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ABSTRACT: Autonomous vehicles have surfaced as one of the most transformative inventions in 

ultramodern transportation. A crucial element of their functionality is dependable navigation, particularly the 

discovery and following of road lanes. This exploration presents a machine literacy- grounded system for lane 

discovery using OpenCV and Python, with a focus on educational availability and system modularity. A web 

operation erected with Beaker enables druggies to upload driving vids and view lane discovery labour’s. While 

this perpetration don't incorporate advanced deep literacy or real- time detector emulsion, it offers a foundational 

understanding of visual navigation in independent vehicles and sets the stage for unborn development using 

more sophisticated styles 
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I. INTRODUCTION 

The evolution of autonomous vehicles (AVs) marks a 

significant shift in modern transportation, promising to 

redefine mobility, safety, and efficiency on roads across the 

world. With rapid advancements in artificial intelligence, 

machine learning, and sensor technologies, the vision of 

self-driving cars navigating without human intervention has 

moved from the realm of science fiction to engineering 

reality. One of the core functionalities underpinning this 

innovation is autonomous navigation — a vehicle's ability 

to understand its surroundings, make driving decisions, and 

follow routes safely and efficiently. 

At the heart of autonomous navigation lies the critical task 

of lane detection. Lane detection enables a vehicle to 

identify road boundaries and maintain safe positioning 

within designated paths. Accurate lane detection ensures 

that the vehicle can follow traffic rules, avoid collisions, and 

stay within its driving lane. In human-driven vehicles, this 

is a natural process performed by the driver's visual 

perception. For autonomous vehicles, however, this 

requires a complex interplay of cameras, sensors, and 

algorithms capable of interpreting the visual environment 

and translating it into actionable guidance for the vehicle's 

motion planning system. 

This research explores a foundational approach to 

autonomous navigation through camera-based lane 

detection using traditional machine learning and image 

processing techniques. While modern commercial systems 

employ sophisticated deep learning models, LiDAR 

systems, and real-time sensor fusion, this paper focuses on 

a lightweight, interpretable, and educational 

implementation. The objective is to provide a practical and 

accessible simulation of lane detection using Python and 

OpenCV, targeted towards students, educators, and early-

stage researchers. 

The motivation for this work stems from the increasing 

demand for educational platforms that can bridge the gap 

between theoretical learning and real-world application. 

High-end AV systems are often expensive, data-heavy, and 

hardware-intensive. This creates barriers for many 

academic institutions and learners. Our system addresses 

this gap by offering a web-based lane detection pipeline that 

allows users to upload pre-recorded driving videos and 

observe lane detection output directly in a browser 

interface. This makes the solution not only easy to deploy 

but also highly intuitive for demonstration and 

experimentation purposes. 

The project employs a sequential image processing 

workflow that includes grayscale conversion, Gaussian 

blurring, Canny edge detection, region of interest masking, 

and Hough Transform line detection. Each step is designed 

to mimic how autonomous systems perceive road 

structures. While the system does not incorporate real-time 
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feedback or deep neural networks, its modular structure 

allows for future enhancements such as real-time camera 

integration, deep learning model substitution, or embedded 

system deployment. 

II. Related work: 

2.1 Understanding Autonomous Vehicle Systems 

Autonomous vehicles (AVs) are intelligent systems 

designed to operate without human intervention. Their 

architecture integrates several modules, including 

perception, planning, and control, supported by 

technologies like sensors (cameras, LiDAR, radar), GPS, 

and advanced software algorithms. One of the most critical 

components within the perception module is lane 

detection, which allows the vehicle to remain centred on 

the road, perform safe lane changes, and execute accurate 

turns. 

2.2 Traditional Lane Discovery ways 

In early AV prototypes and academic exploration, 

traditional image processing ways were generally used for 

lane discovery. These include 

• Grayscale conversion to simplify visual data 

• Gaussian blur for noise reduction 

• Canny edge discovery for boundary identification 

• Region of Interest( ROI) masking to concentrate on road 

parts 

• Hough Line transfigure to descry straight lines that 

represent lanes 

These styles, while featherlight and interpretable, are 

limited in handling complex scripts similar as twisted roads, 

faded markings, and poor lighting. nonetheless, they give an 

ideal foundation for educational tools and prototype 

systems. 

2.3 Role of OpenCV in Autonomous Vehicle Prototyping 

OpenCV is a widely used open-source computer vision 

library that plays a key role in early-stage development of 

autonomous vehicle (AV) systems. It offers essential tools 

for handling image and video processing tasks in real time, 

such as frame extraction, object tracking, and line detection. 

