
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29101 | Page 1

Basic Computer Architecture and Quantitative Techniques in Computer Design Instruction

Pipeline ,Arithmetic Pipeline, Hazards ,Exception and Interrupts

Rupam Sardar

Budge Budge Institute of Technology,Kolakata-700137

Abstract:

We talk about the quantitative approach to computer architecture in this paper. We also go over

Amdahl's Law, scalability, parallelism, and the principle of locality in relation to quantitative

measurement. We also demystify computer architecture by focusing on smart technical design and cost-

performance-power trade-offs. In the context of computer architecture, we think the field has continued

to develop and move toward the exacting quantitative foundation of venerable scientific and technical

disciplines.

The pipelining principles in processor design are the focus of this study.The fundamentals of the

instruction pipeline are covered, and an example-based explanation of how to reduce a pipeline delay is

provided.The primary goal is to comprehend how a processor's pipeline functions.The different risks

that lead to pipeline deterioration are described, along with ways to reduce them.

Architecture-based development environments are emerging as a useful tool for building reliable

distributed systems. By means of the abstract characterization of intricate software

Software reuse and evolution are encouraged in terms of system topologies that involve the interface-

level interaction of software parts. Furthermore, as evidenced by research findings in the field of

software architecture, it becomes possible to offer formal annotations for the accurate characterization of

configuration behavior together with related CASE tools for automated analysis.

Nevertheless, while being essential to attaining software resilience, software fault tolerance—and

specifically exception management in that context—has received little attention.

Keywords: Instruction Pipeline ,Arithmetic Pipeline, Hazards

Introduction

The foundation of computer architecture research is now the quantitative method. But because of their

extreme complexity, computer systems are costly to create and hard to reason about. As a result,

thorough software analysis has become crucial for assessing concepts in the field of computer

architecture. The quantitative approach is widely used in the industry for processor and system design

since it is the simplest and most affordable method of exploring design possibilities. Furthermore,

evaluating novel, radical concepts and describing the characteristics of the design space are much more

crucial in research.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29101 | Page 2

 Figure 1 Basic Computer Design

Eight registers, a memory unit, and a control unit make up a basic computer. To move data between

registers and between memory and registers, paths must be supplied. If connections are made between

each register's output and the inputs of the other registers, there will be an excessive amount of wires. A

memory unit, a control unit, and eight registers make up a basic computer. It is necessary to provide

pathways for data to go between memory and registers as well as between registers. If there are

connections made between each register's output and its input, there will be an excessive amount of

wires.

The following hardware components are included in the basic computer:

4096 words, 16 bits per, in an eight register memory unit

Seven flip-flops

Two decryptors

A common bus with 16 bits

Logic gates for control

Logic circuit and adder coupled to the AC input.A collection of machine language instructions that a

certain processor can comprehend and carry out are called computer instructions. A computer operates

according to the instructions it is given.

A lesson consists of fields, which are groups. Among these fields are:

The field labeled "Opcode" indicates the operation that needs to be carried out.

The address of the operand, or register or memory location, is contained in the address field.

The operand's location is specified in the Mode field.

INPUT OUTPUT

ALU

CU

MEMOR

Y

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29101 | Page 3

Instruction Register

 D1

 D0

Instruction Set Completeness

If the computer has a sufficient number of instructions in each of the following categories, then the set

of instructions is considered complete:

Instructions in arithmetic, logic, and shift

a collection of guidelines for transferring data between CPU registers and memory.

Instructions that verify status circumstances in addition to instructions that govern the program.

Instructions for Input and Output.Program execution order can be altered by using program control

instructions like branch instructions.

The instructions for input and output serve as a conduit between the user and the computer. It is

necessary to move data and programs into memory and to return computation results to the user.

Cycle of Instruction

A computer's memory unit stores programs, which are collections of instructions. The processor carries

out these instructions by completing a cycle for every instruction.Each instruction cycle in a simple

computer consists of the following stages:Retrieve the instruction from the memory.Interpret the

3X8 DECODER

7 6 5 4 3 2 1 0

4x16 DECODER

15 14…….0

15 14 13……………3 2 1 0
COMBINATIONAL

CONTROL LOGIC

4 BIT SEQUENCE

COUNTER

Figure 2 : Basic Computer Design

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29101 | Page 4

instructions.From memory, read the effective address.Carry out the directive.Input-Output

Configuration for the Instruction CycleCycle of Instruction A computer's memory unit stores programs,

which are collections of instructions. The processor carries out these instructions by completing a cycle

for every instruction. Each instruction cycle in a simple computer consists of the following stages:

Retrieve the instruction from the memory. Interpret the instructions. From memory, read the effective

address. Carry out the directive

Input-Output Configuration

In computer architecture, input-output devices act as an interface between the machine and the user.

