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Abstract - This paper presents a privacy-preserving 

electronic voting system that leverages blockchain technology 

and zero-knowledge authentication to provide anonymity, 

integrity, and verifiable participation in digital elections. The 

primary objective is to enable eligibility verification without 

disclosing voter identity while ensuring strict enforcement of 

one-person-one-vote. The proposed system employs the 

Semaphore protocol to generate zero-knowledge proofs of 

Merkle-tree membership, allowing voters to authenticate 

anonymously. A backend service performs proof pre-

verification and submits transactions through authorized 

relayer wallets, enabling gasless vote casting. The on-chain 

VotingSystem smart contract validates proofs, checks nullifier 

hashes to prevent double voting, and records vote counts 

immutably on the Ethereum network. The system was 

implemented using Solidity, Circom, snarkjs, and Ethers.js, 

and evaluated on the Sepolia testnet. Experimental results 

indicate practical proof-generation latency, reliable relayer-

based submission throughput, and deterministic on-chain 

verification accuracy. The findings demonstrate that combining 

zero-knowledge proofs with decentralized execution can 

deliver a secure, auditable, and privacy-preserving voting 

framework suitable for organizational and institutional e-voting 

scenarios. 
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1. INTRODUCTION  

Electronic voting systems have emerged as an essential 
component of modern digital governance, enabling efficient 
participation in elections without the limitations of traditional 
paper-based processes [3], [4]. However, existing online voting 
platforms often face significant challenges related to privacy, 
security, verifiability, and trust [5]. Centralized architectures 
expose voter identities, create opportunities for tampering, and 
require users to place complete trust in the administrators of the 
system. These limitations have motivated the exploration of 
decentralized and cryptographically secure alternatives that 
ensure both anonymity and integrity [3], [15]. 

Blockchain technology [18] offers immutability, transparency, 
and decentralized verification, making it a compelling 
foundation for trustless e-voting. Yet, storing votes or voter 
identities directly on-chain compromises privacy [1], [2]. Zero-
knowledge proofs (ZKPs) [11] address this challenge by 
allowing participants to prove eligibility without revealing 
sensitive information. In particular, the Semaphore protocol [9], 
[10] enables anonymous authentication through Merkle-tree 

membership proofs [19] and nullifier hashes, ensuring that each 
voter can cast exactly one vote without linking the vote to their 
identity. 

This paper presents a blockchain-based voting system that 
integrates zero-knowledge authentication with a gasless relayer 
architecture to deliver anonymous, verifiable, and user-friendly 
elections. The system ensures voter privacy through off-chain 
identity creation and zero-knowledge proof generation, while 
on-chain smart contracts verify proofs and maintain 
authoritative vote counts. The contributions of this work 
include: (i) the design of a privacy-preserving voting 
mechanism using Semaphore protocol [9], (ii) the integration of 
ZKP based eligibility verification with Groth16 zk-SNARKs 
[11], (iii) the implementation of a relayer-assisted gasless voting 
flow, and (iv) a comprehensive evaluation of the system on the 
Ethereum Sepolia public testnet. 

 

2. LITERATURE REVIEW 

Electronic voting (e-voting) has been an active research area for 
more than two decades [15], with early systems relying on 
centralized server-based authentication and tallying [4]. Such 
systems were limited by vulnerabilities including data 
tampering, privacy leakage, and the need for complete trust in 
the central authority. To mitigate these risks, researchers 
explored cryptographic techniques such as blind signatures, 
mix-nets, and homomorphic encryption. These mechanisms 
improved ballot secrecy and verifiability but introduced 
significant computational and operational overhead, making 
large-scale deployment challenging [5]. 

With the emergence of blockchain [18], decentralized e-voting 
architectures became feasible. Blockchain provides tamper-
resistant storage, distributed trust, and auditable execution [3]; 
however, storing identities or votes directly on-chain 
compromises privacy. Thus, blockchain alone is insufficient for 
confidentiality-oriented voting applications [1], [2]. To address 
this limitation, several studies have combined blockchain with 
advanced cryptographic privacy techniques. 

