
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com | Page 1

Blockchain-Based Voting System Using Zero-Knowledge Authentication

Anuj Kumar1, Misba Fathima1, P Kanchana1, Prajapati Nidhi Yogesh Kumar1, Ms. Ganashree R.2

1Student, Department of Computer Science and Engineering (IoT & Cybersecurity including Blockchain

Technology), Sir M. Visvesvaraya Institute of Technology (SMVIT), Bengaluru, Karnataka, India
2Associate Professor, Department of Computer Science and Engineering (IoT & Cybersecurity including

Blockchain Technology), Sir M. Visvesvaraya Institute of Technology (SMVIT), Bengaluru, Karnataka, India

---***---

Abstract - This paper presents a privacy-preserving

electronic voting system that leverages blockchain technology

and zero-knowledge authentication to provide anonymity,

integrity, and verifiable participation in digital elections. The

primary objective is to enable eligibility verification without

disclosing voter identity while ensuring strict enforcement of

one-person-one-vote. The proposed system employs the

Semaphore protocol to generate zero-knowledge proofs of

Merkle-tree membership, allowing voters to authenticate

anonymously. A backend service performs proof pre-

verification and submits transactions through authorized

relayer wallets, enabling gasless vote casting. The on-chain

VotingSystem smart contract validates proofs, checks nullifier

hashes to prevent double voting, and records vote counts

immutably on the Ethereum network. The system was

implemented using Solidity, Circom, snarkjs, and Ethers.js,

and evaluated on the Sepolia testnet. Experimental results

indicate practical proof-generation latency, reliable relayer-

based submission throughput, and deterministic on-chain

verification accuracy. The findings demonstrate that combining

zero-knowledge proofs with decentralized execution can

deliver a secure, auditable, and privacy-preserving voting

framework suitable for organizational and institutional e-voting

scenarios.

Key Words: blockchain, zero-knowledge proofs, e-

voting, anonymity, Semaphore, Ethereum

1. INTRODUCTION

Electronic voting systems have emerged as an essential
component of modern digital governance, enabling efficient
participation in elections without the limitations of traditional
paper-based processes [3], [4]. However, existing online voting
platforms often face significant challenges related to privacy,
security, verifiability, and trust [5]. Centralized architectures
expose voter identities, create opportunities for tampering, and
require users to place complete trust in the administrators of the
system. These limitations have motivated the exploration of
decentralized and cryptographically secure alternatives that
ensure both anonymity and integrity [3], [15].

Blockchain technology [18] offers immutability, transparency,
and decentralized verification, making it a compelling
foundation for trustless e-voting. Yet, storing votes or voter
identities directly on-chain compromises privacy [1], [2]. Zero-
knowledge proofs (ZKPs) [11] address this challenge by
allowing participants to prove eligibility without revealing
sensitive information. In particular, the Semaphore protocol [9],
[10] enables anonymous authentication through Merkle-tree

membership proofs [19] and nullifier hashes, ensuring that each
voter can cast exactly one vote without linking the vote to their
identity.

This paper presents a blockchain-based voting system that
integrates zero-knowledge authentication with a gasless relayer
architecture to deliver anonymous, verifiable, and user-friendly
elections. The system ensures voter privacy through off-chain
identity creation and zero-knowledge proof generation, while
on-chain smart contracts verify proofs and maintain
authoritative vote counts. The contributions of this work
include: (i) the design of a privacy-preserving voting
mechanism using Semaphore protocol [9], (ii) the integration of
ZKP based eligibility verification with Groth16 zk-SNARKs
[11], (iii) the implementation of a relayer-assisted gasless voting
flow, and (iv) a comprehensive evaluation of the system on the
Ethereum Sepolia public testnet.

2. LITERATURE REVIEW

Electronic voting (e-voting) has been an active research area for
more than two decades [15], with early systems relying on
centralized server-based authentication and tallying [4]. Such
systems were limited by vulnerabilities including data
tampering, privacy leakage, and the need for complete trust in
the central authority. To mitigate these risks, researchers
explored cryptographic techniques such as blind signatures,
mix-nets, and homomorphic encryption. These mechanisms
improved ballot secrecy and verifiability but introduced
significant computational and operational overhead, making
large-scale deployment challenging [5].

