
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM14323 | Page 1

Buffer Overflow Vulnerabilities and Prevention

Shreenivas Hegde , Assistant Prof. Rakshitha Sumanth

Department of MCA

Dayananda Sagar college of engineering

Abstract

Either in terms of software error or being an attack itself, buffer overflow attacks have been one of the
most important security problems accountable for a common vulnerability of software security and
cyber risks. Buffer overflow vulnerabilities influence the zone of remote network penetration
vulnerabilities, where an anonymous user tries to gain partial or complete control of the host. Buffer
overflow attacks liable for some of the biggest data breaches in recent years. One of the notable data
breach examples include Morris worm or internet worm of November 2, 1988. Morris worm is an ancient
computer worm distributed via the internet, was noted for infecting around 6000 major Unix machines.
This paper mainly focuses on buffer overflow attack vulnerabilities and the preventive measures to
safeguard once system from being attacked.

Keywords – Buffer overflow attack, susceptibility, impediment

1. Introduction

In recent years, the buffer overflow threat paved

the way for a severe form of vulnerability in

software and became the reason for critical issues

such as network security. Most of the buffer

overflow issues are due to the poor programming

practices. Almost all web servers, web application

servers and web applications are receptive to

buffer overflow attack. Applications that are

written in interpreted languages, such as Java and

Python, are immune to the attacks, with the

exception of overflows in their interpreter. Buffer

overflow is a software related coding error or

loophole that can be exploited by a hacker to gain

unauthorized access to the network systems.

Buffer overflow occurs when the volume of the

data exceeds the storage capacity of the memory

location, causing overwriting of neighbouring

memory locations. As a result, the program

behaves unpredictably and generates false results

leading to system crashes and memory access

errors. Buffer overflow attack takes place when the

attacker tries to manipulate the code execution

path in order to compromise the affected system.

For example, an attacker tries to introduce an

extra code, consigning new instructions to the

application to gain access to IT systems. If

attackers know the memory format of a

program, they purposely send input that a buffer

cannot store and try to overwrite the

executable code replacing it with their own code.

This attack is common and most of the preventive

measures are prone to error.

A buffer overflow vulnerability will

predominantly occur when:

1. The code is contingent on users input

which could control its behaviour.

http://www.ijsrem.com/
https://www.merriam-webster.com/thesaurus/susceptibility

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM14323 | Page 2

2. The code is reliant on data properties

that are enforced beyond data scope.

3. The code is complicated for

programmers to predict its behaviour

accurately.

In this process the anomaly forces to store the data

in a buffer outside the programmer's designated

memory and hence affects the program flow

control. This malicious computer worm propagates

themselves from machine-to-machine causing

security breaches. This security breach has

recorded more than 50% of the incidence

compromising computer network security.

2. Literature survey

The problem arises from the basic fact that how
the computer would manage memory. A stack is a
continuous block of live memory that holds units of
information which would be processed by
performing operations. Within the stack are areas
called buffers into which data can be input
dynamically, as opposed to pre-programmed data
units. Many operating systems and programming
languages were developed at the time when
security was not a primary
concern. Unfortunately, these systems didn't have
any mechanism to block or truncate oversized
data. Excess data would overflow to the
neighbouring memory location and benefit the
attacker. A clever attacker would manipulate this
flaw and try to execute malicious code where the
system will run into alien instructions[7].

This thread was first marked in a US Air force
planning study on computer security published in
October 1972, where this flaw remained
embedded in computer systems across the
country. The situation was different in 1988 where
the home computing Revolution and the rise of the
internet vastly expanded the number of
systems. That was the year where a major viral
attack on the Internet took place. A self-replicating

program called a worm copied itself across
thousands of computers throughout the country
within a span of hours infecting the hosts. Till now
a staggering number of systems remained
vulnerable to these attacks[7].

3. Types of Buffer overflow attacks

Different buffer overflow attacks use different

Strategies and target different pieces of code. They

are categorized as four major types:

3.1. Stack overflow attack

The stack follows LIFO fashion in a data

structure, which means last in first out. This

supports two operations called push and pop. Push

operation is used to specify the value of the Steel

whereas pop operation is used to extract the value

of the Steel. If the data set on the stack is

malicious, they will try to overwrite the adjacent

memory locations and affect the data that or

pointer that is stored by the other program. An

attacker makes use of this vulnerability and try to

exploit the system by manipulating data or creating

a pointer to run hazardous code[6].

3.2. Heap overflow attack

The heap overflow takes place when part of

memory is assigned to the heap and data is written

to the memory without being checked. As a result,

the critical data structures in the heap such as heap

headers, dynamic object pointers can overwrite the

virtual function table[6].

3.3. Integer overflow attack

 As a result of an arithmetic operation, an integer

result overflows and the result does not lie in the

allocated memory space. This leads to integer

overflow. For example, the space assigned for 32-

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM14323 | Page 3

bit integer data type may be an unsigned integer

between 0 and 4294 967 295 or a signed integer

between - 2147 483 648 and 2147 483 647. When

you try to calculate 4294 967 295 + 1 and try to

store the resultant data that exceeds the maximum

value for the whole data type, it eventually crashes

the system and puts you at risk of attack. integer

overflow attack simply leads to Inaccurate program

behaviour and does not cause major

vulnerabilities. But in some circumstances

they cause severe damage[6].