2.1 Blockchain-Based Voting Systems 

Hjálmarsson et al. [3] proposed one of the early blockchain-
based e-voting systems that utilized smart contracts for vote 
recording and tallying. Their system demonstrated the 
feasibility of decentralized voting but lacked strong privacy 
guarantees. A systematic review by Taş and Tanrıöver [4] 
identified key challenges in blockchain voting including 
scalability, privacy preservation, and user accessibility. 
Srivastava et al. [5] conducted a comprehensive meta-analysis 
of blockchain-based electronic voting systems, highlighting the 
trade-offs between security, privacy, and performance. 

 

https://ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                         Volume: 09 Issue: 11 | Nov - 2025                             SJIF Rating: 8.586                                      ISSN: 2582-3930                                                                                                                                               

  

© 2025, IJSREM      | https://ijsrem.com                                                                                                                                            |        Page 2 
 

2.2 Zero-Knowledge Proof-Based Voting 

A major advancement in privacy-preserving voting is zVote [1], 
which integrates threshold Paillier homomorphic encryption, 
zero-knowledge proofs, and Merkle-based membership 
verification to construct a privacy-preserving remote e-voting 
platform. In zVote, votes are encrypted and aggregated 
homomorphically, and only the final tally is decrypted by a set 
of distributed authorities. While highly secure, the design 
requires complex distributed key generation, trusted authorities 
for threshold decryption, and substantial computation costs for 
encrypted tallying. This makes zVote theoretically robust but 
practically heavy for real-time, user-friendly deployments. 

A more lightweight approach is presented in Z-Voting [2], 

which uses Circom-based zk-SNARK proofs [13], Merkle trees 

[19], and nullifier hashes to implement anonymous eligibility 

verification on Ethereum [18]. Unlike zVote, Z-Voting does not 

use homomorphic tallying; instead, the vote choice is stored in 

plaintext on chain, but the identity of the voter is hidden using 

zero-knowledge membership proofs. This design reduces 

reliance on trusted authorities and lowers system complexity 

while still providing anonymity and double-vote prevention. 

Recent work by Kho et al. [6] introduced zkVoting, a coercion-
resistant and end-to-end verifiable e-voting system using zero-
knowledge proofs. Del Pino et al. [7] explored lattice-based 
zero-knowledge proofs for electronic voting, demonstrating 
post-quantum security properties. These systems emphasize the 
importance of anonymous authentication, unlinkability, and 
public verifiability—concepts central to modern privacy 
preserving voting. 

2.3 Semaphore Protocol and Anonymous Signaling 

More recently, systems have adopted the Semaphore protocol 
[9], [10], which enables anonymous signaling through Merkle-
tree identities and nullifier-based uniqueness. Developed by the 
Privacy & Scaling Explorations team at the Ethereum 
Foundation, Semaphore achieves strong privacy guarantees with 
efficient zk-SNARKs based on the Groth16 construction [11]. 
The protocol has been utilized in various privacy-preserving 
applications beyond voting, including anonymous 
authentication and whistleblowing systems [8], [9]. 

2.4 Comparison with Traditional Cryptographic Voting 

Traditional cryptographic voting systems like Helios [15] use 
homomorphic encryption and mix-nets to achieve ballot 
secrecy. Helios has been deployed in real-world elections and 
provides open-audit capabilities. However, it requires voters to 
trust the tallying authorities and lacks the decentralized 
verification properties offered by blockchain-based systems. 