With the emergence of blockchain [18], decentralized e-voting
architectures became feasible. Blockchain provides tamper-
resistant storage, distributed trust, and auditable execution [3];
however, storing identities or votes directly on-chain
compromises privacy. Thus, blockchain alone is insufficient for
confidentiality-oriented voting applications [1], [2]. To address
this limitation, several studies have combined blockchain with
advanced cryptographic privacy techniques.

2.1 Blockchain-Based Voting Systems

Hjálmarsson et al. [3] proposed one of the early blockchain-
based e-voting systems that utilized smart contracts for vote
recording and tallying. Their system demonstrated the
feasibility of decentralized voting but lacked strong privacy
guarantees. A systematic review by Taş and Tanrıöver [4]
identified key challenges in blockchain voting including
scalability, privacy preservation, and user accessibility.
Srivastava et al. [5] conducted a comprehensive meta-analysis
of blockchain-based electronic voting systems, highlighting the
trade-offs between security, privacy, and performance.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com | Page 2

2.2 Zero-Knowledge Proof-Based Voting

A major advancement in privacy-preserving voting is zVote [1],
which integrates threshold Paillier homomorphic encryption,
zero-knowledge proofs, and Merkle-based membership
verification to construct a privacy-preserving remote e-voting
platform. In zVote, votes are encrypted and aggregated
homomorphically, and only the final tally is decrypted by a set
of distributed authorities. While highly secure, the design
requires complex distributed key generation, trusted authorities
for threshold decryption, and substantial computation costs for
encrypted tallying. This makes zVote theoretically robust but
practically heavy for real-time, user-friendly deployments.

A more lightweight approach is presented in Z-Voting [2],

which uses Circom-based zk-SNARK proofs [13], Merkle trees

[19], and nullifier hashes to implement anonymous eligibility

verification on Ethereum [18]. Unlike zVote, Z-Voting does not

use homomorphic tallying; instead, the vote choice is stored in

plaintext on chain, but the identity of the voter is hidden using

zero-knowledge membership proofs. This design reduces

reliance on trusted authorities and lowers system complexity

while still providing anonymity and double-vote prevention.

Recent work by Kho et al. [6] introduced zkVoting, a coercion-
resistant and end-to-end verifiable e-voting system using zero-
knowledge proofs. Del Pino et al. [7] explored lattice-based
zero-knowledge proofs for electronic voting, demonstrating
post-quantum security properties. These systems emphasize the
importance of anonymous authentication, unlinkability, and
public verifiability—concepts central to modern privacy
preserving voting.

2.3 Semaphore Protocol and Anonymous Signaling

More recently, systems have adopted the Semaphore protocol
[9], [10], which enables anonymous signaling through Merkle-
tree identities and nullifier-based uniqueness. Developed by the
Privacy & Scaling Explorations team at the Ethereum
Foundation, Semaphore achieves strong privacy guarantees with
efficient zk-SNARKs based on the Groth16 construction [11].
The protocol has been utilized in various privacy-preserving
applications beyond voting, including anonymous
authentication and whistleblowing systems [8], [9].

2.4 Comparison with Traditional Cryptographic Voting

Traditional cryptographic voting systems like Helios [15] use
homomorphic encryption and mix-nets to achieve ballot
secrecy. Helios has been deployed in real-world elections and
provides open-audit capabilities. However, it requires voters to
trust the tallying authorities and lacks the decentralized
verification properties offered by blockchain-based systems.

2.5 Positioning of This Work

Ethereum Medium Medium Medium Complex key

management Plaintext vote storage Coercion resistance

overhead Limited to medium-scale The system implemented in

this paper is most closely aligned with Z-Voting [2] and

Semaphore-based approaches [9], [10]. Unlike zVote's heavy

cryptographic stack [1], this work uses lightweight zero-

knowledge membership proofs based on Groth16 [11], [12],

nullifier-based double-vote prevention, and a relayer-assisted

gasless transaction model. This yields a design that maintains

anonymity and verifiability while being practical for

institutional elections. By integrating zero-knowledge proofs

with a decentralized smart contract architecture following

Ethereum security best practices [16], [17], the proposed system

contributes to the ongoing evolution of scalable, privacy-

preserving blockchain voting mechanisms.

