
 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 08 ISSUE: 05 | MAY - 2024 SJIF RATING: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM32337 | Page 1

BugSpere (A Bug Tracker for Developer’s)

Anurag Mishra

AIT CSE IS

Chandigarh University

India
anurag7706@gmail.com

Abstract— In software development, dependability and

quality are critical. A Bug Tracking System (BTS) designed

specifically for large-scale software projects is introduced in

this significant project with the goal of streamlining bug

tracking, reporting, detection, and resolution. The system

provides secure authentication, a backend database that is

reliable, and an easy-to-use web interface. Using cutting-edge

web technologies, it offers critical features including automated

notifications, progress tracking, severity assignment, and

thorough bug reporting together with user-friendly interfaces

for a range of user roles. Tools for data visualization help

identify defect patterns and monitor projects. The project

follows best practices recommended by the industry for

requirements analysis, design, implementation, testing, and

deployment, and it solicits ongoing input. The result is a

thorough BTS that addresses defect management difficulties.

Thorough testing and assessment in comparison to standards

confirms its efficacy. This approach could have a big impact on

software development, improving user satisfaction and quality.

Furthermore, issues with bug tracking are covered, including

distributed team communication, scalability, and automation

balancing. Proposals for strategies to address these issues are

grounded in scholarly research and professional opinions. This

summary highlights the critical role that bug tracking systems

play in contemporary software development, making it an

invaluable tool for researchers, practitioners, and teams looking

to improve bug tracking procedures and raise the caliber and

effectiveness of the software development lifecycle.

Keywords— Bug Tracking System, Software Development,

Defect Management, Quality Assurance, Automation,

Collaboration, Large-scale Projects.

I. INTRODUCTION

Alice, a real person: My ECLIPSE crashed.

Bob, a bug-tracking system: What did you do?

Alice: I clicked on File → New Project and OK.

Bob: Did you choose a Java project?

Alice: No... (a few questions later)

Bob: Thanks, Alice. The bug is likely in ProjectCreator.java,

and we will fix it soon.

Bug tracking systems are widely used as an organizational tool

for maintenance tasks. These tools provide as a central hub for

tracking the status of bug reports, getting further details from

reporters, and debating possible fixes for the issue. Using the

details in bug reports, developers can determine the root cause

of a problem and focus on files that are likely to need to be

fixed. Developers from the APACHE, ECLIPSE, and

MOZILLA projects were surveyed to determine what

information items they thought would be helpful in fixing bugs

[4]. Developers put information like stack traces, ways to

replicate, actual and expected behaviour, test cases, and

pictures highly on their list of preferred items.

According to earlier studies, reporters frequently leave out

these crucial details [4, 6]. Then, developers are compelled to

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 08 ISSUE: 05 | MAY - 2024 SJIF RATING: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM32337 | Page 2

actively seek out information from reporters; progress may

slow as a result, depending on how responsive the reporters are.

This delay causes problems to take longer to fix and causes the

number of unresolved defects in the project's bug tracking

system to rise. We think that one of the causes of this issue is

that the existing bug tracking systems are nothing more than

relational databases' interfaces to the reported bugs. They offer

reporters little to no assistance in gathering the data that

developers require.

In order to address this issue, we are working on ideas that have

the potential to significantly improve bug tracking systems'

usability and make it easier for most users to collect and report

useful information (Section 2). In addition, we provide a

decision tree-based simulation of an interactive bug tracking

system that helps developers by gathering pertinent user data

and using it to locate the file containing the bug (Section 3).

Section 4 concludes the paper with a review of related work,

and Section 5 offers conclusions.

II. EASE OF USE

1.1 The Problem Definition

Ensuring the high quality and dependability of software

products is crucial in the dynamic and always changing

field of software development. The successful

identification, reporting, monitoring, and resolution of

software defects—also known as bugs—is essential to

achieving this goal. The lack of a strong bug tracking

system can present a number of issues that impede

software development teams' general effectiveness and

productivity.

Delays in issue resolution, communication breakdowns,

and a general degradation in software quality can result

from dispersed information and a lack of coordination in

the absence of a centralized platform for managing bug

reports. Numerous problems could arise from this, such

as irate end users, harm to one's reputation, and possible

monetary losses.

A bug tracking system becomes an essential tool for

managing and keeping track of software faults in order to

address these issues. It acts as a centralized platform that

makes it easier for developers, testers, and stakeholders to

collaborate and communicate effectively, resulting in the

prompt and efficient identification, reporting, tracking,

and resolution of defects.

