j.-t' “ARe
¢ TISREM 3

Sy e Jeurnal

5

Volume: 09 Issue: 11 | Nov - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)
SJIF Rating: 8.586

ISSN: 2582-3930

Blockchain-Based Voting System Using Zero-Knowledge Authentication

Anuj Kumar!, Misba Fathima', P Kanchana!, Prajapati Nidhi Yogesh Kumar!, Ms. Ganashree R.2

IStudent, Department of Computer Science and Engineering (IoT & Cybersecurity including Blockchain
Technology), Sir M. Visvesvaraya Institute of Technology (SMVIT), Bengaluru, Karnataka, India
?Associate Professor, Department of Computer Science and Engineering (IoT & Cybersecurity including
Blockchain Technology), Sir M. Visvesvaraya Institute of Technology (SMVIT), Bengaluru, Karnataka, India

kokok

Abstract This paper presents a privacy-preserving
electronic voting system that leverages blockchain technology
and zero-knowledge authentication to provide anonymity,
integrity, and verifiable participation in digital elections. The
primary objective is to enable eligibility verification without
disclosing voter identity while ensuring strict enforcement of
one-person-one-vote. The proposed system employs the
Semaphore protocol to generate zero-knowledge proofs of
Merkle-tree  membership, allowing voters to authenticate
anonymously. A backend service performs proof pre-
verification and submits transactions through authorized
relayer wallets, enabling gasless vote casting. The on-chain
VotingSystem smart contract validates proofs, checks nullifier
hashes to prevent double voting, and records vote counts
immutably on the Ethereum network. The system was
implemented using Solidity, Circom, snarkjs, and Ethers.js,
and evaluated on the Sepolia testnet. Experimental results
indicate practical proof-generation latency, reliable relayer-
based submission throughput, and deterministic on-chain
verification accuracy. The findings demonstrate that combining
zero-knowledge proofs with decentralized execution can
deliver a secure, auditable, and privacy-preserving voting
framework suitable for organizational and institutional e-voting
scenarios.

Key Words: blockchain, zero-knowledge proofs, e-
voting, anonymity, Semaphore, Ethereum

1. INTRODUCTION

Electronic voting systems have emerged as an essential
component of modern digital governance, enabling efficient
participation in elections without the limitations of traditional
paper-based processes [3], [4]. However, existing online voting
platforms often face significant challenges related to privacy,
security, verifiability, and trust [5]. Centralized architectures
expose voter identities, create opportunities for tampering, and
require users to place complete trust in the administrators of the
system. These limitations have motivated the exploration of
decentralized and cryptographically secure alternatives that
ensure both anonymity and integrity [3], [15].

Blockchain technology [18] offers immutability, transparency,
and decentralized verification, making it a compelling
foundation for trustless e-voting. Yet, storing votes or voter
identities directly on-chain compromises privacy [1], [2]. Zero-
knowledge proofs (ZKPs) [11] address this challenge by
allowing participants to prove eligibility without revealing
sensitive information. In particular, the Semaphore protocol [9],
[10] enables anonymous authentication through Merkle-tree

membership proofs [19] and nullifier hashes, ensuring that each
voter can cast exactly one vote without linking the vote to their
identity.

This paper presents a blockchain-based voting system that
integrates zero-knowledge authentication with a gasless relayer
architecture to deliver anonymous, verifiable, and user-friendly
elections. The system ensures voter privacy through off-chain
identity creation and zero-knowledge proof generation, while
on-chain smart contracts verify proofs and maintain
authoritative vote counts. The contributions of this work
include: (i) the design of a privacy-preserving voting
mechanism using Semaphore protocol [9], (ii) the integration of
ZKP based eligibility verification with Groth16 zk-SNARKSs
[11], (iii) the implementation of a relayer-assisted gasless voting
flow, and (iv) a comprehensive evaluation of the system on the
Ethereum Sepolia public testnet.

2. LITERATURE REVIEW

Electronic voting (e-voting) has been an active research area for
more than two decades [15], with early systems relying on
centralized server-based authentication and tallying [4]. Such
systems were limited by vulnerabilities including data
tampering, privacy leakage, and the need for complete trust in
the central authority. To mitigate these risks, researchers
explored cryptographic techniques such as blind signatures,
mix-nets, and homomorphic encryption. These mechanisms
improved ballot secrecy and verifiability but introduced
significant computational and operational overhead, making
large-scale deployment challenging [5].