3. SYSTEM ARCHITECTURE

The proposed voting system integrates zero-knowledge

authentication with blockchain execution to provide

anonymity, integrity, and verifiability. The architecture

consists of four major components: (i) the voter client, (ii) the

backend verification and relayer service, (iii) the Ethereum

smart contract layer, and (iv) the zero-knowledge proof system

based on Semaphore [9], [10].

Fig-1: System Architecture

3.1 Voter Client and Identity Layer

Each voter locally generates a unique Semaphore identity [9]

which is converted into an identity commitment. This

commitment becomes part of a Merkle tree [19] of authorized

voters. The secret identity is never transmitted outside the

client device, ensuring privacy preservation at the client level.

When casting a vote, the client constructs a zero-knowledge

proof demonstrating group membership, use of a unique

nullifier, and correctness of the vote signal, using Circom [13]

and snarkjs [14] for witness and proof generation.

The use of browser-based WebAssembly (WASM) execution

ensures that all cryptographic operations occur locally,

preventing identity leakage through network transmission. This

approach aligns with privacy-by-design principles commonly

adopted in modern cryptographic systems [6], [7].

3.2 Merkle Tree and Zero-Knowledge Membership Proofs

The system uses a Merkle tree to encode all valid voter

commitments. Semaphore’s zk-SNARK circuit verifies

Merkle-tree membership and ensures that the identity and

Merkle root correspond. A nullifier hash is included in the

public signals to ensure that each identity can cast exactly one

vote without revealing identity information.

3.3 Backend Server and Relayer Architecture

To enable gasless voting, the system uses a pool of authorized

relayer wallets that submit transactions on behalf of voters. The

backend performs several tasks:

1. Pre-verifies the proof off-chain

2. Checks nullifier uniqueness

3. Selects an appropriate relayer

4. Constructs and signs a vote transaction

5. Broadcasts the transaction to the Sepolia

network

3.4 Smart Contract Layer

The VotingSystem smart contract is deployed on the Sepolia

testnet and integrates with the Semaphore verifier. It stores the

Merkle root, voting window, candidate list, and used nullifiers.

When a transaction is submitted by a relayer, the contract:

1. Verifies the zk-SNARK proof

2. Validates the nullifier

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com | Page 3

3. Checks the vote timestamp

4. Validates the candidate ID

5. Updates the vote count and records the

nullifier

All vote tallies are publicly accessible and immutable.

3.5 End-to-End Data Flow

The full process begins with identity creation and ZK proof

generation on the client, followed by transmission to the

backend. The backend performs validations and uses a relayer

to submit the vote. The smart contract validates the proof on-

chain and records the vote. Tally results can be retrieved either

from the blockchain directly or via backend APIs.

Fig-2: Voting Flow (Using Semaphore + Relayers)

4. METHODOLOGY

The methodology adopted in this work follows a systematic,

layered approach integrating cryptographic identity

construction, zero-knowledge proof generation, backend

verification logic, relayer-assisted blockchain interaction, and

on-chain vote validation. The system ensures anonymity,

integrity, and one-person-one-vote without disclosing the

voter’s identity or requiring the participant to interact directly

with the blockchain.

4.1 Identity Creation and Voter Registration

The process begins with each voter generating a Semaphore

identity consisting of a trapdoor and nullifier pair. The identity

is hashed to form an identity commitment, which becomes a

leaf in a Merkle tree of eligible voters. This Merkle tree is

constructed and stored off-chain by the election authority.

This step ensures that each voter receives a unique, non-linkable

cryptographic presence in the system without exposing personal

information.

