

BricksterSelf-Plastered Bricks - Future of wall construction

About the author

Rajesh Kumar Uba

Education:

Bachelors of engineering in Civil Engineering from Osmania University, Hyderabad India.

Project Management Professional from San Diego State University, San Diego, USA

Work Experience:

Founder and CEO at IBT Const Planr Private Limited, India & iBuiltup Tech USA.

Previous Work: Cumming Group, Sunnyvale California, USA, 2016 - 2019.

Planning Engineer - Al Futtaim Construction (AlFuttaim Carillion-previous) - Dubai UAE.

Abstract

Traditional bricklaying and plastering methods involve significant material wastage, labor-intensive processes, and increased construction time. This paper introduces **Brickster**, an innovative building material that integrates **brick and plaster as a single component**, eliminating the need for separate plastering. The study highlights **the environmental benefits, material efficiency, cost reduction, and labor optimization** associated with this new approach. The concept is particularly relevant for India and other regions where **red bricks are the primary construction material**. By reducing plaster wastage and simplifying construction techniques, Brickster offers a **sustainable and time-efficient alternative** for modern construction.

1. Introduction

Brick masonry is a fundamental component of construction, widely used across the world, particularly in India. Among the various types of bricks, **red bricks** are considered superior due to their **durability**, **strength**, **and**

thermal insulation properties. The traditional bricklaying and plastering process involves multiple steps, including the application of a cement-sand plaster layer between bricks, leading to considerable material wastage and labor effort.

This paper introduces **Brickster**, a **pre-plastered brick** with a **built-in binding layer**, designed to eliminate **excessive plaster use** and improve **construction efficiency**. By integrating **plaster onto the brick's surface**, this innovative solution ensures **faster assembly, lower costs, and enhanced sustainability**.

2. Traditional Bricklaying Process and Its Challenges

The conventional bricklaying process follows these key steps:

- 1. **Application of Plaster Layer:** A **12mm cement-sand mortar** layer is applied to the base, serving as a binding medium for brick placement.
 - Standard cement-to-sand ratio:
 - **1:4** (Internal Walls & Ceilings)
 - **1:6** (External Walls)
 - The mix ratio is dictated by the **Bureau of Indian Standards (BIS)** and varies based on climate, wall positioning, and load factors.
- 2. Brick Placement: Bricks are positioned onto the mortar layer to form a stable wall structure.
- 3. Side Plastering: Each brick requires an additional layer of mortar on its sides to bond with adjacent bricks.
- 4. **Curing and Drying:** The constructed wall undergoes a curing process to **harden the mortar**, ensuring structural integrity.

Challenges in Traditional Methods:

- Material Wastage: Excess plaster often spills over or dries out, leading to significant resource loss.
- High Labor Dependency: Requires skilled masons for proper alignment and application.
- Time-Consuming: Repetitive plastering and curing cycles increase overall construction time.
- Inconsistent Strength: Variability in plaster thickness and application affects structural uniformity.

Ι

3. The Brickster Solution

Brickster is a **pre-plastered brick** that **integrates plaster onto the brick's surfaces**, addressing the inefficiencies of traditional bricklaying. This **all-in-one** solution consists of:

- **Plastered Side Ends:** Built-in **binding material** on **left and right sides** to act as an adhesive when stacked.
- **Pre-Plastered Front & Back Faces:** Eliminates the need for **external and internal wall plastering** after construction.

3.1 Working Model

Brickster can be applied to different brick types, including **red clay bricks, cement concrete (CC) blocks, and fly ash bricks**. The implementation follows these steps:

- 1. **Placement:** Position the pre-plastered Brickster bricks with plaster layers on all four sides, adhering to the required thickness specifications.
- 2. Water Activation: After placing bricks covering **3 square feet**, spray water using a **special spraying technique** that activates the bonding property of the plaster without damaging the pre-coated layer.
- 3. **Repeat Process:** Continue the process to complete the wall as per the **design drawing**.
- 4. **Spraying Rounds:** Water spraying should follow **standard rounds of 3 square feet at a time**, ensuring controlled activation of the plastered material.
- 5. Alignment Check: Upon wall completion, check vertical alignment and surface evenness using established plastering quality control techniques.