Let us examine the case of a software development team

working on the establishment of an online store. A wide

range of problems can occur during the development

process, from wrong pricing and broken links to security

flaws and unplanned failures. If these problems are not

fixed right away, they may have a negative effect on both

the user experience and the website's overall

performance.

Key Problem Areas:

The absence of a comprehensive bug tracking

system can lead to several key problem areas that

hinder effective bug management:

1. Lack of Centralization: Without a centralized

repository for bug reports, information

becomes scattered across various

communication channels, making it

challenging to track and prioritize bugs

effectively. This can result in critical issues

being overlooked while less critical ones

receive undue attention.

2. Inefficient Communication: Inadequate

communication channels between developers,

testers, and stakeholders can lead to

misunderstandings, redundant efforts, and

delays in bug resolution. A bug tracking

system provides a clear and structured

platform for communication, ensuring that

everyone involved is kept informed of the

status of each bug.

3. Unstructured Bug Documentation:

Standardized bug reporting processes are often

missing, leading to bug reports lacking crucial

details such as detailed descriptions,

reproduction steps, and expected behaviour.

This makes it difficult for developers to

accurately understand and resolve bugs

efficiently.

4. Lack of Prioritization: Ineffective

categorization and prioritization of bugs can

result in critical issues being overlooked while

less critical ones receive more attention. A bug

tracking system should provide mechanisms

for prioritizing bugs based on their severity,

impact, and potential consequences.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 08 ISSUE: 05 | MAY - 2024 SJIF RATING: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM32337 | Page 3

5. Unclear Bug Workflow: The absence of a

defined bug resolution workflow can cause

confusion regarding the necessary steps

following bug reporting. This can lead to

delays, inefficiencies, and a lack of

accountability in the bug resolution process.

6. Limited Reporting and Metrics: Inadequate

tracking mechanisms can make it challenging

for managers and stakeholders to monitor the

progress of bug resolution and make informed

decisions. A bug tracking system should

provide comprehensive reporting and metrics

to track bug resolution times, identify trends,

and measure the effectiveness of bug

management processes.

7. Regression Testing Challenges: The

connection between bug reports and code

changes is often missing, making it difficult to

verify whether bug fixes introduce new issues

during regression testing. A bug tracking

system should provide mechanisms for linking

bug reports to code changes, enabling

developers to effectively test and verify bug

fixes.

OBJECTIVES

• Efficient Bug Tracking: The primary objective is

to create a platform that enables efficient tracking of

software defects, streamlining the entire bug

resolution process. This includes the ability to

report, assign, monitor, and close bugs seamlessly.

• Automated Bug Assignment: Implement a

sophisticated algorithm for automated bug

assignment based on predefined criteria, reducing

manual intervention and ensuring that bugs are

routed to the most suitable developers for quick

resolution.

• Seamless Version Control Integration: Integrate

with version control systems like Git and utilize Git

hooks or CI/CD tools to track code changes related

to bugs. This promotes transparency and

collaboration among developers.

• Enhanced Collaboration: Foster enhanced

collaboration among team members through the

built-in messaging system, facilitating real-time

communication, file sharing, and code snippet

sharing to expedite bug resolutions.

• Efficient Verification: Implement automated

testing scripts and integrate with Continuous

Integration (CI) tools to validate bug fixes

automatically. This ensures that bugs are thoroughly

tested and verified before closure.

• Data-Driven Insights: Develop robust reporting

and analytics to provide data-driven insights,

allowing project managers to make informed

decisions and optimize the development process.

• Customizable and Scalable Solution: Create a

highly customizable and scalable Bug Tracker that

caters to the specific needs and workflows of

different development teams. The objective is to

ensure that the tool can adapt as projects grow in

size and complexity, making it a versatile solution

for various organizations.

III. 3. DESIGN FLOW

A. Concept Generation

What is Bug Tracker?

A bug tracker in software development is a tool or system

used to manage and track issues or bugs that are found in

a software application. It provides a centralized platform

for developers, testers, and other stakeholders to report,

monitor, and resolve software defects efficiently.

Example - Let's say a software development team is

working on building a new web application for an online

shopping website. During the development process,

various bugs and issues are likely to be discovered by

testers and end-users. These issues could range from

broken links, incorrect prices, security vulnerabilities, or

unexpected crashes.

Features of Bug Tracker

Minimum Viable Product (MVP) Features

1. Bug Reporting:

 - Implement a bug report form in the web application

using React.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 08 ISSUE: 05 | MAY - 2024 SJIF RATING: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM32337 | Page 4

 - Enable users to include code snippets or screenshots

in their bug reports.

