
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51605 | Page 1

Autonomous Vehicle Navigation Using Machine Learning

Author: NALLURI RAJEEV KUMAR1 (MCA student), M. BALA NAGA BHUSHANAMU2 (Asst. Prof)

Department of Information Technology & Computer application,

 Andhra University College of Engineering, Visakhapatnam, AP.

Corresponding Author: Nalluri Rajeev Kumar
(email-id: kumarrajeev14321@gmail.com)

ABSTRACT: Autonomous vehicles have surfaced as one of the most transformative inventions in

ultramodern transportation. A crucial element of their functionality is dependable navigation, particularly the

discovery and following of road lanes. This exploration presents a machine literacy- grounded system for lane

discovery using OpenCV and Python, with a focus on educational availability and system modularity. A web

operation erected with Beaker enables druggies to upload driving vids and view lane discovery labour’s. While

this perpetration don't incorporate advanced deep literacy or real- time detector emulsion, it offers a foundational

understanding of visual navigation in independent vehicles and sets the stage for unborn development using

more sophisticated styles

KEYWORDS: Autonomous Vehicles, Machine Learning, Lane Detection, Computer Vision, OpenCV,

Python, Flask, Self-Driving Cars, Image Processing, Real-Time Navigation

--------------------------------------*********************************--

I. INTRODUCTION

The evolution of autonomous vehicles (AVs) marks a

significant shift in modern transportation, promising to

redefine mobility, safety, and efficiency on roads across the

world. With rapid advancements in artificial intelligence,

machine learning, and sensor technologies, the vision of

self-driving cars navigating without human intervention has

moved from the realm of science fiction to engineering

reality. One of the core functionalities underpinning this

innovation is autonomous navigation — a vehicle's ability

to understand its surroundings, make driving decisions, and

follow routes safely and efficiently.

At the heart of autonomous navigation lies the critical task

of lane detection. Lane detection enables a vehicle to

identify road boundaries and maintain safe positioning

within designated paths. Accurate lane detection ensures

that the vehicle can follow traffic rules, avoid collisions, and

stay within its driving lane. In human-driven vehicles, this

is a natural process performed by the driver's visual

perception. For autonomous vehicles, however, this

requires a complex interplay of cameras, sensors, and

algorithms capable of interpreting the visual environment

and translating it into actionable guidance for the vehicle's

motion planning system.

This research explores a foundational approach to

autonomous navigation through camera-based lane

detection using traditional machine learning and image

processing techniques. While modern commercial systems

employ sophisticated deep learning models, LiDAR

systems, and real-time sensor fusion, this paper focuses on

a lightweight, interpretable, and educational

implementation. The objective is to provide a practical and

accessible simulation of lane detection using Python and

OpenCV, targeted towards students, educators, and early-

stage researchers.

The motivation for this work stems from the increasing

demand for educational platforms that can bridge the gap

between theoretical learning and real-world application.

High-end AV systems are often expensive, data-heavy, and

hardware-intensive. This creates barriers for many

academic institutions and learners. Our system addresses

this gap by offering a web-based lane detection pipeline that

allows users to upload pre-recorded driving videos and

observe lane detection output directly in a browser

interface. This makes the solution not only easy to deploy

but also highly intuitive for demonstration and

experimentation purposes.

The project employs a sequential image processing

workflow that includes grayscale conversion, Gaussian

blurring, Canny edge detection, region of interest masking,

and Hough Transform line detection. Each step is designed

to mimic how autonomous systems perceive road

structures. While the system does not incorporate real-time

http://www.ijsrem.com/
mailto:kumarrajeev14321@gmail.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51605 | Page 2

feedback or deep neural networks, its modular structure

allows for future enhancements such as real-time camera

integration, deep learning model substitution, or embedded

system deployment.

II. Related work:

2.1 Understanding Autonomous Vehicle Systems

Autonomous vehicles (AVs) are intelligent systems

designed to operate without human intervention. Their

architecture integrates several modules, including

perception, planning, and control, supported by

technologies like sensors (cameras, LiDAR, radar), GPS,

and advanced software algorithms. One of the most critical

components within the perception module is lane

detection, which allows the vehicle to remain centred on

the road, perform safe lane changes, and execute accurate

turns.