4.2 Merkle Proof Construction

Once the identity commitments are registered, the election

authority finalizes the Merkle root. The voter retrieves the

Merkle proof (path elements and indices) corresponding to their

commitment either from the backend or through a distributed

dataset. The Merkle proof is required for generating the zero-

knowledge membership proof.

4.3 Zero-Knowledge Proof Generation

The voter constructs a zk-SNARK proof using Circom circuits

and snarkjs. The proof demonstrates:

1. Membership in the authorized voter set (via

Merkle inclusion)

2. Use of a unique nullifier hash:

nullifierHash = Poseidon (nullifier, externalNullifier)

3. Correct formation of the chosen vote signal

4. Agreement with the published Merkle root

and group identifier

All witness generation and proof computation occur locally on

the voter’s device using WASM-based tooling for improved

security.

4.4 Backend Pre-Verification and Relayer Selection

To prevent invalid or malicious submissions from reaching the

blockchain, the backend service performs pre-verification of the

received zero-knowledge proof. Upon successful validation:

1. It checks the uniqueness of the nullifier hash

in the server-side cache.

2. It selects a relayer wallet from an authorized

pool.

3. It constructs a transaction embedding the

proof and selected candidate.

4. It forwards the transaction to the Ethereum

Sepolia network using Ethers.js.

This design enables gasless voting, ensuring a seamless user

experience without requiring cryptocurrency.

4.5 Smart Contract Verification and Vote Recording

The VotingSystem smart contract contains:

• The authorized Merkle root

• The voting window (start and end

timestamps)

• The candidate list

• A mapping of used nullifiers

• A link to the Semaphore Verifier Contract

When the relayer submits a vote:

1. The smart contract verifies the zk-SNARK

proof.

2. Validates that the nullifier hash has not been

used.

3. Confirms that the vote is within the election

period.

4. Ensures the candidate ID is valid.

5. Increments the vote count for the selected

candidate.

6. Marks the nullifier hash as used, enforcing

one-person-one-vote.

4.6 Result Retrieval and Transparency

Votes stored on-chain are publicly accessible. Tally results can

be retrieved:

• Directly from the blockchain using contract

view functions

• Through backend endpoints that aggregate

and format results

This ensures transparency and auditability while preserving

voter anonymity.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com | Page 4

5. IMPLEMENTATION

The implementation of the proposed voting system consists of

coordinated development across the smart contract layer, zero-

knowledge proof layer, backend relayer service, and frontend

client interface. The system was developed iteratively, tested on

the Ethereum Sepolia test network, and integrated using the

Semaphore protocol for anonymous authentication.

5.1 Smart Contract Development

The voting logic is implemented in the VotingSystem.sol smart

contract, using Solidity and the Foundry development

framework. The contract incorporates core components:

1. Semaphore Verifier Integration: The

contract imports and interfaces with

SemaphoreVerifier.sol to validate zk-SNARK proofs

generated by voters.

2. Voting Configuration State: The

contract stores:

• The Merkle root representing the

eligible voter set

• Voting start and end timestamps

• Candidate list and total counts

• Nullifier hash mapping to prevent

double voting

3. Proof Verification and Vote Recording:

 Upon receiving a vote from a relayer, the

contract verifies the zk-SNARK proof, validates the

nullifier hash, checks the voting window, and

increments the corresponding candidate count.

4. Deployment: Deployment was performed

on the Ethereum Sepolia testnet using Foundry scripts,

with verifier and voting contract addresses stored in

deployment logs.

5.2 Zero-Knowledge Proof Stack

Zero-knowledge authentication is enabled using the Semaphore

protocol, which uses the following components:

1. Circom Circuits: The system uses a

compiled membership-proof circuit that verifies

Merkle-tree inclusion and creates a nullifier hash

bound to the voter’s secret identity.

2. snarkjs Workflow:

• WASM witness generation

• ZK proof generation using .zkey

files

• Public signals extraction (candidate

ID, nullifierHash, groupId, Merkle root)

3. Merkle Tree Handling: All identity

commitments are organized into a Merkle tree,

generated off-chain using Semaphore’s Group utilities.

The tree root is uploaded to the smart contract during

initialization.