Instructions and data stored in the memory must come from some input device. The results are displayed

to the user through some output device.

The following block diagram shows the input-output configuration for a basic computer.

Information is sent and received via the input-output terminals.

Eight bits of an alphanumeric code will always be included in the amount of data sent.

An input register called "INPR" holds the data entered using the keyboard.

The output register, or "OUTR," contains the printer's data.

Registers INPR and OUTR exchange data in parallel with the AC and serially with a communication

interface.

Information from the keyboard is received via the transmitter interface, which then sends it to INPR.

Information from OUTR is received via the receiver interface, which then serially transmits it to the

printer.

Creation of a Simple Computer

The hardware parts of a basic computer are as follows.

A 4096-word memory unit with 16 bits per word

Registers include the following: PC (Program counter), TR (Temporary register), SC (Sequence

Counter), IR (Instruction register), DR (Data register), AC (Accumulator), and OUTR (Output register).

Flip-Flops: IEN, FGI, FGO, S, E, R, and I

The equivalent input and output flags, FGI and FGO, are referred to as control flip-flops.

A 3 x 8 operation decoder and a 4 x 16 timing decoder are the two decoders.

A common bus with 16 bits

Logic Gate Control

The AC input is coupled to the logic and adder circuits.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29101 | Page 5

Quantitative Computer Design

Principles that are helpful in computer analysis and design

Quickly create the common case!

When making a design trade-off, give preference to the frequent situation—which is typically simpler—

rather than the infrequent option.

For instance, prioritize optimizing the scenario in which overflow does not occur, as overflow in

addition is rare.

Goal: Identify the frequently occurring case.

Calculate the amount that performance can be improved by speeding it up.

Principles that are helpful in computer analysis and design

Quickly create the common case!

When making a design trade-off, give preference to the frequent situation—which is typically simpler—

rather than the infrequent option.

For instance, prioritize optimizing the scenario in which overflow does not occur, as overflow in

addition is rare.

Designing Computers Quantitatively

Amdahl's Law states that the percentage of time a quicker method of execution can be used determines

how much performance can be improved.

A given feature's speedup is defined by Amdahl's law as follows:

Two elements

Fraction enhanced: The fraction of the original machine's compute time that can be converted to benefit

from the improvement.

Constantly <= 1. Accelerated speed: Gained improvement through improved manner of execution:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29101 | Page 6

CPU Performance Equation:

Equation for Quantitative Computer Design CPU Performance:

One challenge: It's challenging to alter just one without affecting the others.

Hardware and Organization clock cycle time.

CPI: Architecture of the instruction set and organization.

Instruction count: Compiler technology and instruction set architecture.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29101 | Page 7

The advantage of parallelism is one of the most crucial strategies for raising output.

As an illustration, consider the application of parallelism at the system level.

· numerous processors and numerous disks can be used to increase the throughput performance on a

standard server benchmark, such SPECWeb or TPC-C.

· It is scalable; by distributing the load of processing requests among the disks and processors,

throughput may be increased.

Utilizing instruction parallelism at the individual processor level is essential for attaining optimal

performance.

Pipelining is among the easiest ways to accomplish this.

The Principal of Place

Programs frequently reuse previously used data and instructions.

Only 10% of a program's code is used for 90% of its execution time.

Based on a program's previous accesses, we can anticipate the instructions and data it will need in the

near future.

Although not as strongly as it does for code accesses, this idea also applies to data accesses.

 Categories: Items that have been accessed recently are probably going to be accessed again soon,

according to temporal locality.

According to the theory of spatial proximity, references to entities with nearby addresses typically occur

in close succession throughout time.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29101 | Page 8

The steps that an instruction goes through when it is transferred between the several processor

segments—fetching, buffering, decoding, and execution—are represented by the instruction pipeline.

While earlier instructions are being carried out in other segments, one section reads instructions from the

memory.Pipeline for instructions

The steps that an instruction goes through when it is transferred between the several processor

segments—fetching, buffering, decoding, and execution—are represented by the instruction pipeline.

While earlier instructions are being carried out in other segments, one section reads instructions from the

memory. The throughput of the entire system increases as a result of the overlapping nature of these

activities. The instruction cycle can be divided into equal-duration parts to further boost the efficiency of

the pipeline. The pipeline for arithmetic The components of an arithmetic operation that can be divided

up and overlapped while being carried out are represented by the arithmetic pipeline. It can be applied to

various mathematical operations, including multiplication of fixed-point integers and floating-point

calculations. Any intermediate findings that are subsequently forwarded to the following step for

additional processing are kept in registers.The benefits of pipelining Pipelining's primary benefit is that

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29101 | Page 9

it shortens the processor's cycle time. This is due to its ability to process multiple instructions at once

and shorten the time between finished instructions. The processor's total throughput is increased by

pipelining, even though the time it takes to execute an instruction is still dependent on its size, priority,

and complexity.

