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Abstract— Abstract — Brain tumors are among the most life-

threatening and complex conditions, requiring early and 

accurate detection to ensure effective treatment and improved 

survival rates. Manual interpretation of MRI scans for 

diagnosis is a labor-intensive process, demanding significant 

expertise and carrying the risk of human inaccuracies. This 

research proposes a deep learning-based framework using a 

Deep Convolutional Neural Network (DCNN) specifically 

instantiated with the pretrained ResNet50 model for the 

automated detection and classification of brain tumors from 

MRI images. MRI scans are processed into a classification 

system that identifies four conditions: glioma, meningioma, 

pituitary tumor, or a healthy (no tumor) state. We prepare the 

dataset for this task using normalization, resizing, and 

augmentation to improve model robustness and reduce the risk 

of overfitting. The DCNN specifically with pretrained ResNet50 

architecture is designed with multiple convolutional, pooling, 

and dense layers to extract complex features and learn spatial 

hierarchies within the data. The model is trained using 

categorical cross-entropy loss and optimized via the Adam 

optimizer to achieve high classification accuracy. Extensive 

validation and testing show that the model achieves reliable 

performance with high precision and recall across all tumor 

types. The trained model is further integrated into a user-

friendly web interface using the Flask framework, enabling 

real-time prediction from uploaded MRI scans. This system 

provides an accessible and effective diagnostic tool, especially 

beneficial in resource-constrained settings, and contributes 

significantly to the field of medical imaging and intelligent 

healthcare solutions. 

Keywords—Brain tumor detection, Deep Convolutional Neural 

Network, DCNN, ResNet50, medical imaging, MRI 

classification, Flask deployment. 

 

 
 

I. INTRODUCTION 

Brain tumors are one of the most critical health conditions affecting 

the central nervous system, often leading to severe neurological 

complications or even death if not detected and  

 

 

treated promptly. Magnetic Resonance Imaging (MRI) is widely 

used for non-invasive brain tumor diagnosis due to its  

ability to provide high-resolution images of soft tissues. However, 

manual interpretation of MRI scans by radiologists is labour-

intensive and susceptible to subjective errors, motivating the 

development of automated, accurate, and reliable detection systems 

To automate and enhance the accuracy of brain tumor detection, 

deep learning methods—Deep Convolutional Neural Networks 

(DCNNs) demonstrate remarkable efficacy in various image-based 

tasks, including classification, object detection, and segmentation. 

Their strength lies in their inherent capacity to autonomously 

extract hierarchical features directly from raw image inputs.. 

DCNNs eliminate the need for manual feature engineering by 

learning directly from images, which makes them especially 

effective in complex domains such as medical diagnostics. 

The objective of this research is to develop a DCNN-based system 

for accurate detection and classification of brain tumors from MRI 

scans. The proposed model is trained on a labelled dataset 

consisting of MRI images representing different tumor types, 

including glioma, meningioma, and pituitary tumors, as well as 

healthy (no tumor) cases. Through systematic preprocessing, data 

augmentation, and network optimization, the model aims to deliver 

high classification accuracy and robustness, even with limited 

training data. This paper presents a comprehensive methodology 

for brain tumor classification using DCNNs, evaluates the model’s 

performance with standard metrics, and discusses its potential 

applications in clinical practice. The findings of this study aim to 

contribute to the development of reliable and efficient computer-
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aided diagnostic tools that can support radiologists and improve 

diagnostic workflows in medical imaging. 

II. LITERATURE REVIEW 

Accurate and timely detection of brain tumors is essential in 

medical imaging, directly impacting the effectiveness of 

subsequent treatments. Magnetic Resonance Imaging (MRI) is the 

preferred modality for brain imaging due to its superior soft tissue 

contrast and non-invasive nature. Given that manual MRI scan 

interpretation is both time-consuming and susceptible to inter-

observer variability, there is a clear impetus for developing 

automated diagnostic systems. 

A. Traditional Machine Learning Approaches 

Early computational strategies for brain tumor detection 

predominantly relied on traditional machine learning algorithms. 

