! International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.659 ISSN: 2582-3930

W Volume: 10 Issue: 02 | Feb - 2026

Bloomora - Flower Selling E-Commerce Platform

Neev Nandwani
Computer Engineering
V.E.S Polytechnic [MSBTE)]
Mumbeai, India c02023.vicky.neev@ves.ac.in

Shivam Sirwani
Computer Engineering
V.E.S Polytechnic [MSBTE]
Mumbai, India
c02023.shivam.sirwani(@ves.ac.in

Mrs. Swati Kulkarni
Lecturer
swati.p.kulkarni@ves.ac.in

Abstract

The increasing demand for online retail services has
accelerated the need for scalable, responsive, and secure e-
commerce platforms. This paper presents Bloomora, a
full-stack flower e-commerce web application developed
to streamline the process of browsing, purchasing, and
delivering floral products through a digital platform. The
system leverages modern web technologies to ensure high
performance, reliability, and an enhanced user experience.

The front-end is built using React with TypeScript to
provide a dynamic, component-based architecture with
improved maintainability and type safety. The back-end is
implemented using the Django framework to manage
RESTful APIs, authentication, and server-side logic.
MongoDB is employed as a NoSQL database to efficiently
handle flexible and scalable product, user, and order data.

Bloomora incorporates key functionalities including user
registration and authentication, product catalog
management, shopping cart operations,

Dev Sidhwani
Computer Engineering
V_.E.S Polytechnic [MSBTE]
Mumbai, India c02023.dev.sidhwani(@ves.ac.in

Harsh Patil
Computer Engineering
V_.E.S Polytechnic [MSBTE]
Mumbiai, India c02023.harsh.patil@ves.ac.in

V_.E.S Polytechnic [MSBTE]
Mumbai, India

secure payment integration, and order tracking. The
modular architecture supports scalability and future
feature expansion while ensuring data security and faster
response times. Experimental evaluation shows improved
performance and wusability compared to traditional
monolithic systems. The proposed solution demonstrates
the effectiveness of integrating modern full-stack
technologies to build a robust and scalable e-commerce
platform.

1. INTRODUCTION

The rapid advancement of internet technologies and the
growing popularity of online shopping have significantly
transformed the traditional retail experience into a more
convenient and accessible digital model. E-commerce
platforms enable customers to browse products, compare
prices, and make secure purchases from anywhere at any
time. Flower delivery services, commonly used for
celebrations and gifting purposes, require an efficient and
reliable online system to ensure smooth ordering, fast
transactions, and timely delivery.

However, many existing solutions face challenges such as
poor performance, limited scalability, and inadequate user
experience. To address these issues,

© 2026, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM56537 | Pagel

https://ijsrem.com/
mailto:co2023.vicky.neev@ves.ac.in
mailto:co2023.dev.sidhwani@ves.ac.in
mailto:co2023.shivam.sirwani@ves.ac.in
mailto:co2023.harsh.patil@ves.ac.in

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.659 ISSN: 2582-3930

W Volume: 10 Issue: 02 | Feb - 2026

this paper presents Bloomora, a full-stack flower e-
commerce web application developed using React with
TypeScript for an interactive and responsive front-end,
Django for secure back-end processing and API
management, and MongoDB for flexible and scalable data
storage. The proposed system integrates essential features
including user authentication, product catalog
management, shopping cart functionality, and secure
checkout, thereby providing a seamless, scalable, and
high- performance online shopping experience.

2. LITERATURE REVIEW

Recent studies in the field of e-commerce systems
highlight the growing importance of scalable, secure, and
user-centric web applications to meet increasing customer
demands. Traditional e- commerce platforms were
primarily built using monolithic architectures, which often
resulted in limited scalability, slower performance, and
complex maintenance. Researchers have emphasized the
adoption of modern full-stack frameworks and modular
designs to enhance responsiveness, system flexibility, and
overall reliability.

Front-end technologies such as component-based
architectures have been shown to improve code reusability
and user interface consistency, while robust back-end
frameworks support secure authentication, API
management, and efficient business logic processing.

