
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 10 | Oct - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM38332 | Page 1

Building Vanilla Layer Code in Customer Communication Management Tools

Renuka Kulkarni

Independent researcher, USA

Renukak12@gmail.com

Abstract

Customer Communication Management (CCM)

software tools help businesses create, manage, and

deliver personalized, multichannel communications

to their customers. These communications can

include various formats, such as invoices, statements,

marketing materials, notifications, emails, and

customer service correspondence. Building a Vanilla

Code Base is an effective strategy in large

organizations where different departments or regions

need similar but slightly different versions of

customer communications. The idea is to create a

foundational set of templates, workflows, and

components that can be used universally across

different regions or departments. From this base,

customizations can be layered on top for specific

regional or departmental needs.

Keywords

Customer Communication Management, code base,

reusability, scalability, Maintainability

Introduction

When we talk about big organizations that are spread

across multiple regions, i.e., supporting the business

across the globe or providing business to various

domains, These organizations, when communicating

to the outside world, ensure that key communication

structures (templates, workflows, etc.) are consistent

across all regions or departments. This reduces errors

and inconsistencies. In such scenarios, A Vanilla

Code Base is essential in modern software

development, particularly in large organizations with

multiple departments, regions, or teams that require

consistent, scalable, and maintainable solutions. The

idea behind a Vanilla Code Base is to create a core,

standardized foundation that can be easily extended

or customized to meet the specific needs of different

parts of the organization without reinventing the

wheel each time.

The main objective of the Vanilla code base is to

ensure that the system adapts to specific local

requirements and avoids code duplication. The

Vanilla Code Base concept revolves around creating

a foundational architecture that is both portable and

flexible.

Breakdown of architecture

Below is a breakdown of key principles and steps to

build such a codebase

Designing the systems

While designing the system, each requirement needs

to be broken down into independent, reusable

components. Each component should serve a specific

function, such as user data processing, masking

sensitive data, and business logic. This allows

developers to focus on one part of the system at a

time, making it easier to maintain. Another vital point

when designing a common code base is separable

utilizing that changes in one module shouldn’t

heavily impact others, facilitating easier updates and

modifications in the future. Another important aspect

is that code should be moldable, allowing for easy

integration of new features without adding extra

burden to the core system. Utilize methodologies

such that custom features can be added or modified

as needed.

http://www.ijsrem.com/
mailto:Renukak12@gmail.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 10 | Oct - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM38332 | Page 2

Reusability

Reusable templates such as bills, letters, emails, and

postcards should be generic enough to be applicable

across different use cases but flexible enough to be

customized as per the specific requirements of the

region or department. A typical data structure needs

to be maintained across the design to ensure no

structural changes in integration between the systems.

At the same time, data structures should allow adding

new sections or data items that might be needed while

customizing the vanilla code for customization.

System design and processes should be configurable

and flexible. A few processes can act as base

processes but should be easily updated by adding or

modifying logic and triggers.

Customizing the Vanilla code

It is critical that the base system remains unchanged

and customizations are implemented on top of it. This

can be achieved by allowing region-specific or

department-specific configurations, such as localized

workflows, data formats, or user interfaces while

keeping the core code untouched. An important point

that should be considered is that instead of going for

hardcoded code, more reference files and

configuration-based architecture should be adopted to

customize the code effortlessly.

Documentation and version controlling

Building version control ensures that the correct code

is checked out for regional development, reducing

redundancy and confusion while starting the

implementation of localization. Robust testing

strategies for base and localized code and supporting

documentation ensure that core and customizations

work correctly.

Generally, core systems are tested with mock data,

dummy system loads, and interfaces by stimulating

real implementation scenarios. When implementing

the vanilla code base for any regional customization,

ensuring the system can handle increasing amounts of

traffic or data without significant performance

degradation is essential.

Vanilla Set up in CCM

For CCM, the specific features that need to be

considered when building a vanilla code base are as

follows. Firstly, composition templates need to be

built so that they contain all the essential parts of

communication, e.g., In the case of print output for a

bank while coding, it should be built in such a way

that the template provides areas for customer address,

salutation, account summary, account transactions,

cheques should be included and create in such a way

that there should be minimal changes when

localization it made on the base template. Data files

should be ready to reuse as they allow the addition of

specific local fields. Standard output facilities such as

print and e-drivers should have required features

added so that development on print channels is none

or negligible. The critical step in building a vanilla

code base involves analyzing components that can be

reused and are flexible to make modifications.