With the emergence of blockchain [18], decentralized e-voting
architectures became feasible. Blockchain provides tamper-
resistant storage, distributed trust, and auditable execution [3];
however, storing identities or votes directly on-chain
compromises privacy. Thus, blockchain alone is insufficient for
confidentiality-oriented voting applications [1], [2]. To address
this limitation, several studies have combined blockchain with
advanced cryptographic privacy techniques.

2.1 Blockchain-Based Voting Systems

Hjalmarsson et al. [3] proposed one of the early blockchain-
based e-voting systems that utilized smart contracts for vote
recording and tallying. Their system demonstrated the
feasibility of decentralized voting but lacked strong privacy
guarantees. A systematic review by Tas and Tanridver [4]
identified key challenges in blockchain voting including
scalability, privacy preservation, and user accessibility.
Srivastava et al. [5] conducted a comprehensive meta-analysis
of blockchain-based electronic voting systems, highlighting the
trade-offs between security, privacy, and performance.

© 2025, IJSREM | https://ijsrem.com

| Page 1


https://ijsrem.com/

j.-t' “ARe
¢ TISREM 3

Sy e Jeurnal

5

Volume: 09 Issue: 11 | Nov - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

2.2 Zero-Knowledge Proof-Based Voting

A major advancement in privacy-preserving voting is zVote [1],
which integrates threshold Paillier homomorphic encryption,
zero-knowledge proofs, and Merkle-based membership
verification to construct a privacy-preserving remote e-voting
platform. In zVote, votes are encrypted and aggregated
homomorphically, and only the final tally is decrypted by a set
of distributed authorities. While highly secure, the design
requires complex distributed key generation, trusted authorities
for threshold decryption, and substantial computation costs for
encrypted tallying. This makes zVote theoretically robust but
practically heavy for real-time, user-friendly deployments.

A more lightweight approach is presented in Z-Voting [2],
which uses Circom-based zk-SNARK proofs [13], Merkle trees
[19], and nullifier hashes to implement anonymous eligibility
verification on Ethereum [18]. Unlike zVote, Z-Voting does not
use homomorphic tallying; instead, the vote choice is stored in
plaintext on chain, but the identity of the voter is hidden using
zero-knowledge membership proofs. This design reduces
reliance on trusted authorities and lowers system complexity
while still providing anonymity and double-vote prevention.

Recent work by Kho et al. [6] introduced zkVoting, a coercion-
resistant and end-to-end verifiable e-voting system using zero-
knowledge proofs. Del Pino et al. [7] explored lattice-based
zero-knowledge proofs for electronic voting, demonstrating
post-quantum security properties. These systems emphasize the
importance of anonymous authentication, unlinkability, and
public verifiability—concepts central to modern privacy
preserving voting.

2.3 Semaphore Protocol and Anonymous Signaling

More recently, systems have adopted the Semaphore protocol
[9], [10], which enables anonymous signaling through Merkle-
tree identities and nullifier-based uniqueness. Developed by the
Privacy & Scaling Explorations team at the Ethereum
Foundation, Semaphore achieves strong privacy guarantees with
efficient zk-SNARKSs based on the Grothl16 construction [11].
The protocol has been utilized in various privacy-preserving
applications  beyond  voting, including  anonymous
authentication and whistleblowing systems [8], [9].

2.4 Comparison with Traditional Cryptographic Voting

Traditional cryptographic voting systems like Helios [15] use
homomorphic encryption and mix-nets to achieve ballot
secrecy. Helios has been deployed in real-world elections and
provides open-audit capabilities. However, it requires voters to
trust the tallying authorities and lacks the decentralized
verification properties offered by blockchain-based systems.

2.5 Positioning of This Work

Ethereum Medium Medium Medium Complex key
management Plaintext vote storage Coercion resistance
overhead Limited to medium-scale The system implemented in
this paper is most closely aligned with Z-Voting [2] and
Semaphore-based approaches [9], [10]. Unlike zVote's heavy
cryptographic stack [1], this work uses lightweight zero-
knowledge membership proofs based on Grothl6 [11], [12],
nullifier-based double-vote prevention, and a relayer-assisted
gasless transaction model. This yields a design that maintains
anonymity and verifiability while being practical for
institutional elections. By integrating zero-knowledge proofs
with a decentralized smart contract architecture following
Ethereum security best practices [16], [17], the proposed system
contributes to the ongoing evolution of scalable, privacy-
preserving blockchain voting mechanisms.