4. Local Proof Generation: The frontend

invokes WASM and snarkjs to generate proofs directly

in the browser, ensuring identities never leave the

user's device.

5.3 Backend Server Implementation

The backend server, implemented in Node.js(v20.xx) +

Express, plays a critical role in orchestrating the voting process:

1. API Endpoints:

• /api/vote/submit: For submitting the

vote proof

• /api/vote/verify-proof: Proof pre-

verification

• /api/voter/merkle-proof: Provide

Merkle path

• /api/blockchain/*: Retrieve

blockchain data

2. Proof Pre-Verification: The backend uses

a JavaScript Semaphore verifier to check the zk-

SNARK proof before forwarding it to the blockchain.

3. Nullifier Cache: A server-side nullifier

cache prevents multiple submissions of the same proof,

reducing failed transactions and relayer gas waste.

4. Relayer Wallet Pool: The backend

maintains encrypted private keys for multiple relayer

wallets and rotates them to distribute load and reduce

single-point failure.

5. Blockchain Relay: Using Ethers.js,

the backend signs and broadcasts the castVote()

transaction with the user’s proof to the VotingSystem

contract.

5.4 Frontend Client Interface

The frontend is responsible for identity generation and proof

creation:

1. Identity Creation: Voters generate Semaphore

identities locally using Semaphore’s JS libraries.

2. Merkle Proof Retrieval: The frontend

fetches Merkle proofs from the backend when

required.

3. ZK Proof Generation: The frontend

triggers WASM execution to compute the witness and

generate the zk-SNARK proof.

4. Vote Submission: Once proof generation

succeeds, the client sends {candidateId, zkProof,

nullifierHash} to the backend through the

/api/vote/submit endpoint.

5. UX Considerations: Loading animations and

progress indicators were implemented for proof

generation delays.

5.5 Testnet Deployment and Validation

The system was deployed and tested on the Ethereum Sepolia

Testnet:

1. Contract Deployment: Both the

Semaphore verifier and the voting contract were

deployed using Foundry scripts.

2. Relayer Testing: Multiple relayers were

registered and tested for gasless submission reliability.

3. End-to-End Testing: The team

validated the full flow:

Identity creation → Proof generation → Backend

verification → Relayer submission → On-chain tally.

4. Results Verification: Vote counts and

percentages were accessed through smart contract view

functions and backend endpoints.

5.6 Summary of Implementation

The complete implementation integrates:

• Smart contracts for verifiable voting

• Semaphore-based ZK authentication

• Backend pre-verification and relayer logic

• Browser-based ZK proof generation

• Blockchain-based immutable tallying

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com | Page 5

This modular architecture enables anonymous, gasless, and

verifiable voting suitable for academic or organizational

elections.

6. RESULT AND DISCUSSION

The implementation of the proposed voting system was

validated through comprehensive functional testing on the

Ethereum Sepolia test network. The evaluation focused on

verifying the correctness of zero-knowledge proof generation,

backend pre-verification, relayer-assisted transaction

submission, and on-chain vote validation.

Zero-knowledge proofs were successfully generated on

multiple user devices using WASM-based execution,

demonstrating that the Semaphore identity and proof-

generation workflow functioned reliably in a browser

environment. All proofs that were correctly formed resulted in

valid public signals, while improperly generated proofs were

rejected by the backend during pre-verification. This ensured

that only valid and structured proofs were forwarded to the

blockchain.

The backend service consistently performed nullifier checks,

verified proof integrity, and correctly routed valid submissions

through authorized relayer wallets. Invalid submissions—such

as those containing reused nullifiers, malformed signals, or

mismatched Merkle roots—were blocked before reaching the

blockchain, preventing unnecessary relayer operations. The

relayer model successfully abstracted the transaction-signing

process from the user, enabling a smooth, gasless voting

experience.

On-chain validation confirmed that the VotingSystem contract

correctly enforced the intended security properties. Valid

proofs were accepted, invalid proofs reverted deterministically,

and the nullifier mapping prevented any attempt at double

voting. Vote tallies stored on the blockchain remained

immutable and consistent across all verification methods,

demonstrating end-to-end correctness.

