

Bio-Inspired Smart Energy Harvesting with IOT Monitoring

Prof. Selvarani S*¹, Mohammed Aiyen*², Sushil Kumar Yadav*³, Kshitij Chitaure*⁴, Charan Kumar Kh*⁵

¹Assistant professor, Information Science and Engineering, R R Institute of Technology

²Student, Information Science and Engineering, R R Institute of Technology

³Student, Information Science and Engineering, R R Institute of Technology

⁴Student, Information Science and Engineering, R R Institute of Technology

⁵Student, Information Science and Engineering, R R Institute of Technology

Abstract: Three mini solar power panels and a mini wind turbine with a power output of 5.5V are used to power various smart automation modules. They include a Smart Traffic Light Control System, a Traffic Density Detection System, an Automatic Street Light System, and a Smart Farming/Irrigation Module, controlled by Arduino Uno.

This project aims to provide a practical demonstration on efficient renewable energy resource harnessing, regulation, and effective dissemination to various low-power devices, as used in smart city and smart precision agriculture technologies.

Keywords: Bio-inspired system, IoT, Arduino Uno, Street Light, water pump, sensors.

1. INTRODUCTION

Climate change is one of the biggest challenges humanity faces in the 21st century. Rapid industrial growth, urban expansion, and a heavy reliance on fossil fuels have greatly increased greenhouse gas emissions. This rise results in global warming, air pollution, and extreme weather events. Scientists worldwide are discussing and researching ways to slow down and eventually reverse the harmful effects of climate change. As a result, the focus has shifted to sustainable development and using renewable energy sources.

2. Body of Paper

Bio-inspired smart energy tapping with an internet of things monitoring system is an innovative approach which mimics nature, such as trees and leaves, for effectively tapping renewable sources of energy available in the environment. This approach harvests energy available in

the environment through sources such as sunlight, vibration caused by solar energy or wind energy, and the surrounding environment using solar panels and piezoelectric sensors deployed in a bio-inspired design. This harvested energy can then be processed by a microcontroller, which stores it efficiently in batteries or supercapacitors. This approach involves the use of the internet of things integrated with smart design principles which provide a cloud-based solution for real-time monitoring of energy tapping, energy storage, and various environmental conditions.

Figure 1: Street Lights

Figure 2: IR sensor

3. CONCLUSIONS

This particular technology has proven to have an appropriate and sustainable solution to the renewable challenges faced in the modern era. With the incorporation of solar and wind energy as well as IoT technology, the tree energy and light system is the sustainable and smart response to the traditional energy system. The technology not only has the ability to reduce the use of fossil fuels but also improves the efficiency of cities and the environment as well as the development of smart cities. Its numerous uses in the sector of transportation, environmental issues, and security make it a fundamental part of sustainability in development. Conclusion:

In conclusion, smart systems that rely on renewable energy sources find application in combating climate change and adopting renewable energy to develop resilient and smart environments.

ACKNOWLEDGEMENT

They would like to thank their project guide, as well as the faculty members, for their priceless guidance, support, and encouragement in completing this project. It has been of immense help in enhancing the quality of the project.

The writers would like to extend their gratitude to their friends and classmates for their cooperation and help in the project. The writers would like to extend their sincerest appreciation to their families for the motivation and support they showed in the completion of this project.

REFERENCES

- [1] Y. Zhang, Z. L. Wang, and J. Chen, "Self-powered IoT systems enabled by energy harvesting technologies," *IEEE Internet of Things Journal*, vol. 10, no. 7, pp. 6124–6136, 2023.
- [2] M. M. Rahman, M. Hassan, and S. Islam, "Energy harvesting techniques for sustainable wireless sensor networks and IoT: A review," *IEEE Access*, vol. 11, pp. 41235–41255, 2023.
- [3] J. Kim, S. Park, and H. Lee, "Bio-inspired vibration energy harvesting for low-power IoT sensor nodes," *IEEE Sensors Journal*, vol. 23, no. 9, pp. 8932–8942, 2023.
- [4] H. Li, J. Zhou, and Z. L. Wang, "Triboelectric-based self-powered sensors for IoT monitoring applications," *IEEE Sensors Journal*, vol. 23, no. 14, pp. 15210–15221, 2023.
- [5] R. Singh and A. Kaur, "Energy harvesting enabled self-powered IoT systems for smart environments," *IEEE Access*, vol. 11, pp. 98765–98778, 2023.
- [6] Y. Chen, X. Liu, and J. Wang, "Bio-inspired nonlinear energy harvesters for broadband vibration environments," *IEEE Transactions on Industrial Electronics*, vol. 70, no. 10, pp. 10211–10220, 2023.
- [7] P. P. Puluckul and M. Weyn, "InfiniteEn: A multi-source energy harvesting system with load monitoring for batteryless IoT," *IEEE Internet of Things Journal*, vol. 11, no. 6, pp. 10234–10245, 2024.
- [8] J. Fernández-Landivar, A. Zanella, and S. Pollin, "Analytical modeling of batteryless IoT sensors powered by ambient energy harvesting," *IEEE Sensors Journal*, vol. 24, no. 9, pp. 14321–14330, 2024.