3. SYSTEM ARCHITECTURE

The proposed voting system integrates zero-knowledge
authentication with blockchain execution to provide
anonymity, integrity, and verifiability. The architecture
consists of four major components: (i) the voter client, (ii) the
backend verification and relayer service, (iii) the Ethereum
smart contract layer, and (iv) the zero-knowledge proof system
based on Semaphore [9], [10].

VoaterWebeIntertace Backeod + £k Wockeraln Layer
« Crevuenie 7K * Ven 7y Proal o VirtragS ysten »

< Areayvinoes LD .

Atk «Sab

layer

Fig-1: System Architecture

3.1 Voter Client and Identity Layer

Each voter locally generates a unique Semaphore identity [9]
which is converted into an identity commitment. This
commitment becomes part of a Merkle tree [19] of authorized
voters. The secret identity is never transmitted outside the
client device, ensuring privacy preservation at the client level.
When casting a vote, the client constructs a zero-knowledge
proof demonstrating group membership, use of a unique
nullifier, and correctness of the vote signal, using Circom [13]
and snarkjs [14] for witness and proof generation.

The use of browser-based WebAssembly (WASM) execution
ensures that all cryptographic operations occur locally,
preventing identity leakage through network transmission. This
approach aligns with privacy-by-design principles commonly
adopted in modern cryptographic systems [6], [7].

3.2 Merkle Tree and Zero-Knowledge Membership Proofs
The system uses a Merkle tree to encode all valid voter
commitments. Semaphore’s zk-SNARK circuit verifies
Merkle-tree membership and ensures that the identity and
Merkle root correspond. A nullifier hash is included in the
public signals to ensure that each identity can cast exactly one
vote without revealing identity information.

3.3 Backend Server and Relayer Architecture
To enable gasless voting, the system uses a pool of authorized
relayer wallets that submit transactions on behalf of voters. The
backend performs several tasks:

1. Pre-verifies the proof off-chain

2 Checks nullifier uniqueness

3. Selects an appropriate relayer

4. Constructs and signs a vote transaction

5 Broadcasts the transaction to the Sepolia
network

3.4 Smart Contract Layer

The VotingSystem smart contract is deployed on the Sepolia
testnet and integrates with the Semaphore verifier. It stores the
Merkle root, voting window, candidate list, and used nullifiers.
When a transaction is submitted by a relayer, the contract:

1. Verifies the zk-SNARK proof

2. Validates the nullifier

© 2025, IJSREM | https://ijsrem.com

| Page 2


https://ijsrem.com/

j.-t.' 1Y
¢ TISREM 3

Sy e Jeurnal

International Journal of Scientific Research in Engineering and Management (IJSREM)

W Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

3. Checks the vote timestamp 4.3 Zero-Knowledge Proof Generation

4. Validates the candidate ID The voter constructs a zk-SNARK proof using Circom circuits

5. Updates the vote count and records the and Snarkj s. The pro()f demonstrates:

nullifier 1. Membership in the authorized voter set (via
All vote tallies are publicly accessible and immutable. Merkle inclusion)

2. Use of a unique nullifier hash:

3.5 End-to-End Data Flow nullifierHash = Poseidon (nullifier, externalNullifier)
The full process begins with identity creation and ZK proof 3. Correct formation of the chosen vote signal
generation on the client, followed by transmission to the 4. Agreement with the published Merkle root

backend. The backend performs validations and uses a relayer
to submit the vote. The smart contract validates the proof on-
chain and records the vote. Tally results can be retrieved either
from the blockchain directly or via backend APIs.

Fig-2: Voting Flow (Using Semaphore + Relayers)

4. METHODOLOGY

The methodology adopted in this work follows a systematic,
layered  approach integrating  cryptographic  identity
construction, zero-knowledge proof generation, backend

verification logic, relayer-assisted blockchain interaction, and
on-chain vote validation. The system ensures anonymity,
integrity, and one-person-one-vote without disclosing the
voter’s identity or requiring the participant to interact directly
with the blockchain.