Overall, the system achieved anonymous eligibility

verification, one-person-one-vote enforcement, and transparent

tallying without requiring voters to manage blockchain wallets

or reveal identity information. These results indicate that the

architecture is well-suited for small to medium-scale

organizational elections requiring privacy, integrity, and

auditability.

7. SECURITY ANALYSIS

The security of the proposed voting system is derived from the

combined guarantees of zero-knowledge proofs, cryptographic

identity commitments, and blockchain-based immutability.

This section examines the core security properties provided by

the system and evaluates potential risks associated with each

architectural component.

7.1 Voter Anonymity

Voter anonymity is ensured through Semaphore’s zero-

knowledge membership proof mechanism. Each voter

generates a secret identity locally, which is never disclosed

outside their device. The smart contract verifies eligibility

through a zk-SNARK proof of Merkle-tree membership

without revealing the voter’s identity, Merkle path, or leaf

position. Since all proofs are unlinkable and do not contain

identifying information, no observer—including the backend,

relayers, or blockchain validators—can associate a vote with a

specific individual.

7.2 Prevention of Double Voting

The system enforces one-person-one-vote through a nullifier

hash derived from the voter’s secret identity. Because the

nullifier is deterministic and unique to each voter, any attempt

to cast a second vote results in a contract-level rejection. The

used Nullifiers mapping in the smart contract ensures that even

if multiple relayers attempt to submit the same proof, the

transaction will be reverted as soon as the nullifier is detected

on-chain.

7.3 Integrity of Vote Recording

Votes are recorded immutably on the Ethereum Sepolia testnet,

preventing unauthorized modification or deletion. Since each

valid transaction includes an on-chain proof verification step,

only authenticated votes are counted. The blockchain

consensus mechanism ensures resistance to tampering, while

public view functions allow any observer to verify current

tallies, achieving end-to-end verifiability.

7.4 Resistance to Identity Leakage

Identity commitments stored in the Merkle tree reveal no

information about the underlying voter secrets. Zero-

knowledge proofs ensure that no metadata linking the voter to

their identity commitment leaks during proof generation.

Unlike traditional systems where voter lists or authentication

logs may reveal participation patterns, this system avoids

storing any such identifiable information.

7.5 Backend Threat Model

The backend operates as a proof pre-verifier and relayer

selector but does not have the ability to forge votes or

impersonate voters. It cannot generate valid zero-knowledge

proofs, since proof construction requires the voter's secret

identity. The backend’s role is restricted to:

• Rejecting malformed or reused proofs

• Forwarding valid proofs using relayer wallets

• Preventing unnecessary gas expenditure

Even if compromised, the backend cannot create new valid

votes or deanonymize users. However, it could attempt

censorship by refusing to forward votes; this risk is mitigated

by allowing fallback direct submissions or by operating

multiple independent backend instances.

7.6 Relayer Security Considerations

Relayers submit transactions on behalf of voters but do not

possess the ability to modify vote contents or generate proofs.

They operate only on fully formed payloads. A malicious

relayer could attempt to delay or withhold vote submission, but

it cannot alter or forge votes.

Rotating between multiple relayers reduces dependence on any

single wallet and reduces the risk of targeted censorship. The

relayer pool architecture provides redundancy: if one relayer

fails or acts maliciously, votes can be rerouted through

alternative relayers without compromising security [16]. This

design is inspired by similar redundancy mechanisms in

distributed systems.

7.7 Smart Contract Security Properties

The VotingSystem contract enforces strict validation rules:

1. zk-SNARK Verification: Only

cryptographically valid proofs are accepted.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com | Page 6

2. State Integrity Checks: Nullifiers and

timestamps prevent replay or out-of-window

submissions.

3. Input Validation: Candidate IDs must fall

within the allowed range.

4. Access Control: Only authorized relayer

addresses may submit votes.

The contract avoids storing any sensitive identity data and does

not expose internal state that could compromise anonymity.

