction and speed. Geared DC Motors provide traction and 

maneuverability for the vehicle prototype. GPS Module provides 

real-time geolocation for navigation and data logging. Battery 

Pack supplies power to the aspberry Pi and other components. 

Fig -2: Circuit diagram of the system 

 

2.3 Software Framework and Algorithms 

The software framework is modular and integrates multiple 

technologies. Deep Learning Framework using TensorFlow is 

used to run DeepLabV3 for lane segmentation.  

Fig -3: Software flowchart showing data pipeline 
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For Computer Vision, OpenCV is used for preprocessing 

images, detecting contours and identifying traffic signals. Control 

Algorithms using PID controllers manage the vehicle’s steering 

and speed. Communication Layer has Socket.IO that provides 

low-latency, bidirectional communication between the Raspberry 

Pi and the laptop server. Mobile Application is developed using 

Flutter, the app provides GPS tracking and manual control 

options. 

2.4 Lane Detection and Tracking 

Lane detection is central to autonomous navigation. The 

DeepLabV3 model is used for semantic segmentation of captured 

road images. Atrous convolution allows the model to capture 

multi-scale context without losing spatial resolution. The model is 

trained on datasets with zebra crossings, dotted lines and red 

borders, making it adaptable to diverse road conditions. To 

improve stability, optical flow estimates motion between 

consecutive frames, ensuring smooth lane tracking. A Kalman 

filter is then applied to reduce noise and predict lane positions in 

future frames, enhancing reliability under environmental 

disturbances. OpenCV’s contour detection highlights lane edges, 

while multi-scale analysis ensures that the system recognizes 

lanes at varying distances. 

 

2.5 Obstacle Detection and Avoidance 

Obstacle detection is achieved using LiDAR sensors, which 

provide depth measurements by emitting laser pulses and 

measuring their return times. When static obstacles are detected 

within a threshold distance, the system halts or reroutes. Dynamic 

obstacles are detected using temporal LiDAR data; the system 

adjusts trajectory accordingly. The LiDAR sensor is 

complemented by computer vision techniques to improve 

accuracy in adverse weather conditions. 

 

2.6 Control System Implementation 

The vehicle is controlled using a PID controller for smooth 

navigation. Proportional (P) corrects current errors. Integral (I) 

accounts for cumulative error over time. Derivative (D) predicts 

future errors, preventing oscillations. This combination ensures 

that the vehicle can handle curves, sharp turns and uneven lanes. 

For example, when the right lane boundary disappears during a 

sharp turn, the system uses the left boundary as a reference. 

 

2.7 Communication and Mobile Application Integration 

The communication layer connects the Raspberry Pi client 

with the laptop server using Socket.IO. The Pi streams real-time 

images, receives navigation commands and sends GPS updates. A 

Flutter-based mobile application provides GPS-based vehicle 

tracking on a map, manual control mode for overriding 

autonomous navigation and status updates (autonomous/manual 

mode). 

 

 

 

 

 

 

 

Fig 4: Mobile application interface 

 

2.8 Testing and Validation 

The system was tested in both indoor and outdoor 

environments. Indoor tests included lane tracking on zebra 

crossings, dotted lines and sharp turns. Outdoor tests involved 

real roads with varying lighting, obstacles and uneven lanes.  

Performance Metrics used are Lane detection accuracy, response 

time and obstacle avoidance success rate  

 

 

 

Fig -5: Prototype vehicle navigating on an indoor test track. 

 

The methodology integrates low-cost hardware, advanced 

computer vision and deep learning algorithms into a functional 

autonomous vehicle prototype. The layered design ensures 

accurate lane detection, robust obstacle avoidance and smooth 

navigation. The use of Raspberry Pi as the processing unit 

highlights the feasibility of implementing intelligent 

transportation systems on affordable platforms, making the 

system suitable for research, education and small-scale 

deployments. 
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3. RESULTS 

 
The experimental results demonstrate that the proposed 

autonomous vehicle prototype achieves reliable lane detection, 

obstacle avoidance and real-time decision-making using a low-

cost hardware configuration. Compared to existing works that 

rely on high-performance GPUs or specialized hardware [1], [5], 

the use of Raspberry Pi coupled with lightweight deep learning 

models highlights the practicality of deploying autonomous 

navigation systems in resource-constrained environments. The 

DeepLabV3 segmentation model, enhanced with optical flow and 

Kalman filtering, achieved a detection accuracy above 90%, 

which aligns with state-of-the-art results reported in recent 

literature [6], [7]. Unlike traditional edge-detection or Hough 

transform approaches, the proposed method demonstrates 

robustness under variable lighting and noisy conditions, making it 

suitable for real-world deployment. The LiDAR sensor provided 

accurate distance measurements, enabling a 92% obstacle 

avoidance success rate. This performance is comparable to more 

complex sensor fusion systems [3], [8], while maintaining 

simplicity and affordability. Notably, the integration of dynamic 

obstacle handling differentiates this system from earlier low-cost 

prototypes, which often focus only on static environments. The 

PID controller proved effective in stabilizing vehicle motion, 

particularly during sharp turns where lane references were 

partially occluded. The achieved response time of <200 ms 

demonstrates that the system meets real-time requirements for 

autonomous navigation. This finding is significant, given that 

similar embedded implementations often struggle with latency 

[9]. 

 

4. CONCLUSION 

 
The primary novelty of this work lies in its ability to combine 

deep learning-based perception, LiDAR sensing and embedded 

control within a cost-effective architecture. Unlike prior studies 

that emphasize either perception accuracy or high-end hardware 

[2], [15], this research demonstrates that low-cost platforms can 

still deliver robust autonomous performance when optimized 

algorithms and modular design are employed. Outdoor testing 

revealed performance degradation under heavy rain and at night, 

indicating the need for multimodal sensor fusion (e.g., radar, 

infrared) to enhance robustness. while the mobile application 

supports GPS tracking, integration with cloud-based traffic 

systems could expand the vehicle’s capabilities for smart 

mobility scenarios. Future work will focus on improving 

generalization, incorporating reinforcement learning for adaptive 

decision-making and scaling the system for multi-vehicle 

cooperative navigation. Overall, the study confirms the potential 

of affordable embedded systems to advance intelligent 

transportation, bridging the gap between academic research and 

practical implementation. 
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