4.1 Identity Creation and Voter Registration

The process begins with each voter generating a Semaphore
identity consisting of a trapdoor and nullifier pair. The identity
is hashed to form an identity commitment, which becomes a
leaf in a Merkle tree of eligible voters. This Merkle tree is
constructed and stored off-chain by the election authority.

This step ensures that each voter receives a unique, non-linkable
cryptographic presence in the system without exposing personal
information.

4.2 Merkle Proof Construction

Once the identity commitments are registered, the election
authority finalizes the Merkle root. The voter retrieves the
Merkle proof (path elements and indices) corresponding to their
commitment either from the backend or through a distributed
dataset. The Merkle proof is required for generating the zero-
knowledge membership proof.

and group identifier
All witness generation and proof computation occur locally on
the voter’s device using WASM-based tooling for improved
security.

4.4 Backend Pre-Verification and Relayer Selection

To prevent invalid or malicious submissions from reaching the
blockchain, the backend service performs pre-verification of the
received zero-knowledge proof. Upon successful validation:

1. It checks the uniqueness of the nullifier hash
in the server-side cache.

2. It selects a relayer wallet from an authorized
pool.

3. It constructs a transaction embedding the
proof and selected candidate.

4. It forwards the transaction to the Ethereum

Sepolia network using Ethers.js.
This design enables gasless voting, ensuring a seamless user
experience without requiring cryptocurrency.

4.5 Smart Contract Verification and Vote Recording
The VotingSystem smart contract contains:
. The authorized Merkle root

. The voting window (start and end

timestamps)

. The candidate list

. A mapping of used nullifiers

. A link to the Semaphore Verifier Contract
When the relayer submits a vote:

1. The smart contract verifies the zk-SNARK

proof.

2. Validates that the nullifier hash has not been

used.

3. Confirms that the vote is within the election

period.

4. Ensures the candidate ID is valid.

5. Increments the vote count for the selected

candidate.

6. Marks the nullifier hash as used, enforcing

one-person-one-vote.

4.6 Result Retrieval and Transparency

Votes stored on-chain are publicly accessible. Tally results can
be retrieved:

. Directly from the blockchain using contract
view functions
. Through backend endpoints that aggregate

and format results
This ensures transparency and auditability while preserving
voter anonymity.

© 2025, IJSREM | https://ijsrem.com

| Page 3


https://ijsrem.com/

j.-t.' 1Y
¢ TISREM 3

h .o g7 International Journal of Scientific Research in Engineering and Management (IJSREM)
W Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930
5. IMPLEMENTATION . /api/vote/verify-proof: Proof pre-
The impl tati £ th 4 voti ¢ ists of verification
e implementation of the proposed voting system consists o . Japifvoter/merkle-proof: Provide
coordinated development across the smart contract layer, zero-
. Merkle path
knowledge proof layer, backend relayer service, and frontend . . .
S . . . /api/blockchain/*: Retrieve
client interface. The system was developed iteratively, tested on s
the Ethereum Sepolia test network, and integrated using the blockchain dat.a .
’ 2. Proof Pre-Verification: ~ The backend uses

Semaphore protocol for anonymous authentication.

5.1 Smart Contract Development
The voting logic is implemented in the VotingSystem.sol smart
contract, using Solidity and the Foundry development
framework. The contract incorporates core components:
1. Semaphore Verifier Integration: The
contract imports and interfaces with
SemaphoreVerifier.sol to validate zk-SNARK proofs
generated by voters.

2. Voting Configuration State: The
contract stores:
. The Merkle root representing the
eligible voter set
. Voting start and end timestamps
o Candidate list and total counts
. Nullifier hash mapping to prevent
double voting
3. Proof Verification and Vote Recording:

Upon receiving a vote from a relayer, the

contract verifies the zk-SNARK proof, validates the
nullifier hash, checks the voting window, and
increments the corresponding candidate count.
4. Deployment: Deployment was performed
on the Ethereum Sepolia testnet using Foundry scripts,
with verifier and voting contract addresses stored in
deployment logs.

5.2 Zero-Knowledge Proof Stack

Zero-knowledge authentication is enabled using the Semaphore

protocol, which uses the following components:
1. Circom Circuits: The system uses a
compiled membership-proof circuit that verifies
Merkle-tree inclusion and creates a nullifier hash
bound to the voter’s secret identity.