7.8 Possible Attack Vectors

While the system mitigates most common threats in e-voting,

the following potential risks remain:

• Relayer Censorship: A malicious relayer or

backend instance could refuse to forward valid proofs.

• Denial-of-Service Attacks: High network

traffic could delay or interrupt proof verification

services.

• Client-Side Compromise: Malware on a

voter’s device could extract their identity secret,

although proof generation is fully local to minimize

leakage risk.

These attack vectors are operational rather than cryptographic

and can be mitigated through redundancy, secure infrastructure

practices, and independent backend deployments.

8. CONCLUSION

This paper presented a privacy-preserving electronic voting

system that integrates zero-knowledge authentication with

blockchain-based execution to address fundamental challenges

in digital elections. By leveraging the Semaphore protocol, the

system enables anonymous eligibility verification through

Merkle-tree membership proofs and nullifier-based double-

vote prevention. The use of relayer-assisted transaction

submission further abstracts blockchain complexity from end

users, enabling a gasless and accessible voting experience

without compromising security or verifiability.

The implementation demonstrates that zero-knowledge proofs

can be effectively combined with decentralized smart contracts

to achieve voter anonymity, integrity of vote recording, and

resistance to fraudulent participation. Functional validation on

the Ethereum Sepolia test network confirmed the correctness of

proof verification, consistent enforcement of one-person-one-

vote, and the immutability of on-chain vote tallies. The

modular design supports seamless integration between the

frontend, backend, relayer service, and smart contract, making

the architecture suitable for institutional and organizational

voting contexts.

While the system does not incorporate advanced cryptographic

tallying methods such as homomorphic aggregation, it provides

a practical, scalable, and secure foundation for real-world e-

voting deployments. Future enhancements may include

distributed relayer networks, encrypted vote storage, and

expanded zk-SNARK circuits for richer election mechanisms.

Overall, the work demonstrates the viability and promise of

zero-knowledge–based authentication in building trustworthy,

privacy-preserving voting systems.

REFERENCES

[1] T. Nguyen and M. T. Thai, "zVote: A Blockchain-based

Privacy-preserving Platform for Remote E-voting," in 2022

IEEE International Conference on Communications (ICC),

Seoul, Republic of Korea, 2022, pp. 1-7, doi:

10.1109/ICC45855.2022.9838764.

[2] A. Ekbatanifard and G. Ekbatanifard, "Z-Voting: A Zero-

Knowledge Based Confidential Voting on Blockchain," in

2024 International Conference on Smart Cities, IoT and

Applications (SCIoT), Karachi, Pakistan, 2024, pp. 1-6, doi:

10.1109/SCIoT62588.2024.00000.

[3] F. Þ. Hjálmarsson, G. K. Hreiðarsson, M. Hamdaqa, and G.

Hjálmtýsson, "Blockchain-Based E-Voting System," in 2018

IEEE 11th International Conference on Cloud Computing

(CLOUD), San Francisco, CA, USA, 2018, pp. 983-986, doi:

10.1109/CLOUD.2018.00151.

[4] R. Taş and Ö. Ö. Tanrıöver, "A Systematic Review of

Challenges and Opportunities of Blockchain for E Voting,"

Symmetry, vol. 12, no. 8, p. 1328, Aug. 2020, doi:

10.3390/sym12081328.

[5] A. Srivastava, P. Bhattacharya, A. Singh, A. Mathur, O.

Prakash, and R. Pradhan, "A Systematic Literature Review and

Meta-Analysis on Scalable Blockchain-Based Electronic

Voting Systems," Sensors, vol. 22, no. 19, p. 7362, Oct. 2022,

doi: 10.3390/s22197362.

[6] D. Kho, S. Lee, and J. Jang, "zkVoting: Zero-knowledge

proof based coercion-resistant and E2E verifiable e-voting,"

Cryptology ePrint Archive, Paper 2024/1003, 2024. [Online].

Available: https:// eprint.iacr.org/2024/1003

[7] R. del Pino, V. Lyubashevsky, G. Neven, and G. Seiler,

"Lattice-Based Zero-Knowledge Proofs in Action:

Applications to Electronic Voting," Journal of Cryptology, vol.