These capabilities make it particularly useful in educational 

and research projects, where it is often used for simulating 

core perception tasks like detecting lanes, identifying traffic 

signs, and recognizing obstacles. Its ease of use, broad 

community support, and compatibility with Python and 

C++ make it a go-to solution for prototyping AV 

functionalities without the need for complex hardware or 

machine learning integration. 

 2.4 Machine Learning in AV Navigation  

Machine learning, especially supervised learning 

techniques, is becoming increasingly important in AV 

navigation systems. These models are trained using 

annotated datasets to identify features like road lanes and 

boundaries. Convolutional Neural Networks (CNNs), in 

particular, are effective for image segmentation tasks, 

enabling detection of lanes even under suboptimal weather 

or lighting conditions. Leading industry models, such as 

those developed by NVIDIA and Tesla, demonstrate how 

raw visual input can be processed by deep learning 

networks to generate steering commands. However, such 

systems typically require significant computational power, 

including access to GPUs and large-scale training data, 

making them less practical for beginner-level or resource-

limited projects. 

 

 2.5 Review of Related Work  

Research in the field of AV perception can be categorized 

into three main strategies: Classical computer vision 

methods using techniques like edge detection and line 

fitting Deep learning-based solutions focused on 

classification and semantic segmentation Hybrid 

approaches that combine basic image processing with 

neural networks for enhanced performance Many studies 

emphasize the importance of designing modular systems 

that can start with simple OpenCV implementations and 

later scale to incorporate machine learning models. This 

allows developers to iteratively improve their systems while 

maintaining clear separation between different perception 

modules. 

2.6 Contribution of Current Work  

The current project focuses on using OpenCV for lane 

detection from video footage, adopting a rule-based vision 

approach rather than machine learning. It replicates 

fundamental aspects of an AV perception system, providing 

a clear and understandable workflow for academic and 
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beginner-level applications. Its modular architecture makes 

it easy to enhance in future versions by adding components 

such as real-time camera input or deep learning models. 

This approach offers a balanced foundation for both 

understanding AV systems and extending them through 

progressive improvements. 

III. System Architecture Methodology 

 

3.1 Overview of Existing Lane Detection Systems 

 

In recent years, the development of autonomous vehicle 

navigation systems has advanced rapidly, especially in the 

domain of lane detection. Leading companies such as Tesla, 

Waymo (Google), and NVIDIA have developed systems 

that rely on advanced deep learning models, real-time 

sensor fusion, and hardware-accelerated computation. 

These systems often combine inputs from high-resolution 

cameras, LiDAR, radar, and GPS/IMU sensors to generate 

a comprehensive understanding of the driving environment. 

The detected information is then processed by machine 

learning models—often Convolutional Neural Networks 

(CNNs) or Recurrent Neural Networks (RNNs)—to make 

real-time decisions like steering, acceleration, and braking. 

Academic research has followed similar directions, 

exploring the use of semantic segmentation models (e.g., U-

Net, Deep Lab) for pixel-wise lane recognition, which 

significantly improves performance under complex road 

conditions. These systems typically use large datasets like 

Simple, BDD100K, or KITTI to train robust, generalizable 

models. 

 

3.2 Functional Scope of Traditional CV-Based Systems 

In contrast to these complex systems, simpler 

implementations, such as those built using OpenCV and 

Python, still hold value in educational and prototyping 

environments. These systems utilize methods like: 

• Grayscale conversion 

• Gaussian blur 

• Canny edge detection 

• Region of Interest (ROI) masking 

• Hough Line Transform 

These classical computer vision techniques offer ease of 

implementation, low computational cost, and sufficient 

performance under ideal conditions such as well-lit 

highways with clear lane markings. Many university-level 

projects and online demos use these methods to illustrate 

the foundational logic behind AV lane detection. 

 

3.3 Limitations of Existing Lightweight Systems 

Despite their educational value, these lightweight systems 

face several limitations: 

• Lack of Real-Time Performance: Traditional 

OpenCV pipelines process videos frame-by-frame 

and cannot handle live camera input without 

performance degradation. 

• Environmental Sensitivity: These systems perform 

poorly in low-light conditions, rainy weather, sharp 

curves, or when lane markings are faded or partially 

occluded. 