2.2 Traditional Lane Discovery ways

In early AV prototypes and academic exploration,

traditional image processing ways were generally used for

lane discovery. These include

• Grayscale conversion to simplify visual data

• Gaussian blur for noise reduction

• Canny edge discovery for boundary identification

• Region of Interest(ROI) masking to concentrate on road

parts

• Hough Line transfigure to descry straight lines that

represent lanes

These styles, while featherlight and interpretable, are

limited in handling complex scripts similar as twisted roads,

faded markings, and poor lighting. nonetheless, they give an

ideal foundation for educational tools and prototype

systems.

2.3 Role of OpenCV in Autonomous Vehicle Prototyping

OpenCV is a widely used open-source computer vision

library that plays a key role in early-stage development of

autonomous vehicle (AV) systems. It offers essential tools

for handling image and video processing tasks in real time,

such as frame extraction, object tracking, and line detection.

These capabilities make it particularly useful in educational

and research projects, where it is often used for simulating

core perception tasks like detecting lanes, identifying traffic

signs, and recognizing obstacles. Its ease of use, broad

community support, and compatibility with Python and

C++ make it a go-to solution for prototyping AV

functionalities without the need for complex hardware or

machine learning integration.

 2.4 Machine Learning in AV Navigation

Machine learning, especially supervised learning

techniques, is becoming increasingly important in AV

navigation systems. These models are trained using

annotated datasets to identify features like road lanes and

boundaries. Convolutional Neural Networks (CNNs), in

particular, are effective for image segmentation tasks,

enabling detection of lanes even under suboptimal weather

or lighting conditions. Leading industry models, such as

those developed by NVIDIA and Tesla, demonstrate how

raw visual input can be processed by deep learning

networks to generate steering commands. However, such

systems typically require significant computational power,

including access to GPUs and large-scale training data,

making them less practical for beginner-level or resource-

limited projects.

 2.5 Review of Related Work

Research in the field of AV perception can be categorized

into three main strategies: Classical computer vision

methods using techniques like edge detection and line

fitting Deep learning-based solutions focused on

classification and semantic segmentation Hybrid

approaches that combine basic image processing with

neural networks for enhanced performance Many studies

emphasize the importance of designing modular systems

that can start with simple OpenCV implementations and

later scale to incorporate machine learning models. This

allows developers to iteratively improve their systems while

maintaining clear separation between different perception

modules.

2.6 Contribution of Current Work

The current project focuses on using OpenCV for lane

detection from video footage, adopting a rule-based vision

approach rather than machine learning. It replicates

fundamental aspects of an AV perception system, providing

a clear and understandable workflow for academic and

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51605 | Page 3

beginner-level applications. Its modular architecture makes

it easy to enhance in future versions by adding components

such as real-time camera input or deep learning models.

This approach offers a balanced foundation for both

understanding AV systems and extending them through

progressive improvements.

III. System Architecture Methodology

3.1 Overview of Existing Lane Detection Systems

In recent years, the development of autonomous vehicle

navigation systems has advanced rapidly, especially in the

domain of lane detection. Leading companies such as Tesla,

Waymo (Google), and NVIDIA have developed systems

that rely on advanced deep learning models, real-time

sensor fusion, and hardware-accelerated computation.

These systems often combine inputs from high-resolution

cameras, LiDAR, radar, and GPS/IMU sensors to generate

a comprehensive understanding of the driving environment.

The detected information is then processed by machine

learning models—often Convolutional Neural Networks

(CNNs) or Recurrent Neural Networks (RNNs)—to make

real-time decisions like steering, acceleration, and braking.

Academic research has followed similar directions,

exploring the use of semantic segmentation models (e.g., U-

Net, Deep Lab) for pixel-wise lane recognition, which

significantly improves performance under complex road

conditions. These systems typically use large datasets like

Simple, BDD100K, or KITTI to train robust, generalizable

models.

3.2 Functional Scope of Traditional CV-Based Systems

In contrast to these complex systems, simpler

implementations, such as those built using OpenCV and

Python, still hold value in educational and prototyping

environments. These systems utilize methods like:

• Grayscale conversion

• Gaussian blur

• Canny edge detection

• Region of Interest (ROI) masking

• Hough Line Transform

These classical computer vision techniques offer ease of

implementation, low computational cost, and sufficient

performance under ideal conditions such as well-lit

highways with clear lane markings. Many university-level

projects and online demos use these methods to illustrate

the foundational logic behind AV lane detection.