3.4. Unicode overflow

Unicode strings have been widely used across the

world to ensure that any language can be transcript

without a problem. For example, Korean

characters are different from English

characters. On realizing the fact such characters

could not be converted according to the ASCII

codes. Hence the Unicode strings are introduced

where it allows the user to take advantage of the

program by typing Unicode characters in input that

expects ASCII characters. It simply provides input

that surpasses the maximum limit to make a buffer

overflow with uncertain characters of Unicode

where the program is expecting ASCII input[6].

4. Buffer overflow with example

A buffer is a temporary storage area. When

considerably more data gets placed by processor

then the extra data overflows and leak out into

other buffers. The exceeding data unusually holds

specific instructions for actions intended by an

hacker[3]. Let’s take up an example where we don’t

insert any malicious code but describe how buffer

can overflow.

Input1:

Input2:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM14323 | Page 4

The vulnerability is present since, the buffer could

be overflowed if the user’s input (arg[1]) is bigger

than 8 bytes. For the system with 32-bit , we must

fill up a double word that occupies (32 bits)

memory. Character occupies 1 byte, so if we

request buffer having 5 bytes, the system will

assign 2 double words (8 bytes). Hence, when you

input more than 8 bytes; the buffer will be

overflowed. Similar standard built-in functions

that are technically less vulnerable, such as

strncpy(), strncat(), and memcpy(), can also be

used in the programming. It depends upon the

programmer to provide reasonable size of the

buffer and not on the compiler[3].

5. Impediment

The code injection and the exploit need not have to

happen in one shot. The hacker can insert code into

one buffer without leaking it into the adjacent

memory locations, and overflow a different buffer

to exploit the code pointer. There are certain

defensive mechanisms Against buffer

overflow vulnerabilities and attacks. Some are

mentioned below.

5.1. Writing the correct code.

Some programming languages like C which is error-

prone idioms such as night terminated strings

which favours the performance except correctness.

But there are some tools that help programmers to

write a code that is less likely to contain buffer

overflow vulnerabilities. One of such methods is to

grep the source code for highly vulnerable library

calls messages strcpy() and sprintf() which does

not check the length of the arguments, these

functions make the program vulnerable[1]. In order

to combat these issues, more advanced debugging

tools such as fault injection tools have been

developed, which includes inserting buffer

overflow randomly to search for vulnerable

components in the program.

5.2. Non-executable buffers.

The concept here is to make the victims programs

address space non executable, making it

impossible for attackers to execute the code they

inject into the victim’s programs buffer[1].

5.3. Array bound checking.

 If arrays cannot be overflowed, then array

overflows cannot be used to exploit adjacent

programming states. To implement array bounds

checking, then all inputs to arrays needs to be

checked to make sure that they are within range.

The simple and direct method to eliminate the

issue is by implementing optimization techniques

into these checks. There are certain approaches to

implement array bound checking such as Compaq

C Compiler, jones & kelly’s array bound checking,

type-safe languages etc[1].

5.4. Code pointer integrity checking.

The code pointer integrity checking seeks to Detect

that a code point that has been corrupted before it

is dereferenced. So, when that succeeds in

corrupting a code pointer, the corrupted code

pointer will never be used due to its

detection before each use[1].

5.5. System compatibility and

performance.

The virtual methods make indirect function calls

common place, yet may access arrays more often

than virtual methods, depending on the

application. Hence this system performance must

be considered along with implementation

effort where array references are no longer simple

pointers but become pointers to buffer

descriptors[1].

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM14323 | Page 5

6. Conclusion

This was a detailed presentation and analysis of A

buffer overflow vulnerability, attacks

and preventive measures. Buffer overflows are

worthy to be considered before developing any

system or constructing network a first. They cause

major penetration security vulnerability issues. The

buffer overflow attack technique is both unusual in

contemporary, also not easily defended against

existing attack methods. But considering the

above-mentioned preventive measures could

Possibly reduce the chance of being prone to buffer

overflow attack.

References

1. Crispin Cowan, Perry Wagle, Calton Pu,

Steve Beattie, and Jonathan Walpole,”

Buffer Overflows: Attacks and Defenses

for the Vulnerability of the Decade”.

2. Samah Muhammed S. ALHusayn ,”The

Buffer Overflow Attack and How to

Solve Buffer Overflow in Recent

Research”.

3. https://www.geeksforgeeks.org/buffer-

overflow-attack-with-example/

4. https://www.fortinet.com/resources/cy

berglossary/buffer-overflow

5. https://www.imperva.com/learn/applic

ation-security/buffer-overflow/

6. https://www.wallarm.com/what/buffer-

overflow-attack-definition-types-use-by-

hackers-part-1

7. https://media.thinkbrg.com/wp-

content/uploads/2021/03/19180113/33_

Sleepy-History-of-Buffer-

Overflow_Oct2020.pdf

http://www.ijsrem.com/
https://www.geeksforgeeks.org/buffer-overflow-attack-with-example/
https://www.geeksforgeeks.org/buffer-overflow-attack-with-example/
https://www.fortinet.com/resources/cyberglossary/buffer-overflow
https://www.fortinet.com/resources/cyberglossary/buffer-overflow
https://www.imperva.com/learn/application-security/buffer-overflow/
https://www.imperva.com/learn/application-security/buffer-overflow/
https://www.wallarm.com/what/buffer-overflow-attack-definition-types-use-by-hackers-part-1
https://www.wallarm.com/what/buffer-overflow-attack-definition-types-use-by-hackers-part-1
https://www.wallarm.com/what/buffer-overflow-attack-definition-types-use-by-hackers-part-1