Several existing online retail and flower delivery platforms
provide basic functionalities such as product listing and
online payments; however, they often lack dynamic
performance optimization, real- time updates, and efficient
handling of large volumes of user and transaction data.
Studies also suggest that NoSQL databases offer
advantages over traditional relational databases by
providing flexible schemas, faster data retrieval, and better
scalability for rapidly changing e-commerce data.
Furthermore, the integration of secure -client—server
communication and responsive design principles has been
identified as essential for enhancing user trust and
satisfaction.

Based on these observations, the Bloomora system adopts
a modern full-stack approach by combining an
interactive front-end, a secure back-end

framework, and a scalable NoSQL database to overcome
the limitations of existing solutions and deliver an
efficient, reliable, and high-performance flower e-
commerce platform.

3. SYSTEM ARCHITECTURE

Bloomora is designed using a three-tier architecture that
separates the system into Presentation, Application, and
Data layers. This layered approach improves modularity,
scalability, and maintainability by ensuring that each layer
performs a specific function independently.

The architecture enables smooth communication between
the user interface, server-side logic, and database while
maintaining security and performance. Such separation of
concerns also simplifies future upgrades and feature
enhancements without affecting the entire system.

3.1 Presentation Layer

The presentation layer represents the client-side interface
through which users interact with the application. It is
developed using React with TypeScript to provide a
responsive, dynamic, and component-based user
experience. This layer is responsible for rendering web
pages, displaying product listings, handling user inputs,
and managing navigation across the platform.

It communicates with the server using RESTful API
requests to fetch and submit data. The use of TypeScript
improves code reliability and maintainability by reducing
runtime errors and enhancing development efficiency. The
responsive design ensures compatibility across multiple
devices such as desktops, tablets, and smartphones.

3.2 Application Layer

The application layer acts as the core processing unit of the
system and handles all business logic and server-side
operations. It is implemented wusing the Django
framework, which provides robust support for API
development, authentication, and secure request handling.
This layer processes client requests, validates user data,
manages sessions, and performs operations such as
product management, order placement, payment
processing, and user authentication.

© 2026, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM56537 | Page2

https://ijsrem.com/

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.659 ISSN: 2582-3930

w Volume: 10 Issue: 02 | Feb - 2026

Django’s built-in security mechanisms help protect the
system from common vulnerabilities such as unauthorized
access and data breaches. The application layer serves as
an intermediary between the presentation and data layers,
ensuring secure and efficient data flow.

3.3 Data Layer

The data layer is responsible for storing, retrieving, and
managing all persistent information required by the
system. MongoDB is used as the database due to its
flexible schema design, scalability, and high performance.
It efficiently handles large volumes of structured and
unstructured data, including user profiles, product details,
inventory records, and order histories.

The NoSQL nature of MongoDB allows faster queries and
easy modification of data structures, which is particularly
beneficial for dynamic e- commerce environments. This
layer ensures reliable data storage, quick access, and
consistent system performance even under heavy traffic.

dj Django Framework

Ny Ouery e

® MongoDB Datsbase

< & [

User Date Cicders & Trasenme Lot

Fig-1: Overall System Architecture

4. IMPLEMENTATION DETAILS

The Bloomora system is implemented using a modern full-
stack technology stack that ensures scalability,
maintainability, and high performance. The
implementation is divided into three major components:
front-end, back-end, and database. Each component is
developed independently while maintaining seamless
integration through RESTful

APIs to provide an efficient and reliable e- commerce
platform.

4.1 Front-End Implementation

The front-end of Bloomora is developed using React with
TypeScript to create a responsive and interactive user
interface. A component-based architecture is adopted to
improve code reusability, modularity, and maintainability.
Various reusable components such as product cards,
navigation bars, forms, and shopping cart modules are
designed to ensure consistency across the application.
TypeScript enhances development by introducing static
type checking, reducing runtime errors, and improving
overall code quality.