 - Set up a backend server using a programming

language like Node.js, and use a web framework like

Express to handle form submissions.

 - Create a database using tools like MongoDB to store

bug report data for CRUD operations (create, read,

update, delete).

 - Implement server-side validation to ensure the bug

report form collects necessary information and prevent

spam submissions.

2. Issue Assignment:

 - Create a user interface for project managers to

manually assign bugs to specific developers using

technologies like React.

3. Issue Tracking:

 - Design and develop a dashboard or user interface for

developers using frontend technologies like React.

 - Implement authorization and authentication using

Auth0 to restrict access to the bug tracker to authorized

users.

 - Allow users to view, update, and delete their own bug

reports.

 - Allow developers to view, update, and delete bugs that

have been assigned to them.

4. Collaboration:

 - Build a messaging system within the bug tracker using

technologies like WebSockets or real-time

communication libraries like Socket.IO.

5. Bug Closure:

 - Create a user interface for testers to close bugs once

they are verified, using frontend technologies like React.

 - Implement a background process or scheduler to

automatically close bugs after a set period of inactivity

using tools like Cron or Celery.

6. Reporting and Analytics:

 - Set up a reporting module using data visualization

libraries like D3.js or Chart.js, and integrate it into the bug

tracker dashboard.

 - Utilize data analysis tools like SQL queries to extract

meaningful insights from the bug tracker database and

generate comprehensive reports and analytics.

 - Use backend technologies like Node.js, to handle data

processing and serve the reports to the frontend.

Addon Features

1. Bug Reporting:

 - Use error tracking libraries like Sentry or LogRocket

to capture and log application errors automatically.

2. Issue Assignment:

 - Develop an algorithm to automatically assign bugs to

developers based on predefined criteria, using Python,

Java, or another suitable language.

 - Utilize the bug tracker's backend and database to

implement the assignment logic and update the bug's

assigned developer field accordingly.

3. Issue Tracking:

 - Integrate version control systems like Git into the bug

tracker to track code changes related to bug fixes.

 - Use Git hooks or Continuous Integration/Continuous

Deployment (CI/CD) tools to automate the process of

updating bug statuses based on code changes and

commits.

4. Collaboration:

 - Implement features to enable file attachments and

code snippets sharing in the messaging system, possibly

using file storage services like AWS S3 or Google Cloud

Storage.

5. Verification:

 - Develop automated testing scripts using testing

frameworks like Selenium, Jest, or PyTest to validate bug

fixes automatically.

 - Integrate Continuous Integration (CI) tools like

Jenkins, Travis CI, or CircleCI to automatically run tests

whenever code changes are committed to the repository.

 - Implement a mechanism in the bug tracker to allow

testers to mark bugs as "Verified" when they pass the

validation tests.

B. High Level Implementation

In the high-level implementation of the Bug Tracker, we

will utilize the MERN (MongoDB, Express.js, React,

Node.js) stack to build a robust and scalable system. This

stack provides the necessary tools and technologies to

develop a full-fledged bug tracking application.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 08 ISSUE: 05 | MAY - 2024 SJIF RATING: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM32337 | Page 5

Backend (Node.js and Express.js)

• Server Setup: Set up a Node.js server using

Express.js to handle the backend logic of the Bug

Tracker.

• Database Integration: Connect to a MongoDB

database to store bug reports, user data, and other

relevant information.

• Authentication and Authorization: Implement

user authentication and authorization using

libraries like Passport.js or JWT (JSON Web

Tokens) to ensure secure access to the

application.

• API Endpoints: Create API endpoints for bug

reporting, user management, bug assignment,

bug closure, and collaboration features.

• Middleware: Implement middleware for request

validation, error handling, and user

authentication.

• Real-Time Communication: Integrate

WebSockets or a real-time communication

library like Socket.IO for instant messaging and

collaboration.

• Background Process: Develop a background

process or scheduler (using tools like Cron or

Celery) to automatically close bugs after a

defined period of inactivity.

Frontend (React)

• User Interface Design: Create intuitive and user-

friendly interfaces for bug reporting, dashboard,

messaging, bug assignment, and bug closure

using React components.

• User Authentication: Implement user

authentication and registration flows for

accessing the Bug Tracker.

• Data Visualization: Utilize data visualization

libraries like D3.js or Chart.js to build reporting

and analytics interfaces.

• File Upload and Sharing: Enable file upload and

sharing features using suitable components and

libraries.

• Real-Time Messaging: Develop real-time

messaging interfaces using WebSocket or

Socket.IO for seamless communication among

team members.

• Automated Testing Integration: Integrate

automated testing scripts using testing

frameworks like Jest for validation of bug fixes.