• No Sensor Fusion: Unlike commercial-grade AVs, 

these systems rely solely on visual data from 

cameras. They do not integrate data from LiDAR, 

GPS, or radar, which limits spatial awareness and 

positioning accuracy. 

• No Adaptive Learning: Classical methods use fixed 

thresholds and filters, which are not adaptable. 

They do not learn or improve over time, making 

them brittle in dynamic environments. 

• No Vehicle Control Integration: Most lightweight 

systems only perform lane detection and do not 

translate their outputs into actionable steering or 

navigation commands. 

 

 

3.4 Educational vs Real-World Applicability 

While traditional lane detection implementations provide an 

accessible introduction to autonomous navigation, their 

limitations restrict their use in real-world deployment. They 

serve best as foundational learning tools or as proof-of-

concept demonstrations. To bridge the gap between 

classroom simulations and commercial-grade autonomy, 

future systems must evolve toward integrating real-time 

deep learning, sensor fusion, and control systems. 

 

IV. PROPOSED METHODOLOGY 

 
4.1 User Upload Interface (Web-Based) 

The process starts with a user-friendly interface developed 

using HTML and Flask, which enables users to upload a 

driving video directly from their browser. This interface 

serves as the entry point for initiating the lane detection 

process. 

 

4.2 Flask Server Backend (app.py) 

Once the video is uploaded, the Flask server manages the 

request, saving the file to a designated storage location. It 

then launches the main processing script to begin analysing 

the uploaded content. 
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4.3 Lane Detection Core (laneDetect.py) 

This module is responsible for the primary video analysis 

using OpenCV, handling each frame individually. The 

detection workflow includes: 

• Grayscale Conversion – Transforms frames into 

grayscale for easier data extraction 

• Gaussian Blurring – Reduces image noise to 

improve edge clarity 

• Canny Edge Detection – Locates significant edges 

in each frame, likely representing lane lines 

• Hough Line Transformation – Detects straight 

lines that indicate lane boundaries 

 

 

4.4 Video Output and Display 

Once all frames are processed, the system compiles them 

into a new video, with lane lines visually overlaid. This 

output video is then saved and made available for viewing 

through the same web interface, providing a complete user 

feedback experience. 

 

 
 

 

V.DESIGN METHODOLOGY 

 

5.1 Method Overview 

The system follows a modular design where the user 

uploads a driving video through a web interface. The 

backend server processes the video frame-by-frame using 

OpenCV-based image processing techniques to detect lane 

lines and returns a processed video with visual overlays. 

Each frame undergoes several transformations such as 

grayscale conversion, noise reduction, edge detection, and 

line detection to extract lane boundaries accurately. This 

design ensures clear structure, easy debugging, and 

potential for future extensions such as deep learning 

integration 

Algorithm Used  

Algorithm Name: Lane Detection using Traditional Image 

Processing 

Steps: 

1. Load input video  

2. For each frame in the video: 

a. Convert the frame to grayscale 

b. Apply gaussian blur to reduce image noise 

c. Detect edges using Canny edge detection 

d. Define and mask a Region of Interest (ROI) 

e. Use Hough Line Transform to detect lines 

f. Draw detected lane lines over the original 

frame 

3. Save and compile all processed frames into an 

output video 

4. Return the video to the user via the web 

interface  

 

5.2 Pseudocode 

 

function process_video(input_video): 

    for each frame in input_video: 

        gray = convert_to_grayscale(frame) 

        blurred = apply_gaussian_blur(gray) 

        edges = apply_canny(blurred) 

        roi = select_region_of_interest(edges) 

        lines = hough_transform(roi) 

        draw_lines_on_frame(frame, lines) 

        append_to_output_video(frame) 

    return output_video 

 

5.3 Flow Diagram (Conceptual) 

 

 

 
5.4 Modularity and Extensibility          

This system is designed to be adaptable and easily 

expandable. Developers have the freedom to: 

• Replace the current detection logic with 

advanced deep learning approaches such as 

Convolutional Neural Networks (CNNs) or object 

detection models like YOLO 

• Incorporate live camera feeds instead of relying 

solely on pre-recorded video files 

• Enhance the system with additional sensors, 

including GPS for location tracking or LiDAR for 

more accurate environment perception 

• Port the application to low-power embedded 

platforms such as the Raspberry Pi or NVIDIA 
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Jetson Nano for portable or real-time deployment 

scenarios 

 

VI. IMPLEMENTATION 

The implementation of this project involves developing a 

functional prototype that simulates lane detection for 

autonomous vehicle navigation using computer vision 

techniques. The system is implemented using the Python 

programming language, which provides a robust ecosystem 

of libraries suitable for both image processing and web 

development. The core lane detection logic is implemented 

using OpenCV, while the Flask web framework is used to 

create a lightweight web application that allows users to 

upload driving videos and view processed outputs. 