These methods typically involved sequential steps: preprocessing, 

manual feature extraction (e.g., texture, shape, intensity via Gray 

Level Co-occurrence Matrix and wavelet transforms), followed by 

classification using models such as Support Vector Machines 

(SVM). Gupta et al. [2] implemented K-means and Fuzzy C-means 

clustering for tumor segmentation in MR images, providing 

foundational groundwork for tumor localization. However, these 

approaches often suffered from noise sensitivity, dependence on 

handcrafted features, and limited scalability across diverse datasets. 

B. Emergence of Deep Learning Techniques 

The emergence of deep learning, especially Convolutional Neural 

Networks (CNNs), has fundamentally transformed the landscape of 

medical imaging. Younis et al. [1] proposed a deep CNN-based 

architecture that significantly improved the accuracy of tumor 

detection in MRI scans, emphasizing optimized network depth and 

feature learning. Similarly, Kosare et al. [5] introduced an 

automated deep learning framework for MRI-based brain tumor 

detection, achieving high performance metrics. Simaiya et al. [6] 

further enhanced classification through transfer learning, allowing 

models pre-trained on large datasets to adapt effectively to medical 

imaging tasks. Ayadi et al. [8] demonstrated that CNN-based 

classifiers can effectively distinguish between glioma, 

meningioma, and pituitary tumors, achieving training accuracies 

above 96%. 

C. Limitations in Existing Studies 

Despite promising advances, several limitations persist across 

existing studies: 

Data Scarcity: Many deep learning models rely on small, publicly 

available datasets that fail to represent the broad variability in tumor 

appearances, leading to overfitting and poor generalizability [6], 

[8]. 

Tumor Heterogeneity: Significant intra-class variation exists in 

tumor size, shape, intensity, and location, which can confuse 

models trained on limited data [5], [8]. 

Preprocessing Inconsistency: Studies often apply inconsistent 

preprocessing pipelines, including differing normalization, 

resizing, and augmentation techniques, thereby affecting 

reproducibility and performance comparisons [10]. 

Clinical Translation Gap: Many proposed models focus heavily on 

maximizing accuracy, often overlooking computational efficiency, 

interpretability, or integration potential with clinical workflows [7], 

[11]. 

D. Motivation for the Proposed Work 

To address these limitations, the proposed study introduces a 

custom Deep Convolutional Neural Network (DCNN) designed for 

accurate and efficient brain tumor classification from MRI images. 

The architecture is built to be lightweight yet powerful, supported 

by extensive data augmentation techniques to artificially expand 

the dataset and improve generalizability. Drawing insights from 

existing work [1], [5], [6], and [8], our approach balances precision 

with computational efficiency, with an emphasis on real-world 

clinical applicability. The goal is to provide radiologists with a 

robust decision-support tool for early and reliable tumor diagnosis. 

III. METHODOLOGY  
The proposed system for brain tumor detection using Deep 

Convolutional Neural Networks (DCCN), specifically instantiated 

with the pretrained ResNet50  involves a systematic process 

starting with data collection and ending with deployment.  

Fig. 1 shows a visual comparison between a normal brain MRI and 

one with tumor, highlighting the difficulty and importance of 

accurate identification. 

 

 
Fig.1: Normal vs. Abnormal brain MRI tissue. 

Left: Normal brain; Right: Tumor-affected brain with highlighted 

abnormal region. 

 

This section presents the proposed methodology of a multi-scale 

DCNN model for identifying and classifying brain tumors in four 

classes such as glioma, meningioma, pituitary, and non-tumor MRI. 

The proposed model aims to perform multi-class classification, 

where brain tumors are classified into four classes, as shown 

in fig.2. 

. 

 
Fig.2 Classification of brain tumors from MRIs. 