2. snarkjs Workflow:
. WASM witness generation
. ZK proof generation using .zkey
files
. Public signals extraction (candidate
ID, nullifierHash, groupld, Merkle root)

3. Merkle Tree Handling: All identity

commitments are organized into a Merkle tree,
generated off-chain using Semaphore’s Group utilities.
The tree root is uploaded to the smart contract during
initialization.

4. Local Proof Generation:  The frontend
invokes WASM and snarkjs to generate proofs directly
in the browser, ensuring identities never leave the
user's device.

5.3 Backend Server Implementation
The backend server, implemented in Node.js(v20.xx ) +
Express, plays a critical role in orchestrating the voting process:
1. API Endpoints:
3 /api/vote/submit. For submitting the
vote proof

a JavaScript Semaphore verifier to check the zk-
SNARK proof before forwarding it to the blockchain.
3. Nullifier Cache: A server-side nullifier
cache prevents multiple submissions of the same proof,
reducing failed transactions and relayer gas waste.

4. Relayer Wallet Pool: The backend
maintains encrypted private keys for multiple relayer
wallets and rotates them to distribute load and reduce
single-point failure.

5. Blockchain Relay: Using  Ethers,js,
the backend signs and broadcasts the castVote()
transaction with the user’s proof to the VotingSystem
contract.

5.4 Frontend Client Interface
The frontend is responsible for identity generation and proof

1. Identity Creation: Voters generate Semaphore
identities locally using Semaphore’s JS libraries.

2. Merkle Proof Retrieval: ~ The frontend
fetches Merkle proofs from the backend when
required.

3. ZK Proof Generation: The frontend

triggers WASM execution to compute the witness and
generate the zk-SNARK proof.

4. Vote Submission: Once proof generation
succeeds, the client sends {candidateld, zkProof,
nullifierHash} to the backend through the
/api/vote/submit endpoint.

5. UX Considerations: Loading animations and
progress indicators were implemented for proof
generation delays.

5.5 Testnet Deployment and Validation
The system was deployed and tested on the Ethereum Sepolia

1. Contract Deployment: Both the
Semaphore verifier and the voting contract were
deployed using Foundry scripts.

2. Relayer Testing: Multiple relayers were
registered and tested for gasless submission reliability.
3. End-to-End Testing: The team
validated the full flow:

Identity creation — Proof generation — Backend
verification — Relayer submission — On-chain tally.
4. Results Verification: Vote counts and
percentages were accessed through smart contract view
functions and backend endpoints.

5.6 Summary of Implementation
The complete implementation integrates:

. Smart contracts for verifiable voting

. Semaphore-based ZK authentication

. Backend pre-verification and relayer logic
. Browser-based ZK proof generation

. Blockchain-based immutable tallying

© 2025, IJSREM | https://ijsrem.com

| Page 4


https://ijsrem.com/

j.-t' “ARe
¢ TISREM 3

Sy e Jeurnal

5

Volume: 09 Issue: 11 | Nov - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

This modular architecture enables anonymous, gasless, and
verifiable voting suitable for academic or organizational
elections.

6. RESULT AND DISCUSSION

The implementation of the proposed voting system was
validated through comprehensive functional testing on the
Ethereum Sepolia test network. The evaluation focused on
verifying the correctness of zero-knowledge proof generation,
backend  pre-verification, relayer-assisted  transaction
submission, and on-chain vote validation.

Zero-knowledge proofs were successfully generated on
multiple user devices using WASM-based execution,
demonstrating that the Semaphore identity and proof-
generation workflow functioned reliably in a browser
environment. All proofs that were correctly formed resulted in
valid public signals, while improperly generated proofs were
rejected by the backend during pre-verification. This ensured
that only valid and structured proofs were forwarded to the
blockchain.

The backend service consistently performed nullifier checks,
verified proof integrity, and correctly routed valid submissions
through authorized relayer wallets. Invalid submissions—such
as those containing reused nullifiers, malformed signals, or
mismatched Merkle roots—were blocked before reaching the
blockchain, preventing unnecessary relayer operations. The
relayer model successfully abstracted the transaction-signing
process from the user, enabling a smooth, gasless voting
experience.