3.3 Limitations of Existing Lightweight Systems

Despite their educational value, these lightweight systems

face several limitations:

• Lack of Real-Time Performance: Traditional

OpenCV pipelines process videos frame-by-frame

and cannot handle live camera input without

performance degradation.

• Environmental Sensitivity: These systems perform

poorly in low-light conditions, rainy weather, sharp

curves, or when lane markings are faded or partially

occluded.

• No Sensor Fusion: Unlike commercial-grade AVs,

these systems rely solely on visual data from

cameras. They do not integrate data from LiDAR,

GPS, or radar, which limits spatial awareness and

positioning accuracy.

• No Adaptive Learning: Classical methods use fixed

thresholds and filters, which are not adaptable.

They do not learn or improve over time, making

them brittle in dynamic environments.

• No Vehicle Control Integration: Most lightweight

systems only perform lane detection and do not

translate their outputs into actionable steering or

navigation commands.

3.4 Educational vs Real-World Applicability

While traditional lane detection implementations provide an

accessible introduction to autonomous navigation, their

limitations restrict their use in real-world deployment. They

serve best as foundational learning tools or as proof-of-

concept demonstrations. To bridge the gap between

classroom simulations and commercial-grade autonomy,

future systems must evolve toward integrating real-time

deep learning, sensor fusion, and control systems.

IV. PROPOSED METHODOLOGY

4.1 User Upload Interface (Web-Based)

The process starts with a user-friendly interface developed

using HTML and Flask, which enables users to upload a

driving video directly from their browser. This interface

serves as the entry point for initiating the lane detection

process.

4.2 Flask Server Backend (app.py)

Once the video is uploaded, the Flask server manages the

request, saving the file to a designated storage location. It

then launches the main processing script to begin analysing

the uploaded content.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51605 | Page 4

4.3 Lane Detection Core (laneDetect.py)

This module is responsible for the primary video analysis

using OpenCV, handling each frame individually. The

detection workflow includes:

• Grayscale Conversion – Transforms frames into

grayscale for easier data extraction

• Gaussian Blurring – Reduces image noise to

improve edge clarity

• Canny Edge Detection – Locates significant edges

in each frame, likely representing lane lines

• Hough Line Transformation – Detects straight

lines that indicate lane boundaries

4.4 Video Output and Display

Once all frames are processed, the system compiles them

into a new video, with lane lines visually overlaid. This

output video is then saved and made available for viewing

through the same web interface, providing a complete user

feedback experience.

V.DESIGN METHODOLOGY

5.1 Method Overview

The system follows a modular design where the user

uploads a driving video through a web interface. The

backend server processes the video frame-by-frame using

OpenCV-based image processing techniques to detect lane

lines and returns a processed video with visual overlays.

Each frame undergoes several transformations such as

grayscale conversion, noise reduction, edge detection, and

line detection to extract lane boundaries accurately. This

design ensures clear structure, easy debugging, and

potential for future extensions such as deep learning

integration

Algorithm Used

Algorithm Name: Lane Detection using Traditional Image

Processing

Steps:

1. Load input video

2. For each frame in the video:

a. Convert the frame to grayscale

b. Apply gaussian blur to reduce image noise

c. Detect edges using Canny edge detection

d. Define and mask a Region of Interest (ROI)

e. Use Hough Line Transform to detect lines

f. Draw detected lane lines over the original

frame

3. Save and compile all processed frames into an

output video

4. Return the video to the user via the web

interface

5.2 Pseudocode

function process_video(input_video):

 for each frame in input_video:

 gray = convert_to_grayscale(frame)

 blurred = apply_gaussian_blur(gray)

 edges = apply_canny(blurred)

 roi = select_region_of_interest(edges)

 lines = hough_transform(roi)

 draw_lines_on_frame(frame, lines)

 append_to_output_video(frame)

 return output_video

5.3 Flow Diagram (Conceptual)

5.4 Modularity and Extensibility

This system is designed to be adaptable and easily

expandable. Developers have the freedom to:

• Replace the current detection logic with

advanced deep learning approaches such as

Convolutional Neural Networks (CNNs) or object

detection models like YOLO

• Incorporate live camera feeds instead of relying

solely on pre-recorded video files

• Enhance the system with additional sensors,

including GPS for location tracking or LiDAR for

more accurate environment perception

• Port the application to low-power embedded

platforms such as the Raspberry Pi or NVIDIA

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51605 | Page 5

Jetson Nano for portable or real-time deployment

scenarios

VI. IMPLEMENTATION

The implementation of this project involves developing a

functional prototype that simulates lane detection for

autonomous vehicle navigation using computer vision

techniques. The system is implemented using the Python

programming language, which provides a robust ecosystem

of libraries suitable for both image processing and web

development. The core lane detection logic is implemented

using OpenCV, while the Flask web framework is used to

create a lightweight web application that allows users to

upload driving videos and view processed outputs.

6.1 Software Environment

• Programming Language: Python 3.7 or higher

• Libraries Used:

o OpenCV for video processing and lane

detection

o NumPy for numerical operations

o Flask for creating the web interface

o Matplotlib (optional) for debugging and

visual plotting

• Operating System: Cross-platform (tested on

Windows/Linux)

6.2 Project Structure

The implementation is divided into two main components:

A. Core Lane Detection Logic (laneDetect.py)

This Python script is responsible for reading each frame of

the uploaded video and applying a series of image

processing steps:

• Grayscale Conversion – Converts the image into a

single intensity channel to simplify computation.

• Gaussian Blurring – Smooths the image to reduce

noise and irrelevant details.

• Canny Edge Detection – Detects strong edges,

often where lane markings appear.

• Region of Interest (ROI) – Masks unnecessary

parts of the frame and focuses on the road.

• Hough Line Transform – Identifies lines based on

detected edges and overlays them

on the original image

Each processed frame is then compiled back into a

video using cv2.VideoWriter.

B. Web Interface (app.py and index.html)

The web application is built using Flask. The user interface

consists of a simple HTML form (served by index.html)

that allows the user to:

• Upload a .mp4 driving video

• Trigger the lane detection script

• View the processed video with overlaid lane lines

Uploaded files are saved in a designated static/input/

folder, and processed outputs are saved to static/output/.

The Flask server listens for file uploads, invokes the

processing function, and serves the resulting video back to

the user.

6.3 Initial Web Interface Without a File Chosen

This view captures the default state of the application before

a video is selected. It features a title banner stating

"Autonomous Vehicle Navigation using Machine

Learning", along with credits to the developer and

institution. The central upload box provides clear call-to-

action buttons for file selection and submission. This screen

is the entry point for the user interaction, guiding users into

the system workflow smoothly.

6.4 Web Page with Drive Video Selected

This image displays the web interface in which a user has

chosen the video file drive.mp4 for upload. The system is

running locally using Flask and is accessible at

127.0.0.1:5000. The page features a simple and user-

friendly design with a central upload panel labeled "Upload

a Driving Video." It is built to make the interaction

straightforward, enabling users to submit road footage with

just one click. Once selected, the video is transferred to the

backend server, where lane detection processing begins.

6.5 Displaying the Original Uploaded Video

After the video is uploaded and processed, the original

unprocessed driving footage is displayed to the user. This

preview allows for verification of the correct file being

processed. It shows the typical input scenario—footage

from a moving vehicle on a multi-lane highway. This step

serves as a visual reference, helping users understand the

changes after lane detection is applied.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51605 | Page 6

6.6 Lane Detection Output with Overlays

This is the final and most informative output of the system.

The processed video displays:

• Shaded Lane Area (in green): Highlights the

region the vehicle is predicted to safely navigate.

• Radius of Curvature: Indicates how sharp or

gentle the road curve is.

• Curve Direction: Specifies whether the road is

curving left or right.

• Offset from Centre: Shows how far the vehicle is

from the centre of the lane.

VII. CONCLUSION

The proposed lane detection system for autonomous vehicle

navigation successfully demonstrates the application of

traditional image processing techniques in a web-based

environment. By integrating Python, OpenCV, and Flask,

the project provides a simple yet effective solution for

detecting lane boundaries in pre-recorded driving videos.

The results indicate that the system performs reliably under

favourable road and lighting conditions, producing clear

visual outputs that highlight lane areas and provide

additional metrics such as curvature and vehicle offset.