A. Data Acquisition 

The dataset for this endeavor was procured from the Kaggle 

platform, known by the designation "Brain Tumor Classification 

(MRI)." This collection is a widely recognized cornerstone in 

academic research, comprising meticulously labeled MRI images 

organized into four diagnostic categories: 

• Glioma Tumor 

• Meningioma Tumor 

http://www.ijsrem.com/


          INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM) 

                                   VOLUME: 09 ISSUE: 06 | JUNE - 2025                                             SJIF RATING: 8.586                                                  ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                            DOI: 10.55041/IJSREM50618                                             |        Page 3 
  

• Pituitary Tumor 

• No Tumor 

This granular categorization empowers the model to undertake  

a multi-class differentiation, a capability far more clinically 

insightful and actionable than a simplistic binary (tumor/no tumor) 

distinction. 

Dataset Composition The dataset's vital statistics include: 

Total Images: A comprehensive collection of 3,264 MRI scans. 

Image Format: Primarily in JPEG format. 

Image Dimensions: Originally diverse in their spatial footprint, 

these were uniformly standardized during the preprocessing phase. 

Color Mode: Initially RGB, these were judiciously converted to 

single-channel grayscale. 

View Type: Consisting of T1-weighted contrast-enhanced axial 

images. 

Each image within this expansive dataset encapsulates a singular 

MRI slice from a unique patient, presenting a rich tapestry of 

anatomical nuances and varied tumor manifestations. The images 

collectively span a spectrum of tumor geometries, dimensions, 

locations, and signal intensities—a crucial attribute that fortifies the 

dataset's suitability for robust generalization. 

B. Image Preprocessing 

To forge a harmonious input stream and optimize the subsequent 

training odyssey, a series of meticulous preprocessing maneuvers 

were applied to the raw MRI images before their ingestion by the 

Deep Convolutional Neural Network (DCNN). These preparatory 

stages were instrumental in refining the input data's integrity, 

alleviating computational burden, and sharpening the model's 

inherent learning acumen. 

1. Image Resizing 

To ensure an unwavering, consistent input for the DCNN 

specifically instantiated with the pretrained ResNet50, all MRI 

scans—originally a mosaic of disparate resolutions and 

dimensions—were uniformly scaled to a precise 128x128 pixel 

canvas. This standardized input dimension guarantees seamless 

integration with the network's architectural blueprint and 

judiciously curtails training duration without compromising vital 

visual fidelity. 

2. Grayscale Conversion 

Given that MRI scans fundamentally capture intensity-based 

structural information and inherently manifest as grayscale images, 

the initial RGB images underwent a transformation into single-

channel grayscale. This strategic conversion not only streamlines 

the input channels, thereby reducing computational complexity, but 

also meticulously preserves all pertinent anatomical features 

indispensable for accurate classification. 

3. Normalization 

To catalyze a more efficient and stable training trajectory, pixel 

values were meticulously normalized. This involved scaling their 

intensity from an original range of [0, 255] down to a standardized 

interval of [0, 1], achieved by dividing each pixel's intensity by 255. 

This normalization act profoundly enhances gradient flow during 

backpropagation and accelerates the model's convergence by 

fostering a uniform data distribution. 

4. Data Augmentation 

To transcend the inherent limitations of dataset size and cultivate 

the model's capacity for broad generalization, a panoply of data 

augmentation techniques were judiciously unleashed during the 

training phase. These transformative operations encompassed 

random rotations, horizontal and vertical flipping, dynamic 

zooming, subtle translations, and calculated shear transformations. 

Augmentation, therefore, not only diversifies the training repertoire 

but also imbues the model with an invaluable resilience against 

minor variations and subtle deformations commonly encountered 

in real-world MRI scans. 

C. Model Design and Architecture 

The core of the proposed system for brain tumor classification is a 

Deep Convolutional Neural Network (Deep CNN),with  

pretrained ResNet50 designed to automatically learn discriminative 

features from brain MRI scans. Deep CNNs are particularly 

effective in medical imaging tasks because they can extract high-

level spatial hierarchies from raw input images, enabling the model 

to distinguish between subtle differences across tumor types and 

healthy tissues. 

1) Input Layer 

The input to the Deep CNN, ResNet50 consists of pre-processed 

grayscale MRI images resized to 128 × 128 × 1. Grayscale images 

are chosen due to their direct relevance in medical imaging and to 

reduce model complexity. 