On-chain validation confirmed that the VotingSystem contract
correctly enforced the intended security properties. Valid
proofs were accepted, invalid proofs reverted deterministically,
and the nullifier mapping prevented any attempt at double
voting. Vote tallies stored on the blockchain remained
immutable and consistent across all verification methods,
demonstrating end-to-end correctness.

Overall, the system achieved anonymous eligibility
verification, one-person-one-vote enforcement, and transparent
tallying without requiring voters to manage blockchain wallets
or reveal identity information. These results indicate that the
architecture is well-suited for small to medium-scale
organizational elections requiring privacy, integrity, and
auditability.

7. SECURITY ANALYSIS

The security of the proposed voting system is derived from the
combined guarantees of zero-knowledge proofs, cryptographic
identity commitments, and blockchain-based immutability.
This section examines the core security properties provided by
the system and evaluates potential risks associated with each
architectural component.

7.1 Voter Anonymity

Voter anonymity is ensured through Semaphore’s zero-
knowledge membership proof mechanism. Each voter
generates a secret identity locally, which is never disclosed
outside their device. The smart contract verifies eligibility
through a zk-SNARK proof of Merkle-tree membership
without revealing the voter’s identity, Merkle path, or leaf
position. Since all proofs are unlinkable and do not contain
identifying information, no observer—including the backend,
relayers, or blockchain validators—can associate a vote with a
specific individual.

7.2 Prevention of Double Voting

The system enforces one-person-one-vote through a nullifier
hash derived from the voter’s secret identity. Because the
nullifier is deterministic and unique to each voter, any attempt
to cast a second vote results in a contract-level rejection. The
used Nullifiers mapping in the smart contract ensures that even
if multiple relayers attempt to submit the same proof, the
transaction will be reverted as soon as the nullifier is detected
on-chain.

7.3 Integrity of Vote Recording

Votes are recorded immutably on the Ethereum Sepolia testnet,
preventing unauthorized modification or deletion. Since each
valid transaction includes an on-chain proof verification step,
only authenticated votes are counted. The blockchain
consensus mechanism ensures resistance to tampering, while
public view functions allow any observer to verify current
tallies, achieving end-to-end verifiability.

7.4 Resistance to Identity Leakage

Identity commitments stored in the Merkle tree reveal no
information about the underlying voter secrets. Zero-
knowledge proofs ensure that no metadata linking the voter to
their identity commitment leaks during proof generation.
Unlike traditional systems where voter lists or authentication
logs may reveal participation patterns, this system avoids
storing any such identifiable information.

7.5 Backend Threat Model

The backend operates as a proof pre-verifier and relayer
selector but does not have the ability to forge votes or
impersonate voters. It cannot generate valid zero-knowledge
proofs, since proof construction requires the voter's secret
identity. The backend’s role is restricted to:

. Rejecting malformed or reused proofs
. Forwarding valid proofs using relayer wallets
. Preventing unnecessary gas expenditure

Even if compromised, the backend cannot create new valid
votes or deanonymize users. However, it could attempt
censorship by refusing to forward votes; this risk is mitigated
by allowing fallback direct submissions or by operating
multiple independent backend instances.

7.6 Relayer Security Considerations

Relayers submit transactions on behalf of voters but do not
possess the ability to modify vote contents or generate proofs.
They operate only on fully formed payloads. A malicious
relayer could attempt to delay or withhold vote submission, but
it cannot alter or forge votes.

Rotating between multiple relayers reduces dependence on any
single wallet and reduces the risk of targeted censorship. The
relayer pool architecture provides redundancy: if one relayer
fails or acts maliciously, votes can be rerouted through
alternative relayers without compromising security [16]. This
design is inspired by similar redundancy mechanisms in
distributed systems.

7.7 Smart Contract Security Properties

The VotingSystem contract enforces strict validation rules:
1. zk-SNARK Verification:
cryptographically valid proofs are accepted.