2.5 Positioning of This Work 

Ethereum Medium Medium Medium Complex key 

management Plaintext vote storage Coercion resistance 

overhead Limited to medium-scale The system implemented in 

this paper is most closely aligned with Z-Voting [2] and 

Semaphore-based approaches [9], [10]. Unlike zVote's heavy 

cryptographic stack [1], this work uses lightweight zero-

knowledge membership proofs based on Groth16 [11], [12], 

nullifier-based double-vote prevention, and a relayer-assisted 

gasless transaction model. This yields a design that maintains 

anonymity and verifiability while being practical for 

institutional elections. By integrating zero-knowledge proofs 

with a decentralized smart contract architecture following 

Ethereum security best practices [16], [17], the proposed system 

contributes to the ongoing evolution of scalable, privacy-

preserving blockchain voting mechanisms. 

 

3. SYSTEM ARCHITECTURE 

The proposed voting system integrates zero-knowledge 

authentication with blockchain execution to provide 

anonymity, integrity, and verifiability. The architecture 

consists of four major components: (i) the voter client, (ii) the 

backend verification and relayer service, (iii) the Ethereum 

smart contract layer, and (iv) the zero-knowledge proof system 

based on Semaphore [9], [10]. 

 

 

Fig-1: System Architecture 

 

3.1 Voter Client and Identity Layer 

Each voter locally generates a unique Semaphore identity [9] 

which is converted into an identity commitment. This 

commitment becomes part of a Merkle tree [19] of authorized 

voters. The secret identity is never transmitted outside the 

client device, ensuring privacy preservation at the client level. 

When casting a vote, the client constructs a zero-knowledge 

proof demonstrating group membership, use of a unique 

nullifier, and correctness of the vote signal, using Circom [13] 

and snarkjs [14] for witness and proof generation. 

 

The use of browser-based WebAssembly (WASM) execution 

ensures that all cryptographic operations occur locally, 

preventing identity leakage through network transmission. This 

approach aligns with privacy-by-design principles commonly 

adopted in modern cryptographic systems [6], [7]. 

 

3.2 Merkle Tree and Zero-Knowledge Membership Proofs 

The system uses a Merkle tree to encode all valid voter 

commitments. Semaphore’s zk-SNARK circuit verifies 

Merkle-tree membership and ensures that the identity and 

Merkle root correspond. A nullifier hash is included in the 

public signals to ensure that each identity can cast exactly one 

vote without revealing identity information. 

 

3.3 Backend Server and Relayer Architecture 

To enable gasless voting, the system uses a pool of authorized 

relayer wallets that submit transactions on behalf of voters. The 

backend performs several tasks: 

1. Pre-verifies the proof off-chain 

2. Checks nullifier uniqueness 

3. Selects an appropriate relayer 

4. Constructs and signs a vote transaction 

5. Broadcasts the transaction to the Sepolia 

network 

 

3.4 Smart Contract Layer 

The VotingSystem smart contract is deployed on the Sepolia 

testnet and integrates with the Semaphore verifier. It stores the 

Merkle root, voting window, candidate list, and used nullifiers. 

When a transaction is submitted by a relayer, the contract: 

1. Verifies the zk-SNARK proof 

2. Validates the nullifier 

https://ijsrem.com/
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3. Checks the vote timestamp 

4. Validates the candidate ID 

5. Updates the vote count and records the 

nullifier 

All vote tallies are publicly accessible and immutable. 

 

3.5 End-to-End Data Flow 

The full process begins with identity creation and ZK proof 

generation on the client, followed by transmission to the 

backend. The backend performs validations and uses a relayer 

to submit the vote. The smart contract validates the proof on-

chain and records the vote. Tally results can be retrieved either 

from the blockchain directly or via backend APIs. 

 

 
Fig-2: Voting Flow (Using Semaphore + Relayers) 

 

4. METHODOLOGY  

The methodology adopted in this work follows a systematic, 

layered approach integrating cryptographic identity 

construction, zero-knowledge proof generation, backend 

verification logic, relayer-assisted blockchain interaction, and 

on-chain vote validation. The system ensures anonymity, 

integrity, and one-person-one-vote without disclosing the 

voter’s identity or requiring the participant to interact directly 

with the blockchain. 