2)  Convolutional Blocks 

The deep CNN model includes multiple convolutional blocks, each 

comprising: 

Convolutional Layers with increasing filter counts (32 → 64 → 128 

→ 256) and 3×3 kernels to extract spatial features such as tumor 

boundaries, texture, and tissue structure. 

Batch Normalization layers are integrated to both stabilize and 

expedite the training process through the normalization of 

activations. ReLU Activation functions to introduce non-linearity 

and enhance learning capacity. 

Max Pooling layers (2×2) to progressively reduce spatial 

dimensions and retain dominant features. 

These convolutional blocks form the deep feature extraction 

backbone of the model. 

3)  Dropout Layers 

To avoid overfitting, Dropout layers are incorporated after some of 

the convolutional and dense layers. Dropout rates between 0.3 to 

0.5 are used, which randomly deactivate neurons during training 

and force the model to generalize better. 

4) Flatten and Fully Connected Layers 

The activations from the final convolutional block are reshaped into 

a single 1D vector. This is followed by one or more fully connected 

(dense) layers with ReLU activations, allowing the model to learn 

higher-order feature combinations. 

The final dense layer consists of 4 different classes. A SoftMax 

activation function is applied to convert the outputs into class 

probabilities. 

5)  Design Considerations 

The depth and complexity of this architecture are tailored to capture 

the intricate patterns present in MRI scans of different tumor types. 

Performance was bolstered by systematically expanding the filter 

count and integrating regularization techniques including dropout 

and batch normalization. 

 

D. Model Training and Optimization 

The meticulous orchestration of training and optimization for the 

proposed Deep Convolutional Neural Network (DCNN) 

specifically instantiated with the pretrained ResNet50, was a ballet 

of precision, meticulously choreographed to achieve 
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exemplary accuracy in the discerning classification of brain MRI 

images. This section illuminates the strategic overtures undertaken 

to prime the model for broad generalization, details the precise 

training parameters, and unveils the cunning techniques 

implemented to outwit the specter of overfitting. 

1) Data Splitting 

To guarantee an unassailable evaluation and robust generalization, 

the dataset was meticulously partitioned into three distinct 

pedagogical subsets, each serving a unique purpose in the model's 

educational journey: 

Training Set (70%): This substantial portion of the dataset served 

as the model's primary tutor, where the DCNN engaged in deep 

learning, meticulously updating its internal parameters to absorb 

the essence of the data. 

Validation Set (15%): This subset acted as the model's mid-term 

examiner, providing real-time feedback on performance during 

training, a crucial compass for fine-tuning hyperparameters without 

influencing the learning process directly. 

Testing Set (15%): This pristine, untouched segment was reserved 

solely for the final, unbiased assessment of the model's prowess 

after its training odyssey was complete, serving as the ultimate 

arbiter of its generalization capability. 

Crucially, stratified sampling was employed as a silent guardian, 

diligently preserving the original class distribution across all three 

subsets, ensuring proportional representation for each tumor type 

and healthy class. 

2) Optimization Settings 

The training process itself was a disciplined expedition spanning 50 

epochs, with data marshaled into manageable batches of 32 

instances at each step. Non-linearity, the vital spark of complex 

feature learning, was artfully woven into the hidden layers through 

the ubiquitous ReLU activation function. 

3) Regularization Techniques 

To diligently prune the tendrils of overfitting and cultivate the 

model's capacity for broad generalization, a formidable arsenal of 

regularization techniques was strategically deployed: 

Dropout Layers: To fortify the network against over-reliance on 

specific neurons, dropout regularization was implemented with a 

dynamic rate ranging from 0.3 to 0.5. This ingenious mechanism 

randomly deactivated neurons during each training iteration, 

compelling the model to forge more resilient and generalized 

internal representations. 

Batch Normalization: The judicious integration of Batch 

Normalization layers immediately following convolutional 

operations served as a steadfast compass, not only stabilizing the 

volatile learning process but also dramatically accelerating the 

model's convergence towards optimal performance. 