Only

© 2025, IJSREM | https://ijsrem.com

| Page 5


https://ijsrem.com/

j.-t.' 1Y
¢ TISREM 3

Sy e Jeurnal

International Journal of Scientific Research in Engineering and Management (IJSREM)

W Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930
2. State Integrity Checks: Nullifiers and REFERENCES
timestamps prevent replay or out-of-window . )
submissions. [1] T. Nguyen and M. T. Thai, "zVote: A Blockchain-based
3 Input Validation: Candidate IDs must fall Privacy-preserving Platform for Remote E-voting," in 2022
within the allowed range. IEEE International Conference on Communications (ICC),
4. Access Control: Only authorized relayer Seoul, Republic of Korea, 2022, pp. 1-7, doi

addresses may submit votes.
The contract avoids storing any sensitive identity data and does
not expose internal state that could compromise anonymity.

7.8 Possible Attack Vectors
While the system mitigates most common threats in e-voting,
the following potential risks remain:
. Relayer Censorship: A malicious relayer or
backend instance could refuse to forward valid proofs.
. Denial-of-Service Attacks: High network
traffic could delay or interrupt proof verification
services.
. Client-Side Compromise: Malware on a
voter’s device could extract their identity secret,
although proof generation is fully local to minimize
leakage risk.
These attack vectors are operational rather than cryptographic
and can be mitigated through redundancy, secure infrastructure
practices, and independent backend deployments.

8. CONCLUSION

This paper presented a privacy-preserving electronic voting
system that integrates zero-knowledge authentication with
blockchain-based execution to address fundamental challenges
in digital elections. By leveraging the Semaphore protocol, the
system enables anonymous eligibility verification through
Merkle-tree membership proofs and nullifier-based double-
vote prevention. The use of relayer-assisted transaction
submission further abstracts blockchain complexity from end
users, enabling a gasless and accessible voting experience
without compromising security or verifiability.

The implementation demonstrates that zero-knowledge proofs
can be effectively combined with decentralized smart contracts
to achieve voter anonymity, integrity of vote recording, and
resistance to fraudulent participation. Functional validation on
the Ethereum Sepolia test network confirmed the correctness of
proof verification, consistent enforcement of one-person-one-
vote, and the immutability of on-chain vote tallies. The
modular design supports seamless integration between the
frontend, backend, relayer service, and smart contract, making
the architecture suitable for institutional and organizational
voting contexts.

While the system does not incorporate advanced cryptographic
tallying methods such as homomorphic aggregation, it provides
a practical, scalable, and secure foundation for real-world e-
voting deployments. Future enhancements may include
distributed relayer networks, encrypted vote storage, and
expanded zk-SNARK circuits for richer election mechanisms.
Overall, the work demonstrates the viability and promise of
zero-knowledge—based authentication in building trustworthy,
privacy-preserving voting systems.

10.1109/1CC45855.2022.9838764.

[2] A. Ekbatanifard and G. Ekbatanifard, "Z-Voting: A Zero-
Knowledge Based Confidential Voting on Blockchain," in
2024 International Conference on Smart Cities, IoT and
Applications (SCIoT), Karachi, Pakistan, 2024, pp. 1-6, doi:
10.1109/SCI10T62588.2024.00000.

[3] F. b. Hjalmarsson, G. K. Hreidarsson, M. Hamdaqa, and G.
Hjalmtysson, "Blockchain-Based E-Voting System,” in 2018
IEEE 11th International Conference on Cloud Computing
(CLOUD), San Francisco, CA, USA, 2018, pp. 983-986, doi:
10.1109/CLOUD.2018.00151.

[4] R. Tas and O. O. Tanndver, "A Systematic Review of
Challenges and Opportunities of Blockchain for E Voting,"
Symmetry, vol. 12, no. 8, p. 1328, Aug. 2020, doi:
10.3390/sym12081328.

[5] A. Srivastava, P. Bhattacharya, A. Singh, A. Mathur, O.
Prakash, and R. Pradhan, "A Systematic Literature Review and
Meta-Analysis on Scalable Blockchain-Based Electronic
Voting Systems," Sensors, vol. 22, no. 19, p. 7362, Oct. 2022,
doi: 10.3390/s22197362.

[6] D. Kho, S. Lee, and J. Jang, "zkVoting: Zero-knowledge
proof based coercion-resistant and E2E verifiable e-voting,"
Cryptology ePrint Archive, Paper 2024/1003, 2024. [Online].
Available: https:// eprint.iacr.org/2024/1003

[7] R. del Pino, V. Lyubashevsky, G. Neven, and G. Seiler,
"Lattice-Based = Zero-Knowledge  Proofs in  Action:
Applications to Electronic Voting," Journal of Cryptology, vol.
38, no. 1, Article 5, Jan. 2024, doi: 10.1007/ s00145-024-
09530-5.