State management techniques are used to handle user
sessions, cart data, and dynamic content updates
efficiently. The front-end communicates with the back-end
through RESTful APIs using asynchronous requests,
enabling real-time product listing, order placement, and
user authentication without page reloads. Additionally,
responsive design principles are applied to ensure
compatibility across multiple devices and screen sizes.

4.2 Back-End Implementation

The back-end is implemented using the Django
framework, which manages business logic, server- side
processing, and API services. Django’s Model- View—
Template architecture helps organize the codebase and
maintain separation between data handling and application
logic. RESTful APIs are developed to handle operations
such as user registration, login authentication, product
management, cart processing, and order transactions.

Middleware and authentication mechanisms are integrated
to ensure secure communication and protect sensitive user
information. The server validates all incoming requests,
processes transactions, and returns appropriate responses
to the client. Django’s built-in security features, including
password hashing and protection against common web
attacks, enhance the overall reliability and safety of the
system.

© 2026, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM56537 | Page3

https://ijsrem.com/

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.659 ISSN: 2582-3930

W Volume: 10 Issue: 02 | Feb - 2026

4.3 Database Implementation

MongoDB is used as the database system to store and
manage application data efficiently. As a NoSQL
document-based database, MongoDB provides flexible
schema design, which allows easy handling of dynamic
and unstructured data such as product details, user
profiles, and order histories.

Collections are organized for users, products, carts, and
transactions to ensure structured data storage and quick
retrieval. Indexing techniques are employed to optimize
query performance and reduce response time. The database
supports scalability and handles large volumes of
concurrent requests, making it suitable for an e-commerce
environment where frequent updates and transactions
occur. This approach ensures reliable data management and
high system performance.

Implementation Details

[e——— e e lﬂ "*‘rnv?—
[t e (O AN satsaniiionenne f .__:

,_1 React « TypeSopt

Back-End tmplemuntation

m Django Framework

P TR —
& V' Adpers st & Seoeny
— / Basirens Lingc Prce seisng

Database imgpleenentatson
. MongoeD8 Dutubuse

V' g (8 Gt vase

o1 V' NSO Damismert Fesage
AN or
Voantte e fumrss & irabeaing

V' U, Prvnht, On b Codlec i n

Fig-2: Implementation Details

5. ORDER PROCESSING MODULE

The order processing module forms the core transactional
component of the Bloomora platform. It is designed to
ensure accurate product selection, secure checkout, and
reliable order confirmation. The module handles all user
purchase activities through automated workflows that
validate inventory, calculate pricing, and manage order
records. The primary objective of this module is to
provide a smooth and error-free shopping

experience while maintaining data integrity and
transaction security.

5.1 Shopping Cart Management

The shopping cart system allows users to add, update, and
remove floral products dynamically before checkout.
Real-time price calculations, quantity adjustments, and
stock availability checks are performed to ensure accurate
order summaries. The cart state is maintained using client-
side state management and synchronized with the server
through RESTful APIs, enabling consistent data
persistence across sessions.

52 Secure Checkout and Payment
Processing

The checkout mechanism validates user credentials,
delivery details, and payment information before
confirming transactions. Server-side verification ensures
secure communication and prevents unauthorized access
or duplicate orders. Upon successful payment
confirmation, the system automatically generates order
records, updates inventory, and sends notifications to
users. This process guarantees reliability, security, and
transparency in online purchases.

Order Processing Module

[user | L Secum Glwetma |
ﬂ - ©) crostemn I
v a9

Sowerrinry Usvete
. ! lq Pt
! P > - Commurce Backend -

o . i ?

THim At N "L T w100 oot 11 ad 1t aolints o Astover

Fig-3: Order Processing Module

© 2026, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM56537 | Page4

https://ijsrem.com/

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.659 ISSN: 2582-3930

w Volume: 10 Issue: 02 | Feb - 2026

6. User Experience and Engagement Design

User experience plays a significant role in the success of
an e-commerce platform. Bloomora integrates interactive
and responsive design principles to enhance customer
engagement and simplify navigation. The system
emphasizes usability, accessibility, and visual clarity to
ensure that users can easily browse products, compare
options, and complete purchases efficiently. Rather than
introducing complex workflows, the design focuses on
minimal steps, fast loading times, and intuitive interfaces
to maximize customer satisfaction.