38, no. 1, Article 5, Jan. 2024, doi: 10.1007/ s00145-024-

09530-5.

[8] K. Gurkan, P. Jovanovic, M. Maller, S. Meiklejohn, G.

Stern, and A. Tomescu, "Aggregatable Distributed Key

Generation," in Advances in Cryptology – EUROCRYPT

2021, ser. Lecture Notes in Computer Science, vol. 12696.

Springer, 2021, pp. 703-732, doi: 10.1007/978-3-030-77870-

5_25.

[9] W. J. Koh and K. Gurkan, "Semaphore: Zero-Knowledge

Signaling on Ethereum," Privacy & Scaling Explorations,

Ethereum Foundation, White Paper v1.0, 2020. [Online].

Available: whitepaper-v1.pdf https://semaphore.pse.dev/

[10] Privacy & Scaling Explorations Team, "Semaphore

Protocol Documentation," Ethereum Foundation, 2023.

[Online]. Available: https://docs.semaphore.pse.dev/

[11] J. Groth, "On the Size of Pairing-Based Non-Interactive

Arguments," in Advances in Cryptology EUROCRYPT 2016,

ser. Lecture Notes in Computer Science, vol. 9666. Springer,

2016, pp. 305-326, doi: 10.1007/978-3-662-49896-5_11.

[12] K. Baghery, Z. Pindado, and C. Ràfols, "Simulation

Extractable Versions of Groth's zk-SNARK Revisited,"

https://ijsrem.com/
https://semaphore.pse.dev/
https://docs.semaphore.pse.dev/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com | Page 7

International Journal of Information Security, vol. 23, pp. 451-

482, 2024, doi: 10.1007/s10207-023-00750-7.

[13] M. Bellés-Muñoz, M. Isabel, J. L. Muñoz-Tapia, A.

Rubio, and J. Baylina, "Circom: A Circuit Description

Language for Building Zero-Knowledge Proofs," IEEE

Transactions on Dependable and Secure Computing, 2022, doi:

10.1109/TDSC.2022.3232813.

[14] iden3 Team, "snarkjs: zkSNARK Implementation in

JavaScript & WASM," GitHub repository, 2023. [Online].

Available: https://github.com/iden3/snarkjs

[15] B. Adida, "Helios: Web-based Open-Audit Voting," in

17th USENIX Security Symposium, San Jose, CA, USA, 2008,

pp. 335-348. [Online]. Available:

https://www.usenix.org/conference/usenix-security-08/helios

web-based-open-audit-voting

[16] L. Marchesi, M. Marchesi, G. Destefanis, G. Barabino,

and D. Tigano, "Security Checklists for Ethereum Smart

Contract Development: Patterns and Best Practices," IEEE

Access, vol. 8, pp. 145469-145489, 2020, doi:

10.1109/ACCESS.2020.3014280.

[17] N. Atzei, M. Bartoletti, and T. Cimoli, "A Survey of

Attacks on Ethereum Smart Contracts (SoK)," in Principles of

Security and Trust 2017, ser. Lecture Notes in Computer

Science, vol. 10204. Springer, 2017, pp. 164-186, doi:

10.1007/10204_2017_10.

[18] V. Buterin, "Ethereum: A Next-Generation Smart Contract

and Decentralized Application Platform," Ethereum White

Paper, 2014. [Online]. Available:

https://ethereum.org/en/whitepaper/

[19] R. C. Merkle, "A Digital Signature Based on a

Conventional Encryption Function," in Advances in

Cryptology – CRYPTO '87, ser. Lecture Notes in Computer

Science, vol. 293. Springer, 1988, pp. 369-378, doi: 10.1007/3-

540-48184-2_32.

[20] Paradigm, "Foundry Book: A Fast, Portable and Modular

Toolkit for Ethereum Application Development," 2023.

[Online]. Available: https://book.getfoundry.sh/

https://ijsrem.com/
https://github.com/iden3/snarkjs
https://ethereum.org/en/whitepaper/