 

6.1 Software Environment 

• Programming Language: Python 3.7 or higher 

• Libraries Used: 

o OpenCV for video processing and lane 

detection 

o NumPy for numerical operations 

o Flask for creating the web interface 

o Matplotlib (optional) for debugging and 

visual plotting 

• Operating System: Cross-platform (tested on 

Windows/Linux) 

 

6.2 Project Structure 

The implementation is divided into two main components: 

A. Core Lane Detection Logic (laneDetect.py) 

This Python script is responsible for reading each frame of 

the uploaded video and applying a series of image 

processing steps: 

• Grayscale Conversion – Converts the image into a 

single intensity channel to simplify computation. 

• Gaussian Blurring – Smooths the image to reduce 

noise and irrelevant details. 

• Canny Edge Detection – Detects strong edges, 

often where lane markings appear. 

• Region of Interest (ROI) – Masks unnecessary 

parts of the frame and focuses on the road. 

• Hough Line Transform – Identifies lines based on 

detected edges and overlays them  

on the original image  

Each processed frame is then compiled back into a 

video using cv2.VideoWriter. 

 

B. Web Interface (app.py and index.html) 

The web application is built using Flask. The user interface 

consists of a simple HTML form (served by index.html) 

that allows the user to: 

• Upload a .mp4 driving video 

• Trigger the lane detection script 

• View the processed video with overlaid lane lines 

Uploaded files are saved in a designated static/input/ 

folder, and processed outputs are saved to static/output/. 

The Flask server listens for file uploads, invokes the 

processing function, and serves the resulting video back to 

the user. 

 

6.3 Initial Web Interface Without a File Chosen 

This view captures the default state of the application before 

a video is selected. It features a title banner stating 

"Autonomous Vehicle Navigation using Machine 

Learning", along with credits to the developer and 

institution. The central upload box provides clear call-to-

action buttons for file selection and submission. This screen 

is the entry point for the user interaction, guiding users into 

the system workflow smoothly. 

 
 

 

6.4 Web Page with Drive Video Selected 

This image displays the web interface in which a user has 

chosen the video file drive.mp4 for upload. The system is 

running locally using Flask and is accessible at 

127.0.0.1:5000. The page features a simple and user-

friendly design with a central upload panel labeled "Upload 

a Driving Video." It is built to make the interaction 

straightforward, enabling users to submit road footage with 

just one click. Once selected, the video is transferred to the 

backend server, where lane detection processing begins. 

 

 
 

 

6.5 Displaying the Original Uploaded Video 

 

After the video is uploaded and processed, the original 

unprocessed driving footage is displayed to the user. This 

preview allows for verification of the correct file being 

processed. It shows the typical input scenario—footage 

from a moving vehicle on a multi-lane highway. This step 

serves as a visual reference, helping users understand the 

changes after lane detection is applied. 
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6.6 Lane Detection Output with Overlays 

This is the final and most informative output of the system. 

The processed video displays: 

• Shaded Lane Area (in green): Highlights the 

region the vehicle is predicted to safely navigate. 

• Radius of Curvature: Indicates how sharp or 

gentle the road curve is. 

• Curve Direction: Specifies whether the road is 

curving left or right. 

• Offset from Centre: Shows how far the vehicle is 

from the centre of the lane. 

 

 

 

VII. CONCLUSION 

 

The proposed lane detection system for autonomous vehicle 

navigation successfully demonstrates the application of 

traditional image processing techniques in a web-based 

environment. By integrating Python, OpenCV, and Flask, 

the project provides a simple yet effective solution for 

detecting lane boundaries in pre-recorded driving videos. 

The results indicate that the system performs reliably under 

favourable road and lighting conditions, producing clear 

visual outputs that highlight lane areas and provide 

additional metrics such as curvature and vehicle offset. 

While the current model is limited to ideal scenarios and 

pre-recorded footage, it forms a solid groundwork for future 

enhancements such as real-time camera integration, deep 

learning-based detection, and obstacle recognition. This 

implementation serves as a practical prototype for 

understanding the fundamentals of autonomous navigation 

and showcases the potential of combining computer vision 

with user-friendly web applications. 
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