6.1 Personalized Recommendations

The system provides personalized product suggestions
based on browsing history, purchase patterns, and popular
trends. This recommendation mechanism improves user
engagement and helps customers discover relevant
products more efficiently. Dynamic filtering and sorting
features further enhance the shopping experience by
enabling quick product searches.

6.2 Notifications and Order Tracking

Bloomora integrates real-time notifications to keep users
informed about order confirmations, delivery status, and
promotional offers. The order tracking feature allows
customers to monitor their purchases from checkout to
delivery.

Uses Experience and Engagement Design

x
C

1

L4444

Fig-4: User Experience & Engagement Design

7. System Evaluation

The Bloomora platform was comprehensively evaluated
through functional testing, usability assessment, and
performance analysis to ensure technical reliability,
system stability, and overall effectiveness of the proposed
flower e-commerce solution. The evaluation process
aimed to validate whether the platform could handle real-
world shopping scenarios while maintaining accuracy,
speed, and a seamless user experience.

Functional testing was conducted on all core modules,
including user authentication, product browsing, search
and filtering, shopping cart operations, checkout
processing, payment validation, and order management.
Each module was tested under multiple input conditions
and edge cases to verify correct behavior, proper data
validation, and consistent output. Special attention was
given to transaction-related operations to ensure that order
placement, inventory updates, and payment confirmations
were executed without errors or data loss. Error-handling
mechanisms were also tested to confirm that the system
provides appropriate feedback in cases such as invalid
inputs, network interruptions, or failed transactions.

Usability testing focused on evaluating the ease of
navigation, clarity of the interface, and overall user
satisfaction. Different users interacted with the platform
across various devices, including desktops, tablets, and
smartphones, to assess responsiveness and accessibility.
The results indicated that the intuitive layout, minimal
navigation steps, and responsive design significantly
improved user interaction and reduced task completion
time.

Performance evaluation emphasized backend and frontend
efficiency under concurrent usage. Key metrics such as
API response time, database query latency, and page
rendering speed were monitored during product searches
and order processing. The backend services demonstrated
stable and fast responses, while MongoDB indexing
techniques reduced data retrieval time and optimized
transaction handling. The React-based frontend
maintained smooth rendering and real-time updates
without noticeable delays.

© 2026, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM56537 | Pages

https://ijsrem.com/

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.659 ISSN: 2582-3930

W Volume: 10 Issue: 02 | Feb - 2026

Overall, the evaluation results confirm that Bloomora
delivers reliable performance, efficient resource
utilization, and a user-friendly experience. The system
successfully meets the requirements of a scalable and
secure e-commerce platform and is suitable for practical
deployment in real-world online retail environments.

System Evaluation

Fig-5:System Evaluation

8. Limitations and Future Work

Despite its effectiveness, the Bloomora system has certain
limitations. The platform currently depends on standard
hosting resources, which may affect performance under
extremely high traffic conditions. Additionally, advanced
features such as Al-based demand forecasting, automated
inventory management, and real-time delivery tracking are
not fully implemented. Payment integration is also limited
to selected gateways, which may restrict flexibility for
some users.

Future work will focus on enhancing scalability through
cloud deployment and load balancing techniques. Planned
improvements include Al- driven recommendation
systems, real-time inventory analytics, and integration
with multiple payment gateways. The incorporation of
advanced security mechanisms and automated testing
pipelines will further strengthen system reliability.

These enhancements aim to expand the platform’s
capabilities and improve overall user satisfaction.

9. Conclusion

The Bloomora flower e-commerce platform demonstrates
how modern full-stack technologies can be effectively
integrated to design and develop a scalable, secure, and
user-centric online retail system. The proposed solution
addresses the limitations of traditional flower-selling
methods by providing customers with a convenient digital
platform for browsing products, placing orders, and
tracking deliveries in real time. By leveraging React with
TypeScript for the front-end, Django for backend services,
and MongoDB for flexible data storage, the system
ensures high performance, modularity, and efficient data
management.