• Version Control Integration: Connect the Bug

Tracker to version control systems like Git, track

code changes related to bugs, and automate bug

status updates based on code commits.

Deployment and DevOps

• Version Control (Git and GitHub): Use Git and

GitHub for version control and collaborative

development.

• Continuous Integration/Continuous Deployment

(CI/CD): Implement a CI/CD pipeline (e.g.,

Jenkins, Travis CI, CircleCI) to automate the

deployment process.

• DevOps Practices: Follow DevOps best practices

to ensure a streamlined and efficient development

and deployment workflow.

• Scalability: Design the application to be scalable,

allowing it to handle increased workloads as the

project grows.

• Data Security: Implement robust data security

measures to safeguard sensitive information and

user privacy.

• Support and Maintenance: Commit to providing

active support and regular updates to ensure the

Bug Tracker stays up-to-date with the latest

industry trends.

IV. RESULT ANALYSIS

A software development bug tracker is an essential tool

for managing and monitoring issues, defects, and

improvements in software projects. It helps development

teams keep track of reported problems and ensures they

are addressed efficiently. The analysis of a bug tracker

focuses on its features and the impact it has on the

development process and software quality.

Key Features and Their Significance:

1. Issue Tracking: The bug tracker allows users to create,

view, and manage issues. This includes bug reports,

feature requests, and other tasks related to the software. It

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 08 ISSUE: 05 | MAY - 2024 SJIF RATING: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM32337 | Page 6

ensures that issues are systematically documented and not

lost in email threads or chat conversations.

2. Assignment and Ownership: Issues can be assigned

to specific team members, ensuring clear responsibility

for problem resolution. This feature helps in

accountability and ensures that issues don't fall through

the cracks.

3. Priority and Severity: The bug tracker allows for

categorizing issues by priority and severity. This is crucial

for developers to focus on critical problems first, ensuring

that the most important issues are addressed promptly.

4. Status Tracking: Tracking the status of issues (e.g.,

open, in progress, resolved) provides transparency about

the progress of bug fixes and feature development. It aids

in project management and communication with

stakeholders.

5. Comments and Communication: Users can add

comments, screenshots, and additional information to

issues. This feature facilitates collaboration and detailed

discussions about problems and their solutions.

6. Version Control Integration: Integration with version

control systems, such as Git, allows for linking issues to

specific code commits. This helps in identifying when and

where an issue was introduced, aiding in efficient

debugging.

7. Customization: The bug tracker can be customized to

fit the specific workflow and processes of the

development team. This adaptability ensures that the tool

complements the team's existing practices.

Impact on Software Development:

1. Improved Issue Visibility: The bug tracker provides a

centralized location for tracking and managing issues.

This means that developers can quickly see the current

status of all reported problems, leading to faster response

times and issue resolution.

2. Efficient Resource Allocation: By categorizing issues

by priority and severity, development teams can allocate

their resources more efficiently. Critical issues that may

impact the software's stability or security can be

addressed with urgency.

3. Enhanced Collaboration: The tool's comment and

communication features facilitate collaboration among

team members and stakeholders. This transparent

communication streamlines issue resolution and keeps

everyone informed.

4. Continuous Improvement: Over time, data from the

bug tracker can be analysed to identify recurring issues,

common sources of defects, and areas of improvement in

the development process. This data-driven approach leads

to continuous enhancement of software quality.

5. Streamlined Development Workflow: Integration

with version control systems and customizable workflows

ensures that the bug tracker fits seamlessly into the

development process. It aids in maintaining a structured

and efficient workflow.

6. Satisfied Stakeholders: Clear and up-to-date

information on issue status and progress is beneficial for

keeping stakeholders informed and satisfied with the

software development process.

Limitations and Future Avenues:

While the bug tracking application presents a significant

stride in defect management, it is essential to

acknowledge its limitations. The limitations primarily

include the scope of implementation, potential technical

challenges, and the need for more extensive user testing

to validate the system's performance under varying

conditions.

Moreover, the future of bug tracking systems lies in the

incorporation of artificial intelligence and machine

learning to automate bug resolution and predict potential

defects. The enhancement of collaboration features and

further integration of user experience analysis tools

would elevate the application's performance in ensuring a

seamless bug management process.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 08 ISSUE: 05 | MAY - 2024 SJIF RATING: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM32337 | Page 7

V. CONCLUSION

 The bug tracking project presented in this research article

serves as a critical stride in addressing the challenges and

complexities encountered in managing defects within

web-based applications. The development and

implementation of an innovative bug tracking

application, as detailed throughout this study, underscore

the significance of a comprehensive and user-friendly

system in ensuring efficient defect management,

resolution, and software quality enhancement. This

conclusion encapsulates the key findings, insights, and

recommendations emerging from our research

endeavours.