When designing a template, Break down the template

into modular sections or blocks, such as the customer

address, salutation, account summary, account

transactions, and cheque details. This way, each

section can be modified independently without

affecting others. This also allows easy localization,

where only specific sections (like the salutation or

account summary) must be changed for different

languages or regions. Localization should ideally

only require changes to text content (e.g., for other

languages or country-specific legal requirements)

rather than structural changes to the template. To

ensure consistency, define a standard data file format

(such as XML, CSV, or JSON). The data structure

should be flexible enough to handle all required fields

and extensible for future needs. For generating

outputs like print and electronic documents (e.g.,

PDFs, statements, etc.), the code base should include

Print Output Generation and Electronic Output (E-

Drivers). As the system evolves, businesses might

need to add new channels (e.g., SMS, email). In such

cases, it is critical to ensure the codebase is modular

so the same template can be rendered for different

output channels with minimal development overhead.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 10 | Oct - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM38332 | Page 3

Advantages of using Valina code base

Below are the key advantages of using the Vanilla

layer code base in CCM.

Globalization and localization

For large organizations with a global presence,

localization (adapting the content for a specific

region) and internationalization (building flexibility

into the system to efficiently support various

languages, currencies, etc.) have become important.

A Vanilla code base allows for defining core

communication content that can be adapted to

regional differences, like languages, currencies, and

legal requirements.

Cost-Effectiveness

Reusing the same base code for different regions or

departments minimizes the need to create new

solutions from scratch. Customizations can be

applied on top of the Vanilla Code Base, making the

development process more efficient and cost-

effective. When a bug is found, fixes only need to be

applied once. Without a Vanilla Code Base, each

version of the code (for each region/department)

would require separate maintenance, increasing costs

and complexity. As business requirements change or

new features are added, updating a centralized code

base is more straightforward than dealing with

multiple customized versions of the same code. This

leads to fewer errors and more efficient updates.

Scalability

When new regions or departments are added, the only

item that needs to be analyzed is the localizations, as

the Vanilla Code Base provides a foundation that can

quickly be adapted. New teams can start working on

top of an established structure, reducing the ramp-up

time. A Vanilla Code Base is designed to be scalable,

allowing organizations to add new regions,

departments, or features without significantly

reworking the code. This makes it easier for the

company to grow or change without disrupting the

existing structure.

Organizational collaboration

A standard source code for multiple programs and

modules reduces complexity at all application

development and operation levels. It makes life easier

for all involved teams across the departments. As all

departments collaborate and work together to achieve

consistency, it reduces effort for development,

promotes rapid code development, and results in

simple deployment of updates and upgrades. This

approach ultimately strengthens the organization’s

ability to deliver a seamless customer experience

across multiple channels.

Consistent branding

As the same code is reused across various

departments/regional developments, reusability is

achieved, leading to centralized branding logic,

making it flexible, improving efficiency, ensuring

brand consistency, and, most importantly, creating a

base for all future branding needs. Therefore, Vanilla

code helps maintain brand consistency while

reducing complexity and maintenance costs.

It creates and maintains a unified brand identity and

message across all marketing channels by generating

a consistent customer experience, which helps to gain

customer trust and clarity is established with

customers, enabling them to recognize a brand

quickly.

Disadvantages of Vanilla code in CCM

Performance issues

Sometimes, even the Vanilla code cannot provide the

expected performance. CCM systems are typically

focused on creating and delivering customer

communications (e.g., statements, invoices,

marketing emails); some components may involve

graphics rendering (e.g., dynamic templates, digital

signatures, custom branding) or the use of specific

hardware capabilities (e.g., integrating with a

customer's mobile device camera or location

services). Apps built from a common codebase may

not always perform on all apps, particularly in

graphics-intensive applications or those requiring

considerable device hardware interaction.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 10 | Oct - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM38332 | Page 4

Longer Learning curves

While a vanilla codebase provides a common

foundation and a unified structure for Customer

Communication Management (CCM) applications, it

does introduce specific challenges, especially for

regional teams who need to implement and maintain

the codebase in a way that aligns with their local

requirements. The complexity of understanding the

core code and the coding methodologies used by the

central team can increase the learning curve for

regional teams.