Regular 'Red Brick' without 'Brickster' Plaster

Redbrick inside covered with self plaster agent that activates to bind with adjoining

bricks once it comes in contact with water - Recommended water spray for every 3 cubic feet of laying.

3.2 Water Spray Application

a. Brickster bricks being placed

b. Water sprayed on 'Brickster' bricks - Self plastered wall

c. Check surface straightness

Benefits - Avoid wastages, save time, easy to clean, less human effort, value for money, environmental friendly

4. Checking Wall Evenness and Straightness

Ensuring a uniform and level plastered surface is critical. The most common techniques include:

1. Straightedge and Spirit Level Method:

- Place a **straightedge** horizontally or vertically against the surface to detect irregularities.
- Use a **spirit level** to check horizontal and vertical alignment.
- 2. String Line Method:
 - Stretch a string line along the surface to compare the alignment of multiple bricks.
- 3. Plumb Bob and Laser Level:
 - Use a **plumb bob** for vertical alignment.
 - A laser level can provide precise surface alignment.
- 4. Tolerance Levels:
 - Standard construction tolerances allow deviations of ±3mm over a 2-meter straightedge.

5. Case Study: Cost and Time Savings with Brickster

A comparative analysis of a **residential building project** (**1200 sq. ft.**) was conducted to measure the efficiency of Brickster versus traditional bricklaying methods.

Volume: 09 Issue: 02 | Feb - 2025

SJIF Rating: 8.448

ISSN: 2582-3930

Parameter	Traditional Method	Brickster Method
Material Wastage	15% Plaster Waste	<1% Waste
Labor Requirement	10 Masons	1 Mason and a helper
Construction Time	30 Days	18 Days
Cost Savings	-	20% Reduction

Results indicate significant reductions in cost, time, and labor, making Brickster a highly efficient alternative.

Figure a: Traditional brick plastering technique, manual method.

Leads to wastages, takes a lot of human effort, time and money.

6. Implementation and Future Scope

6.1 Manufacturing Process

- Brick Firing & Processing: Traditional red bricks are prepared using high-quality red soil, fired at optimal temperatures.
- Plaster Integration: A factory-applied plaster coating is added to ensure uniformity and durability.
- **Quality Testing:** Ensuring adhesion strength, impact resistance, and moisture control.

6.2 Potential Applications

• Residential & Commercial Buildings: Rapid deployment for high-rise structures and housing projects.

Ι

- Government Infrastructure Projects: Large-scale implementation in affordable housing initiatives.
- **Prefabricated Construction Industry:** Enhancing modular construction techniques.

6.3 Future Research and Innovations

- Exploration of Advanced Binding Materials for enhanced brick adhesion.
- Integration of Fireproof and Waterproof Layers for multi-climatic adaptability.
- Automation in Brick Manufacturing for mass production and affordability.

7. Conclusion

Brickster presents a **transformative approach** to traditional construction by combining **brick and plaster into a single component**. This **pre-plastered**, **ready-to-use solution** addresses the inefficiencies of **manual plastering**, minimizes **material wastage**, and accelerates **construction timelines**.

References:

- 1. Bureau of Indian Standards (BIS) Cement and Plastering Guidelines.
- 2. Sustainable Construction Practices, Journal of Green Building, 2023.
- 3. Advances in Prefabrication Technology, Construction Engineering Review, 2022.

Illustrations:

- 1. Brick Types: Red Clay Brick, Cement Concrete Block, Fly Ash Brick.
- 2. Plaster Coating Process: Standard thickness variations as per Indian codes.
- 3. Water Spraying Technique: Applied over a 3 square feet area.
- 4. Completed Brickster Wall: Demonstrating efficiency and uniformity.

Fig: 1: Showing different types of bricks currently being used in the construction market.

Fig: 2: Showing different types of bricks with plaster - Brickster

T

Volume: 09 Issue: 02 | Feb - 2025

SJIF Rating: 8.448

ISSN: 2582-3930

Fig: 3: Showing different types of bricks with plaster on the left and right side only - Brickster

Brickster Wall

Fig: 4: Showing plaster on the all sides - Brickster

Assessing the planar uniformity and vertical alignment of the brick wall construction