[8] K. Gurkan, P. Jovanovic, M. Maller, S. Meiklejohn, G.
Stern, and A. Tomescu, "Aggregatable Distributed Key
Generation," in Advances in Cryptology — EUROCRYPT
2021, ser. Lecture Notes in Computer Science, vol. 12696.
Springer, 2021, pp. 703-732, doi: 10.1007/978-3-030-77870-
5 25.

[9] W. J. Koh and K. Gurkan, "Semaphore: Zero-Knowledge
Signaling on Ethereum," Privacy & Scaling Explorations,
Ethereum Foundation, White Paper v1.0, 2020. [Online].
Available: whitepaper-v1.pdf https://semaphore.pse.dev/

[10] Privacy & Scaling Explorations Team, "Semaphore
Protocol Documentation," Ethereum Foundation, 2023.
[Online]. Available: https://docs.semaphore.pse.dev/

[11] J. Groth, "On the Size of Pairing-Based Non-Interactive
Arguments," in Advances in Cryptology EUROCRYPT 2016,
ser. Lecture Notes in Computer Science, vol. 9666. Springer,
2016, pp. 305-326, doi: 10.1007/978-3-662-49896-5_11.

[12] K. Baghery, Z. Pindado, and C. Rafols, "Simulation
Extractable Versions of Groth's zk-SNARK Revisited,"

© 2025, IJSREM | https://ijsrem.com

| Page 6


https://ijsrem.com/
https://semaphore.pse.dev/
https://docs.semaphore.pse.dev/

£ 2%

A
o4 International Journal of Scientific Research in Engineering and Management (IJSREM)

W Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

International Journal of Information Security, vol. 23, pp. 451-
482,2024, doi: 10.1007/s10207-023-00750-7.

[13] M. Bellés-Muiloz, M. Isabel, J. L. Mufioz-Tapia, A.
Rubio, and J. Baylina, "Circom: A Circuit Description
Language for Building Zero-Knowledge Proofs," IEEE
Transactions on Dependable and Secure Computing, 2022, doi:
10.1109/TDSC.2022.3232813.

[14] iden3 Team, "snarkjs: zkSNARK Implementation in
JavaScript & WASM," GitHub repository, 2023. [Online].
Available: https://github.com/iden3/snarkjs

[15] B. Adida, "Helios: Web-based Open-Audit Voting," in
17th USENIX Security Symposium, San Jose, CA, USA, 2008,
pp. 335-348. [Online]. Available:
https://www.usenix.org/conference/usenix-security-08/helios
web-based-open-audit-voting

[16] L. Marchesi, M. Marchesi, G. Destefanis, G. Barabino,
and D. Tigano, "Security Checklists for Ethereum Smart
Contract Development: Patterns and Best Practices," IEEE
Access, vol. 8, pp. 145469-145489, 2020, doi:
10.1109/ACCESS.2020.3014280.

[17] N. Atzei, M. Bartoletti, and T. Cimoli, "A Survey of
Attacks on Ethereum Smart Contracts (SoK)," in Principles of
Security and Trust 2017, ser. Lecture Notes in Computer
Science, vol. 10204. Springer, 2017, pp. 164-186, doi:
10.1007/10204 2017 _10.

[18] V. Buterin, "Ethereum: A Next-Generation Smart Contract
and Decentralized Application Platform," Ethereum White
Paper, 2014. [Online]. Available:
https://ethereum.org/en/whitepaper/

[19] R. C. Merkle, "A Digital Signature Based on a
Conventional Encryption Function,” in Advances in
Cryptology — CRYPTO '87, ser. Lecture Notes in Computer
Science, vol. 293. Springer, 1988, pp. 369-378, doi: 10.1007/3-
540-48184-2 32.

[20] Paradigm, "Foundry Book: A Fast, Portable and Modular
Toolkit for Ethereum Application Development," 2023.
[Online]. Available: https://book.getfoundry.sh/

© 2025, IJSREM | https://ijsrem.com | Page 7


https://ijsrem.com/
https://github.com/iden3/snarkjs
https://ethereum.org/en/whitepaper/