 

4.1 Identity Creation and Voter Registration 

The process begins with each voter generating a Semaphore 

identity consisting of a trapdoor and nullifier pair. The identity 

is hashed to form an identity commitment, which becomes a 

leaf in a Merkle tree of eligible voters. This Merkle tree is 

constructed and stored off-chain by the election authority. 

This step ensures that each voter receives a unique, non-linkable 

cryptographic presence in the system without exposing personal 

information. 

 

4.2 Merkle Proof Construction 

Once the identity commitments are registered, the election 

authority finalizes the Merkle root. The voter retrieves the 

Merkle proof (path elements and indices) corresponding to their 

commitment either from the backend or through a distributed 

dataset. The Merkle proof is required for generating the zero-

knowledge membership proof. 

 

 

 

 

 

4.3 Zero-Knowledge Proof Generation 

The voter constructs a zk-SNARK proof using Circom circuits 

and snarkjs. The proof demonstrates: 

1. Membership in the authorized voter set (via 

Merkle inclusion) 

2. Use of a unique nullifier hash:  

nullifierHash = Poseidon (nullifier, externalNullifier) 

3. Correct formation of the chosen vote signal 

4. Agreement with the published Merkle root 

and group identifier 

All witness generation and proof computation occur locally on 

the voter’s device using WASM-based tooling for improved 

security. 

 

4.4 Backend Pre-Verification and Relayer Selection 

To prevent invalid or malicious submissions from reaching the 

blockchain, the backend service performs pre-verification of the 

received zero-knowledge proof. Upon successful validation: 

1. It checks the uniqueness of the nullifier hash 

in the server-side cache. 

2. It selects a relayer wallet from an authorized 

pool. 

3. It constructs a transaction embedding the 

proof and selected candidate. 

4. It forwards the transaction to the Ethereum 

Sepolia network using Ethers.js. 

This design enables gasless voting, ensuring a seamless user 

experience without requiring cryptocurrency. 

 

4.5 Smart Contract Verification and Vote Recording 

The VotingSystem smart contract contains: 

• The authorized Merkle root 

• The voting window (start and end 

timestamps) 

• The candidate list 

• A mapping of used nullifiers 

• A link to the Semaphore Verifier Contract 

When the relayer submits a vote: 

1. The smart contract verifies the zk-SNARK 

proof. 

2. Validates that the nullifier hash has not been 

used. 

3. Confirms that the vote is within the election 

period. 

4. Ensures the candidate ID is valid. 

5. Increments the vote count for the selected 

candidate. 

6. Marks the nullifier hash as used, enforcing 

one-person-one-vote. 

 

4.6 Result Retrieval and Transparency 

Votes stored on-chain are publicly accessible. Tally results can 

be retrieved: 

• Directly from the blockchain using contract 

view functions 

• Through backend endpoints that aggregate 

and format results 

This ensures transparency and auditability while preserving 

voter anonymity. 
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5. IMPLEMENTATION 

The implementation of the proposed voting system consists of 

coordinated development across the smart contract layer, zero-

knowledge proof layer, backend relayer service, and frontend 

client interface. The system was developed iteratively, tested on 

the Ethereum Sepolia test network, and integrated using the 

Semaphore protocol for anonymous authentication. 

 

5.1 Smart Contract Development 

The voting logic is implemented in the VotingSystem.sol smart 

contract, using Solidity and the Foundry development 

framework. The contract incorporates core components: 

1. Semaphore Verifier Integration:     The 

contract imports and interfaces with 

SemaphoreVerifier.sol to validate zk-SNARK proofs 

generated by voters. 

2. Voting Configuration State: The 

contract stores: 

• The Merkle root representing the 

eligible voter set 

• Voting start and end timestamps 

• Candidate list and total counts 

• Nullifier hash mapping to prevent 

double voting 

3. Proof Verification and Vote Recording:

 Upon receiving a vote from a relayer, the 

contract verifies the zk-SNARK proof, validates the 

nullifier hash, checks the voting window, and 

increments the corresponding candidate count. 