Moreover, the clock frequency of pipelined CPUs is typically higher than that of RAM. This enhances

the system's dependability and facilitates its worldwide deployment.The benefits of pipelining

Pipelining's primary benefit is that it shortens the processor's cycle time. This is due to its ability to

process multiple instructions at once and shorten the time between finished instructions. The processor's

total throughput is increased by pipelining, even though the time it takes to execute an instruction is still

dependent on its size, priority, and complexity.

Moreover, the clock frequency of pipelined CPUs is typically higher than that of RAM. This enhances

the system's dependability and facilitates its worldwide deployment. The benefits of pipelining

Pipelining's primary benefit is that it shortens the processor's cycle time. This is due to its ability to

process multiple instructions at once and shorten the time between finished instructions. The processor's

total throughput is increased by pipelining, even though the time it takes to execute an instruction is still

dependent on its size, priority, and complexity.

Moreover, the clock frequency of pipelined CPUs is typically higher than that of RAM. This enhances

the system's dependability and facilitates its worldwide deployment.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29101 | Page 10

Arithmetic Pipeline

An arithmetic pipeline divides an arithmetic problem into various sub problems for execution in various

pipeline segments. It is used for floating point operations, multiplication and various other computations

Subtract

Exponent

Choose Exponent Align Mantissa

Store in Register Add or Subtract

Normalize Result Result

Figure 1Arithmetic Pipeline

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29101 | Page 11

Instruction Pipeline:

Sequential instructions are read from memory into an instruction pipeline, with previous instructions

being executed in different areas. Pipeline processing is seen in the streams of instructions and data.

Contents Table of

Section 1: Instruction Pipeline in Computer Architecture; Segments 2 through 4

Computer Architecture Instruction Pipeline

Both the data stream and the instruction stream can undergo pipeline processing. Most digital computers

with complex instructions would need an instruction pipeline to carry out operations like fetching,

decoding, and executing instructions.

Generally speaking, the computer needs to process each instruction in the following order:

1. Obtaining the manual from memory

2. Interpreting the acquired guidance

3. Determining the effective address

Retrieve the operands from the specified memory.

5. Carrying out the directive

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29101 | Page 12

Fetch Instruction from

Memory

Decode Instruction and

Calculate Effective

address

Branch???

Fetch Operand from

Memory

Execute Instruction

INTERRUPT??? INTERRUPT

HANDLING

UPDATE PC

EMPTY PIPE

NO

Fig 2: Instruction Pipeline

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29101 | Page 13

Read the next anticipated instruction into a buffer using the fetch instruction (FI). 2. Decode instruction

(DI): Find the operand specifiers and the opcode. Compute operands (CO): Determine each source

operand's effective address. This could include address calculations using displacement, register

indirect, indirect, or other methods. 4. Operands to be fetched (FO): Get every operand out of memory.

5. Execute instruction (EI): Carry out the given operation and, if applicable, store the outcome in the

designated operand destination. 6. Write operand (WO): Retain the outcome for later use. A six-stage

pipeline can cut the time it takes to execute nine instructions from 54 to 14 time units, as shown in

Pipelining System

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29101 | Page 14

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29101 | Page 15

Structural Hazards

Pipelining of functional units and duplication of resources are necessary for the overlapping

execution of instructions in a pipelined processor in order to accommodate all possible combinations

of instructions. A processor is said to have a structural hazard if resource conflicts prevent some

combination of instructions from being executed.

Data Hazards and its Handling Methods

Read after Write (RAW), Write after Read (WAR), Write after Write (WAW), and Read after Read

(RAR) are the four categories of data dependencies. Below is an explanation of each of these.

Read Following Writing (RAW):

It is sometimes referred to as flow dependency or true reliance. It happens when a later instruction

needs the value that an earlier instruction provided. For instance, ADD R1, --, --; SUB --, R1, --;

Stalls must manage these risks.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29101 | Page 16

Write after Read (WAR): Anti-dependency is another name for it. These risks arise when an

instruction uses its output register immediately after it has been read by a prior instruction. As an

illustration,

Write after Write (WAW): ADD --, R1, --; SUB R1, --, --;

Another name for it is output dependence. These risks arise when an instruction's output register is

written after it has been written by another instruction. For instance, Read after Read (RAR): ADD

R1, --, --; SUB R1, --, --;

When two instructions read from the same register, it happens. As an illustration, ADD --, R1, --;

SUB --, R1, --;

These Read after Read (RAR) risks don't affect the processor because reading a register value

doesn't alter the register value.

Managing Data Hazards: We employ a number of techniques to manage data hazards, including stall

insertion, code reordering, and forwarding.

Below is an explanation of each of these.