Over Complex code

To achieve reusability, sometimes vanilla code

becomes too complex. As the code is complex, in a

few cases, making regional changes gets too

complicated to fit in existing designed methodologies

and conventions. This results in complex workflows,

higher deployment costs, and increased errors due to

the difficulty of fitting regional needs into the

standard design.

Lack of innovation

Sometimes, regional team developers can design a

more efficient workflow or logic than common code,

but regional teams are bound to use the base code,

which adds a barrier to use own logic. With the

limitation of using designated code, the team lacks

innovation. Also, the team usually gets occupied with

understanding the existing code and loses interest in

implementing new mythologies. As the standard

Vanilla gets older, it sometimes becomes obsolete

with the latest trends, making it even more costly for

organizations as the cost of adapting to new

technologies in existing frameworks is enormous.

Conclusion:

Using a vanilla codebase in Customer

Communication Management (CCM) brings

numerous benefits, including reusability,

standardization, and cost efficiency across various

regions and teams. Organizations can maintain

consistent communication strategies, streamline

workflows, and ensure alignment on coding

conventions and methodologies by establishing a

standard foundation. This reduces development time,

makes it easier to maintain, and minimizes errors

across multiple communication channels.

However, relying exclusively on a vanilla codebase

presents challenges. Over time, as the codebase

evolves to accommodate regional needs, it can

become increasingly complex, making regional

customizations, innovation, and adaptation to new

technologies more difficult. Regional teams may find

it challenging to implement more efficient or

innovative workflows, which can result in bypassing

the core system. Additionally, adapting it to new

trends and technologies can become costly as the

vanilla codebase ages.

Organizations should prioritize strategies such as

modular design, flexible customization, and

incremental updates to make the most of a vanilla

codebase while addressing these challenges.

Promoting cross-functional collaboration and

regularly updating the codebase will help avoid

stagnation and ensure the CCM system remains

adaptable, scalable, and innovative.

In the end, a balanced approach preserving a strong

core system while allowing for regional flexibility

and continuous adaptation to new trends can help

organizations maximize the potential of their CCM

strategy, ensuring both efficiency and long-term

success.

References:

[1]Nikhil. Bhargav.” Vanilla Software and

Programming”.baeldung.https://www.baeldung.com/

cs/vanilla-meaning.(accessed Jul. 5, 2024)

[2]Avinash. Shivankar. ”Implementing Vanilla ERP

Systems: Factors to consider in strategy, business

alignment & customization.” .batchmaster.

https://www.batchmaster.co.in/wp-

content/themes/engitech/download/implementing-

vanilla-erp-systems-ebook.pdf.(accessed Jul. 6,

2024)

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 10 | Oct - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM38332 | Page 5

[3]”Vanilla Implementation of Oracle PDF”scribd .

https://www.scribd.com/document/289649081/Vanill

a-Implementation-of-Oracle-pdf.(accessed Jul.26,

2024)

[4]"Implementing ERP Systems”. ques10.

https://www.ques10.com/p/48195/implementing-

erp-systems-1/.(accessed Jun. 16, 2024)

[5]”What does Vanilla mean in software

development?”. aerion.

https://aerion.com.au/wiki/what-does-vanilla-mean-

in-software-development/.(accessed Aug. 14, 2024)

[6]”thatsoftwaredude”.

Thatsoftwaredude.https://www.thatsoftwaredude.co

m/content/6343/the-benefits-of-coding-in-vanilla-

javascript. (accessed Jul. 6, 2024)

[7]”Common Codebase vs. Separate Codebase“.

Insights.https://insights.daffodilsw.com/blog/commo

n-codebase-vs.-separate-codebase.(accessed Aug. 10,

2024)

[8]”Advantages and Disadvantages of using Shared

Code from the Developers Perspective: A Qualitative

Study “.

Researchgate.https://www.researchgate.net/publicati

on/304375879_Advantages_and_Disadvantages_of_

using_Shared_code_from_the_Developers_Perspecti

ve_A_qualitative_study/link/5772e31608aeeec3895

4163b/download?_tp=eyJjb250ZXh0Ijp7ImZpcnN0

UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB

1YmxpY2F0aW9uIn19.(accessed Aug. 16, 2024)

http://www.ijsrem.com/
https://aerion.com.au/wiki/what-does-vanilla-mean-in-software-development/
https://aerion.com.au/wiki/what-does-vanilla-mean-in-software-development/
https://insights.daffodilsw.com/blog/common-codebase-vs.-separate-codebase