4. Deployment: Deployment was performed 

on the Ethereum Sepolia testnet using Foundry scripts, 

with verifier and voting contract addresses stored in 

deployment logs. 

 

5.2 Zero-Knowledge Proof Stack 

Zero-knowledge authentication is enabled using the Semaphore 

protocol, which uses the following components: 

1. Circom Circuits:   The system uses a 

compiled membership-proof circuit that verifies 

Merkle-tree inclusion and creates a nullifier hash 

bound to the voter’s secret identity. 

2. snarkjs Workflow: 

• WASM witness generation 

• ZK proof generation using .zkey 

files 

• Public signals extraction (candidate 

ID, nullifierHash, groupId, Merkle root) 

3. Merkle Tree Handling: All identity 

commitments are organized into a Merkle tree, 

generated off-chain using Semaphore’s Group utilities. 

The tree root is uploaded to the smart contract during 

initialization. 

4. Local Proof Generation: The frontend 

invokes WASM and snarkjs to generate proofs directly 

in the browser, ensuring identities never leave the 

user's device. 

 

5.3 Backend Server Implementation 

The backend server, implemented in Node.js(v20.xx ) + 

Express, plays a critical role in orchestrating the voting process: 

1. API Endpoints: 

• /api/vote/submit: For submitting the 

vote proof 

• /api/vote/verify-proof: Proof pre-

verification 

• /api/voter/merkle-proof: Provide 

Merkle path 

• /api/blockchain/*: Retrieve 

blockchain data 

2. Proof Pre-Verification: The backend uses 

a JavaScript Semaphore verifier to check the zk-

SNARK proof before forwarding it to the blockchain. 

3. Nullifier Cache:    A server-side nullifier 

cache prevents multiple submissions of the same proof, 

reducing failed transactions and relayer gas waste. 

4. Relayer Wallet Pool: The backend 

maintains encrypted private keys for multiple relayer 

wallets and rotates them to distribute load and reduce 

single-point failure. 

5. Blockchain Relay: Using Ethers.js, 

the backend signs and broadcasts the castVote() 

transaction with the user’s proof to the VotingSystem 

contract. 

 

5.4 Frontend Client Interface 

The frontend is responsible for identity generation and proof 

creation: 

1. Identity Creation: Voters generate Semaphore 

identities locally using Semaphore’s JS libraries. 

2. Merkle Proof Retrieval: The frontend 

fetches Merkle proofs from the backend when 

required. 

3. ZK Proof Generation: The frontend 

triggers WASM execution to compute the witness and 

generate the zk-SNARK proof. 

4. Vote Submission: Once proof generation 

succeeds, the client sends {candidateId, zkProof, 

nullifierHash} to the backend through the 

/api/vote/submit endpoint. 

5. UX Considerations: Loading animations and 

progress indicators were implemented for proof 

generation delays. 

 

5.5 Testnet Deployment and Validation 

The system was deployed and tested on the Ethereum Sepolia 

Testnet: 

1. Contract Deployment: Both the 

Semaphore verifier and the voting contract were 

deployed using Foundry scripts. 

2. Relayer Testing:   Multiple relayers were 

registered and tested for gasless submission reliability. 

3. End-to-End Testing: The team 

validated the full flow: 

Identity creation → Proof generation → Backend 

verification → Relayer submission → On-chain tally. 

4. Results Verification: Vote counts and 

percentages were accessed through smart contract view 

functions and backend endpoints. 

 

5.6 Summary of Implementation 

The complete implementation integrates: 

• Smart contracts for verifiable voting 

• Semaphore-based ZK authentication 

• Backend pre-verification and relayer logic 

• Browser-based ZK proof generation 

• Blockchain-based immutable tallying 

https://ijsrem.com/
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This modular architecture enables anonymous, gasless, and 

verifiable voting suitable for academic or organizational 

elections. 