Forwarding: It enriches the pipeline with additional circuitry. The reason this method works is that

the required values go via a wire faster than the pipeline segment's computation of the outcome.

Reordering codes: To reorder codes, we require a specific kind of software. This kind of software is

known as a hardware-dependent compiler.

Stall Insertion: this technique reduces pipeline efficiency and throughput by inserting one or more

stall (no-op) instructions into the pipeline. This delays the execution of the present instruction until

the necessary operand is written to the register file.

Handling Control Hazards

This module's goals are to examine delayed branching, distinguish between static and dynamic

branch prediction, and talk about how to deal with control hazards.

An issue arises when a series of instructions branches off. To maintain the pipeline, an instruction

needs to be fetched every clock cycle. But until the branch is fixed, we won't know where to get the

next instruction, which is problematic. Unlike the data hazards we looked at in the previous courses,

this delay in figuring out which instruction to retrieve is referred to as a control hazard or branch

hazard. Control dependences lead to control dangers.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29101 | Page 17

Figure Control Hazard

There are basically two ways of handling control hazards:

1. Stall until the branch outcome is known or perform the fetch again

2. Predict the behavior of branches

a. Static prediction by the compiler

b. Dynamic prediction by the hardware

Exception and Interrupt:

Unexpected events that interfere with the regular flow of instructions being executed by the

processor are known as exceptions and interruptions. An unforeseen processor-related event is an

exception. An unanticipated outside event interrupts the operation. The hardware begins running the

code that responds to an exception or interrupt by taking action whenever one happens. This could

include terminating a process, displaying an error message, establishing contact with an external

device, or even bringing down the whole computer system by bringing up a “Blue Screen of Death”

and stopping the CPU.

Following the handling of the exception or interrupt, the kernel proceeds as follows: Choose a

process to restore and resume; restore the context of the chosen process; and resume the selected

process's execution.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29101 | Page 18

References :

[1] Patterson, D. A. and Hennessy L. J. 2007 , “Computer Architecture – A Quantitative Approach”, Mc Graw Hill.

[2] McMahon, F. M. [1986]. “The Livermore FORTRAN kernels: A computer test of numerical performance range,” Tech.

Rep. UCRL-55745, Lawrence Livermore National Laboratory, Univ. of California, Livermore (December).

[3] Nairy, C., and D. Soltis [2003]. “Itanium 2 processor microarchitecture,” IEEE Micro 23:2 (March–April), 44–55.

[4] Mead, C., and L. Conway [1980]. Introduction to VLSI Systems, Addison-Wesley, Reading, Mass.

 [5] Mellor-Crummey, J. M., and M. L. Scott [1991]. “Algorithms for scalable synchronization on shared-memory

multiprocessors,” ACM Trans. on Computer Systems 9:1 (February), 21–65.

[6] Menabrea, L. F. [1842]. “Sketch of the analytical engine invented by Charles Babbage,” Bibiothèque Universelle de

Genève (October).

 [7] Lam, M. S., E. E. Rothberg, and M. E. Wolf [1991]. “The cache performance and optimizations of blocked algorithms,”

Fourth Int’l Conf. on Architectural Support for Programming Languages and Operating Systems, Santa Clara, Calif., April

8–11. SIGPLAN Notices 26:4 (April), 63–74.

 [8] Jordan, H. F. [1983]. “Performance measurements on HEP—a pipelined MIMD computer,” Proc. 10th Int’l Symposium on

Computer Architecture (June), Stockholm, 207–212.

[9] Jordan, K. E. [1987]. “Performance comparison of large-scale scientific processors: Scalar mainframes, mainframes with

vector facilities, and supercomputers,” Computer 20:3 (March), 10–23. [10] Jouppi, N. P. [1990]. “Improving direct-mapped

cache performance by the addition of a small fully-associative cache and prefetch buffers,” Proc. 17th Annual Int’l

Symposium on Computer Architecture, 364–73.

[11] Jouppi, N. P. [1998]. “Retrospective: Improving direct-mapped cache performance by the addition of a small fully-

associative cache and prefetch buffers,” 25 Years of the Int’l Symposia on Computer Architecture (Selected Papers), ACM,

71–73.

 [12] Jouppi, N. P., and D. W. Wall [1989]. “Available instruction-level parallelism for superscalar and superpipelined

processors,” Proc. Third Conf. on Architectural Support for Programming Languages and Operating Systems, IEEE/ACM

(April), Boston

[13] Book : Computer Organization by Hamacher.

[14] Parallelism and pipelining by David G. Messerschmitt,University Of California.

 [15] Pipelining Design Techniques by Mostafa Abd-ElBarr & Hesham El-Rewini

[16] Project Management Graphics by Edward Tufte: B.S. and M.S. in statistics, Stanford University, 1964. Ph.D. in political

science, Yale University, 1968

http://www.ijsrem.com/