Early Stopping: As a discerning sentinel, Early Stopping was 

activated, poised to halt the training if the validation loss—a critical 

barometer of the model's true learning—showed no tangible 

improvement for 5 consecutive epochs. This safeguard prevented 

the model from becoming overly specialized to the training data. 

4) Data Augmentation 

Recognizing the inherent preciousness and often limited volume of 

authentic medical imaging data, data augmentation was invoked as 

a creative alchemist, artificially expanding the dataset's diversity. 

This magical process involved a series of sophisticated 

transformations: 

• Random rotations (±15 degrees): Tilting the images slightly to 

teach rotational invariance. 

• Horizontal and vertical flipping: Presenting mirrored views to 

broaden the model's understanding of anatomy. 

• Zooming (range: 0.9–1.1): Simulating variations in image scale and 

proximity. 

• Width and height shifts (up to 10%): Mimicking slight 

misalignments or patient positioning variations. 

A. These artful transformations proved invaluable, imbuing the 

model with the ability to discern invariant features regardless of 

minor spatial distortions and bolstering its resilience against the 

subtle chaos of real-world MRI scans. 

• 5) Training Monitoring and Checkpoints 

Throughout the training odyssey, a vigilant eye was kept on the 

model's progress: 

• Performance Metrics: Both the training and validation loss, 

alongside accuracy metrics, were meticulously charted across each 

epoch, providing a real-time pulse of the model's learning curve. 

• Model Checkpoints: Like a diligent cartographer, the model's 

weights were meticulously saved as checkpoints whenever a 

discernible improvement in validation accuracy was observed, 

ensuring the preservation of the best-performing iteration.       

Learning Rate Scheduler: A dynamic learning rate scheduler acted 

as a seasoned guide, gracefully diminishing the learning rate by a 

predetermined factor (e.g., 0.1) if the validation loss showed signs 

of plateauing, preventing stagnation and guiding the model towards 

finer optimization. 

E. Evaluation and Metrics 

To meticulously gauge the diagnostic prowess of the proposed 

Deep Convolutional Neural Network (DCNN) for automated brain 

tumor classification, a suite of incisive performance metrics was 

strategically enlisted. These quantitative barometers offer profound 

insights into the model's clinical effectiveness and its astute 

capacity to precisely identify various tumor archetypes from the 

intricate landscape of MRI scans. 

1. Accuracy 

Accuracy, often considered the grand tally of triumphs, quantifies 

the model's overall veracity. It is derived by computing the 

proportion of all correctly identified samples across the four distinct 

categories—glioma, meningioma, pituitary tumor, and non-tumor 

(healthy)—against the entirety of the predictions rendered. While 

accuracy provides a swift, intuitive glance at the model's general 

correctness, it's a metric that can occasionally mislead, particularly 

when navigating datasets with inherent class imbalances. 

2. Loss Function 

Throughout the arduous training odyssey, the model was guided by 

categorical cross-entropy loss, a venerable and widely adopted 

standard for multi-class classification endeavors. The relentless 

minimization of this divergence during training serves as the 

model's internal compass, steering it ever closer to optimal 

classification accuracy. 
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Fig.3:System Architecture 

Following its meticulous architectural design and data preparation, 

the DCNN model was rigorously compiled under the guidance of 

the Adam optimizer, with categorical cross-entropy serving as its 

guiding loss function during training. The model's nascent 

performance was then vigilantly tracked through real-time 

monitoring of both accuracy and loss metrics, providing an 

immediate pulse on its learning trajectory. Upon achieving a 

refined state, this robust, trained model was seamlessly integrated 

into a Flask web application, effectively transforming it into a 

practical, accessible tool capable of enabling real-time brain tumor 

detection from uploaded MRI images. This integration culminates 

the systematic process, bridging the gap from theoretical design to 

tangible diagnostic utility. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

To truly unveil the practical prowess and clinical applicability of 

the proposed MRI brain tumor detection system, a bespoke web-

based interface was meticulously crafted using the Flask 

framework. This intuitive digital gateway empowers users to 

effortlessly submit an MRI image, subsequently receiving an 

immediate diagnostic verdict detailing the presence or absence of a 

tumor, alongside its specific classification. 