 

6. RESULT AND DISCUSSION 

The implementation of the proposed voting system was 

validated through comprehensive functional testing on the 

Ethereum Sepolia test network. The evaluation focused on 

verifying the correctness of zero-knowledge proof generation, 

backend pre-verification, relayer-assisted transaction 

submission, and on-chain vote validation. 

Zero-knowledge proofs were successfully generated on 

multiple user devices using WASM-based execution, 

demonstrating that the Semaphore identity and proof-

generation workflow functioned reliably in a browser 

environment. All proofs that were correctly formed resulted in 

valid public signals, while improperly generated proofs were 

rejected by the backend during pre-verification. This ensured 

that only valid and structured proofs were forwarded to the 

blockchain. 

The backend service consistently performed nullifier checks, 

verified proof integrity, and correctly routed valid submissions 

through authorized relayer wallets. Invalid submissions—such 

as those containing reused nullifiers, malformed signals, or 

mismatched Merkle roots—were blocked before reaching the 

blockchain, preventing unnecessary relayer operations. The 

relayer model successfully abstracted the transaction-signing 

process from the user, enabling a smooth, gasless voting 

experience. 

On-chain validation confirmed that the VotingSystem contract 

correctly enforced the intended security properties. Valid 

proofs were accepted, invalid proofs reverted deterministically, 

and the nullifier mapping prevented any attempt at double 

voting. Vote tallies stored on the blockchain remained 

immutable and consistent across all verification methods, 

demonstrating end-to-end correctness. 

Overall, the system achieved anonymous eligibility 

verification, one-person-one-vote enforcement, and transparent 

tallying without requiring voters to manage blockchain wallets 

or reveal identity information. These results indicate that the 

architecture is well-suited for small to medium-scale 

organizational elections requiring privacy, integrity, and 

auditability. 

 

7. SECURITY ANALYSIS 

The security of the proposed voting system is derived from the 

combined guarantees of zero-knowledge proofs, cryptographic 

identity commitments, and blockchain-based immutability. 

This section examines the core security properties provided by 

the system and evaluates potential risks associated with each 

architectural component. 

 

7.1 Voter Anonymity 

Voter anonymity is ensured through Semaphore’s zero-

knowledge membership proof mechanism. Each voter 

generates a secret identity locally, which is never disclosed 

outside their device. The smart contract verifies eligibility 

through a zk-SNARK proof of Merkle-tree membership 

without revealing the voter’s identity, Merkle path, or leaf 

position. Since all proofs are unlinkable and do not contain 

identifying information, no observer—including the backend, 

relayers, or blockchain validators—can associate a vote with a 

specific individual. 

 

7.2 Prevention of Double Voting 

The system enforces one-person-one-vote through a nullifier 

hash derived from the voter’s secret identity. Because the 

nullifier is deterministic and unique to each voter, any attempt 

to cast a second vote results in a contract-level rejection. The 

used Nullifiers mapping in the smart contract ensures that even 

if multiple relayers attempt to submit the same proof, the 

transaction will be reverted as soon as the nullifier is detected 

on-chain. 

 

7.3 Integrity of Vote Recording 

Votes are recorded immutably on the Ethereum Sepolia testnet, 

preventing unauthorized modification or deletion. Since each 

valid transaction includes an on-chain proof verification step, 

only authenticated votes are counted. The blockchain 

consensus mechanism ensures resistance to tampering, while 

public view functions allow any observer to verify current 

tallies, achieving end-to-end verifiability. 

 

7.4 Resistance to Identity Leakage 

Identity commitments stored in the Merkle tree reveal no 

information about the underlying voter secrets. Zero-

knowledge proofs ensure that no metadata linking the voter to 

their identity commitment leaks during proof generation. 

Unlike traditional systems where voter lists or authentication 

logs may reveal participation patterns, this system avoids 

storing any such identifiable information. 