The implementation of key modules such as product
catalog management, shopping cart operations, secure
checkout, order processing, and real-time notifications
enables a seamless and reliable shopping experience. The
three-tier architecture improves maintainability and
scalability while supporting smooth communication
between the presentation, application, and data layers.
System evaluation through functional, usability, and
performance testing confirms that the platform delivers
stable API responses, fast database queries, and responsive
user interfaces across multiple devices.

Overall, Bloomora provides a practical and robust solution
for digital flower retail and highlights the effectiveness of
combining modern web technologies with efficient system
design principles. The platform serves as a strong
foundation for future enhancements such as intelligent
recommendations, advanced analytics, and cloud-based
scalability, making it suitable for real-world commercial
deployment and further research in e-commerce
application development.

© 2026, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM56537 | Page6

https://ijsrem.com/

LT Ak
U:szg International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.659 ISSN: 2582-3930

w Volume: 10 Issue: 02 | Feb - 2026

10. REFERENCES

[1] React Documentation, “React — A JavaScript Library
for Building User Interfaces,” 2024. https://react.dev

[2] Django Software Foundation, “Django Web
FrameworkDocumentation,”2024.
https://docs.djangoproject.com

[3] MongoDB Inc., “MongoDB Architecture Guide,”
2024.https://www.mongodb.com/architecture

[4] MongoDB Inc., “MongoDB Indexing and Query
Optimization,”2024.
https://www.mongodb.com/docs/manual/indexes/

[5] Django Software Foundation, “Security in
Django,”2024.
https://docs.djangoproject.com/en/stable/topics/sec urity/

[6] R. Fielding, “Architectural Styles and the Design of
Network-based Software Architectures (REST),” Doctoral
Dissertation, University of California, 2000.
https://www.ics.uci.edu/~fielding/pubs/dissertation/

rest arch_style.htm

[7] OWASP Foundation, “OWASP Top 10 Web
ApplicationSecurityRisks,”2021. https://owasp.org/www-

project-top-ten/

[8] Google Developers, “Web Performance Best
Practices,”2024.
https://web.dev/performance/

[9] Stripe Inc., “Payment Security and PCI
ComplianceGuide,”2024. https://stripe.com/docs/security

[10] Nielsen Norman Group, “Ten Usability
Heuristics for User Interface Design,” 2020.
https://www.nngroup.com/articles/ten-usability- heuristics/

[11] M. Fowler, “Microservices Architecture,” 2014.
https://martinfowler.com/articles/microservices.htm 1

[12] P. Mell and T. Grance, “The NIST Definition of
Cloud Computing,” NIST Special Publication 800-
145,2011.
https://nvipubs.nist.gov/nistpubs/Legacy/SP/nistspe
cialpublication800-145.pdf

[13] S. Newman, Building Microservices, O’Reilly
Media,2015.
https://www.oreilly.com/library/view/building-
microservices/9781491950340/

[14] Mozilla Developer Network, “HTTP and REST
APIOverview,”2024. https://developer.mozilla.org/en-
US/docs/Web/HTTP/Overview

[15] Refactoring Guru, “Design Patterns — Software
EngineeringConcepts,”2024.
https://refactoring.guru/design-patterns

© 2026, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM56537 | Page7

https://ijsrem.com/
https://react.dev/
https://docs.djangoproject.com/
https://www.mongodb.com/architecture
https://www.mongodb.com/docs/manual/indexes/
https://docs.djangoproject.com/en/stable/topics/security/
https://docs.djangoproject.com/en/stable/topics/security/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://www.oreilly.com/library/view/building-microservices/9781491950340/
https://www.oreilly.com/library/view/building-microservices/9781491950340/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://refactoring.guru/design-patterns
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://web.dev/performance/
https://stripe.com/docs/security
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