A.Web Interface Functionality 

The web interface (Fig. 4) emerges as a beacon of user-centric 

design, offering a seamless conduit for individuals to upload an 

MRI scan via a remarkably straightforward form. With a single 

click on the "Upload and Detect" button, the underlying model 

swiftly processes the visual input, culminating in the instantaneous 

display of the predicted diagnostic outcome. 

 

 

Fig.4: MRI Tumor Detection web interface for uploading images. 

2. Detection Output 

Once the deep CNN model completes its silent, intricate analysis of 

the submitted image, the diagnostic revelation is unveiled with 

crystalline clarity, presented alongside the uploaded MRI scan 

itself.  

 
 

Fig.5: Tumor detection result with classified output ("No Tumor") 

 

 
            Fig.5: Tumor detection result with classified output ("glioma") 
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Fig.5: Tumor detection result with classified output ("pituitary”) 

 
Fig.5: Tumor detection result with classified output ("meningioma") 

 

The ensuing outcome encompasses both the definitive predicted 

tumor class (e.g., Glioma, Meningioma, Pituitary, or the reassuring 

declaration of 'No Tumor') and the corresponding image, artfully 

centered for optimal visual inspection. Examples of these classified 

outputs are demonstrated in the above figures. 

3. Interpretation and Analysis 

The meticulously engineered Deep Convolutional Neural Network, 

powered by the ResNet50 model, ascended to an apex of 

performance, validating its exceptional capabilities by achieving a 

remarkable 99.01% validation accuracy (a triumph visually charted 

in Fig. 6: Accuracy Graph). This stellar precision was harmoniously 

coupled with a notably low validation loss (its precise trajectory 

meticulously detailed in Fig. 7: Loss Graph). This formidable 

outcome powerfully underscores the model's inherent genius for 

potent feature extraction and its formidable capacity for robust 

generalization when confronted with unseen brain MRI data. Such 

an elevated echelon of predictive proficiency is not merely 

impressive; it is unequivocally critical, signaling the model's 

profound potential to significantly amplify existing diagnostic 

paradigms by furnishing clinicians with reliable and unerring 

classifications of diverse tumor types. This capability holds a 

substantial, transformative promise for tangible clinical utility. 

 

 

Fig.6: Accuracy Graph 

 
Fig.7:Loss Graph 

 

These convergent trends—a soaring accuracy met by a steadily 

diminishing loss—paint a vivid portrait of a model impeccably 

trained. It swiftly internalized the complexities of the classification 

task, scaled to a zenith of performance, and steadfastly maintained 

its equilibrium without succumbing to the subtle traps of 

overfitting. This harmonious balance is the very hallmark of a truly 

resilient and dependable classification system. 

 

V.FUTURE SCOPE 

To build on these strong results, future efforts will focus on several 

key areas. We aim to gather larger and more diverse datasets from 

various clinical centers to improve the model's robustness across 

different MRI scanners and patient demographics. Integrating 

Explainable AI (XAI) techniques is also a priority, as it will allow 

clinicians to understand the reasoning behind the model's 

predictions, fostering greater trust. We'll also explore incorporating 

multi-modal data, such as patient history or genetic markers, to 

enhance diagnostic accuracy. Looking ahead, adapting the model 
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for longitudinal analysis to track tumor changes over time, 

conducting prospective clinical trials for real-world validation, and 

pursuing necessary regulatory approvals are crucial steps toward 

bringing this technology into routine medical practice. 

 

VI.CONCLUSION  
In summary, this study successfully developed and deployed a 

highly effective deep learning model for brain tumor classification, 

achieving an impressive 99.01% validation accuracy. By using 

Deep Convolutional Neural Network, specifically with ResNet50 

architecture and a carefully refined training strategy, the model 

demonstrated exceptional generalization and learned powerful 

features from MRI scans. The addition of an accessible web 

application further enhances its utility, providing a practical tool for 

real-time diagnosis. This work represents a significant step 

forward, offering a reliable and efficient automated system that can 

greatly assist in brain tumor diagnosis and potentially improve 

patient care. 
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