 

7.5 Backend Threat Model 

The backend operates as a proof pre-verifier and relayer 

selector but does not have the ability to forge votes or 

impersonate voters. It cannot generate valid zero-knowledge 

proofs, since proof construction requires the voter's secret 

identity. The backend’s role is restricted to: 

• Rejecting malformed or reused proofs 

• Forwarding valid proofs using relayer wallets 

• Preventing unnecessary gas expenditure 

Even if compromised, the backend cannot create new valid 

votes or deanonymize users. However, it could attempt 

censorship by refusing to forward votes; this risk is mitigated 

by allowing fallback direct submissions or by operating 

multiple independent backend instances. 

 

7.6 Relayer Security Considerations 

Relayers submit transactions on behalf of voters but do not 

possess the ability to modify vote contents or generate proofs. 

They operate only on fully formed payloads. A malicious 

relayer could attempt to delay or withhold vote submission, but 

it cannot alter or forge votes.  

 

Rotating between multiple relayers reduces dependence on any 

single wallet and reduces the risk of targeted censorship. The 

relayer pool architecture provides redundancy: if one relayer 

fails or acts maliciously, votes can be rerouted through 

alternative relayers without compromising security [16]. This 

design is inspired by similar redundancy mechanisms in 

distributed systems. 

 

7.7 Smart Contract Security Properties 

The VotingSystem contract enforces strict validation rules: 

1. zk-SNARK Verification: Only 

cryptographically valid proofs are accepted. 

https://ijsrem.com/
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2. State Integrity Checks: Nullifiers and 

timestamps prevent replay or out-of-window 

submissions. 

3. Input Validation: Candidate IDs must fall 

within the allowed range. 

4. Access Control: Only authorized relayer 

addresses may submit votes. 

The contract avoids storing any sensitive identity data and does 

not expose internal state that could compromise anonymity. 

 

7.8 Possible Attack Vectors 

While the system mitigates most common threats in e-voting, 

the following potential risks remain: 

• Relayer Censorship: A malicious relayer or 

backend instance could refuse to forward valid proofs. 

• Denial-of-Service Attacks: High network 

traffic could delay or interrupt proof verification 

services. 

• Client-Side Compromise: Malware on a 

voter’s device could extract their identity secret, 

although proof generation is fully local to minimize 

leakage risk. 

These attack vectors are operational rather than cryptographic 

and can be mitigated through redundancy, secure infrastructure 

practices, and independent backend deployments. 

 

8. CONCLUSION 

This paper presented a privacy-preserving electronic voting 

system that integrates zero-knowledge authentication with 

blockchain-based execution to address fundamental challenges 

in digital elections. By leveraging the Semaphore protocol, the 

system enables anonymous eligibility verification through 

Merkle-tree membership proofs and nullifier-based double-

vote prevention. The use of relayer-assisted transaction 

submission further abstracts blockchain complexity from end 

users, enabling a gasless and accessible voting experience 

without compromising security or verifiability. 

The implementation demonstrates that zero-knowledge proofs 

can be effectively combined with decentralized smart contracts 

to achieve voter anonymity, integrity of vote recording, and 

resistance to fraudulent participation. Functional validation on 

the Ethereum Sepolia test network confirmed the correctness of 

proof verification, consistent enforcement of one-person-one-

vote, and the immutability of on-chain vote tallies. The 

modular design supports seamless integration between the 

frontend, backend, relayer service, and smart contract, making 

the architecture suitable for institutional and organizational 

voting contexts. 

While the system does not incorporate advanced cryptographic 

tallying methods such as homomorphic aggregation, it provides 

a practical, scalable, and secure foundation for real-world e-

voting deployments. Future enhancements may include 

distributed relayer networks, encrypted vote storage, and 

expanded zk-SNARK circuits for richer election mechanisms. 

Overall, the work demonstrates the viability and promise of 

zero-knowledge–based authentication in building trustworthy, 

privacy-preserving voting systems. 
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