Recapitulation of Key Findings:

Our study extensively explored the landscape of bug

tracking systems, delineating the strengths and limitations

of various existing platforms. Through a comparative

analysis, it became evident that the bug tracking

application developed in this project significantly bridges

the existing gaps, offering a unique set of features such as

public feedback management, data visualization, and

seamless bug resolution. Leveraging the backend and

frontend technologies, the system streamlined the bug

reporting process, enabling swift identification and

resolution of defects encountered across multiple

websites.

The innovative integration of Node.js, Express,

Mongoose, and React.js provided a robust foundation for

the bug tracking application. The implementation of a

scalable architecture and the utilization of modern

frameworks empowered the system to offer real-time data

tracking and responsive frontend design, ensuring an

optimal user experience.

Contributions to the Field:

This bug tracking project brings forth notable

contributions to the domain of software development and

project management. The research successfully

introduced a comprehensive application tailored for small

to medium-sized teams, enabling streamlined defect

tracking and resolution. The provision of customizable

and scalable solutions empowers diverse teams to tailor

the tool to their specific project needs. Additionally, the

data visualization features enhance decision-making

capabilities, offering deeper insights into technical stack

performances.

Conclusion and Final Remarks:

In conclusion, the bug tracking project outlined in this

research article serves as a testament to the growing

significance of advanced bug tracking systems in the

digital landscape. The comprehensive analysis,

development, and implementation of the bug tracking

application highlight the system's potential in

revolutionizing defect management in web-based

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 08 ISSUE: 05 | MAY - 2024 SJIF RATING: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM32337 | Page 8

applications. As software quality and efficient project

management remain central concerns in the domain, the

research offers substantial insights and a foundation for

future advancements in bug tracking systems.

REFERENCES

[1] Jungyeon Kim, Geunseok Yang, "Bug Severity Prediction Algorithm
Using Topic-Based Feature Selection and CNN-LSTM Algorithm", IEEE
Access, vol.10, pp.94643-94651, 2022.

[2] Omar I. Al-Bataineh, Leon Moonen, "Towards Extending the Range of
Bugs That Automated Program Repair Can Handle", 2022 IEEE 22nd
International Conference on Software Quality, Reliability and Security
(QRS), pp.209-220, 2022.

[3] Hao Yang, Yang Xu, Yong Li, Hyun-Deok Choi, "K-Detector:

Identifying Duplicate Crash Failures in Large-Scale Software Delivery",
2020 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), pp.1-6, 2020.

[4] Jianjun He, Ling Xu, Yuanrui Fan, Zhou Xu, Meng Yan, Yan Lei, "Deep

Learning Based Valid Bug Reports Determination and Explanation",
2020 IEEE 31st International Symposium on Software Reliability
Engineering (ISSRE), pp.184-194, 2020.

[5] Olga Sokolova, Sergey Kratov, "Platforms for joint development and
hosting of software and the example of their implementation in the FAP
SB RAS", 2020 International Conference Engineering Technologies and
Computer Science (EnT), pp.20-23, 2020.

[6] Sokratis Tsakiltsidis, Andriy Miranskyy, Elie Mazzawi, "On Automatic

Detection of Performance Bugs", 2016 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), pp.132-139,
2016.

[7] Laud Charles Ochei, Andrei Petrovski, Julian M. Bass, "Implementing the

Required Degree of Multitenancy Isolation: A Case Study of Cloud-
Hosted Bug Tracking System", 2016 IEEE International Conference on
Services Computing (SCC), pp.379-386, 2016.

[8] Yang Xu, Chao Liu, Yong Li, Qiaoluan Xie, Hyun-Deok Choi, "A
Method of Component Prediction for Crash Bug Reports Using
Component-Based Features and Machine Learning", 2023 IEEE
International Conference on Software Analysis, Evolution and
Reengineering (SANER), pp.773-777, 2023.

[9] Ning Chen, Sunghun Kim, "STAR: Stack Trace Based Automatic Crash
Reproduction via Symbolic Execution", IEEE Transactions on Software
Engineering, vol.41, no.2, pp.198-220, 2015.

[10] Michael Felderer, Armin Beer, "Using Defect Taxonomies for Testing
Requirements", IEEE Software, vol.32, no.3, pp.94-101, 2015.

IEEE conference templates contain guidance te

http://www.ijsrem.com/