While the current model is limited to ideal scenarios and

pre-recorded footage, it forms a solid groundwork for future

enhancements such as real-time camera integration, deep

learning-based detection, and obstacle recognition. This

implementation serves as a practical prototype for

understanding the fundamentals of autonomous navigation

and showcases the potential of combining computer vision

with user-friendly web applications.

VIII. REFERENCES

[1] R. Sivaraman and M. M. Trivedi, “Looking at

Vehicles on the Road: A Survey of Vision-Based Vehicle

Detection, Tracking, and Behaviour Analysis,” IEEE

Transactions on Intelligent Transportation Systems, vol. 14,

no. 4, pp. 1773–1795, Dec. 2013.

DOI: 10.1109/TITS.2013.2266661

[2] A. Dosovitskiy et al., “CARLA: An Open Urban

Driving Simulator,” Conference on Robot Learning

(CoRL), 2017.[Online].

Available:https://arxiv.org/abs/1711.03938

[3] M. Aly, “Real Time Detection of Lane Markers in Urban

Streets,” IEEE Intelligent Vehicles Symposium, pp. 7–12,

2008.

DOI: 10.1109/IVS.2008.4621216

[4] OpenCV.org, “Open Source Computer Vision

Library.”[Online].

Available: https://opencv.org/

[5] Flask, “The Flask Mega-Tutorial by Miguel

Grinberg.”[Online].

Available:https://blog.miguelgrinberg.com/post/the-flask-

mega-tutorial-part-i-hello-world

[6] D. D. Lee and H. S. Seung, “Algorithms for Non-

negative Matrix Factorization,” Advances in Neural

Information Processing Systems, vol. 13,

2001.[Online].

Available:https://papers.nips.cc/paper_files/paper/2000/file

/f9d203d7e7b46c0b30a37d71d433b7c6-Paper.pdf

[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”

Nature, vol. 521, no. 7553, pp. 436–444, 2015.DOI:

10.1038/nature14539

[8] H. Kong, J.-Y. Audibert, and J. Ponce, “General Road

Detection From a Single Image,” IEEE Transactions on

Image Processing, vol. 19, no. 8, pp. 2211–2220, Aug.

2010.

DOI: 10.1109/TIP.2010.2045719

[9] J. Janai, F. Güney, A. Behl, and A. Geiger, “Computer

Vision for Autonomous Vehicles: Problems, Datasets and

State of the Art,” Foundations and Trends® in Computer

Graphics and Vision, vol. 12, no. 1–3, pp. 1–308, 2020.

DOI: 10.1561/0600000079

[10] Flask, “The Flask Mega-Tutorial by Miguel

Grinberg.”[Online].

Available:https://blog.miguelgrinberg.com/post/the-flask-

mega-tutorial-part-i-hello-world

[11] S. Agarwal and P. Narula, “Lane Detection using

OpenCV for Autonomous Vehicles,” International Journal

http://www.ijsrem.com/
https://arxiv.org/abs/1711.03938
https://opencv.org/
https://papers.nips.cc/paper_files/paper/2000/file/f9d203d7e7b46c0b30a37d71d433b7c6-Paper.pdf
https://papers.nips.cc/paper_files/paper/2000/file/f9d203d7e7b46c0b30a37d71d433b7c6-Paper.pdf
https://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-i-hello-world
https://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-i-hello-world

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51605 | Page 7

of Engineering and Techniques, vol. 5, no. 2, pp. 86–91,

2019.

[12] T.Litman, “Autonomous Vehicle

Implementation Predictions,” Victoria Transport

Policy Institute, 2022.[Online].

Available: https://www.vtpi.org/avip.pdf

[13] J. Canny, “A Computational Approach to Edge

Detection,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. PAMI-8, no. 6, pp. 679–698,

Nov. 1986.

DOI: 10.1109/TPAMI.1986.4767851

[14] A. Krizhevsky, I. Sutskever, and G. Hinton,

“ImageNet Classification with Deep Convolutional Neural

Networks,” Communications of the ACM, vol. 60, no. 6, pp.

84–90, 2017.

DOI: 10.1145/3065386

http://www.ijsrem.com/
https://www.vtpi.org/avip.pdf

