
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 05 | May - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM13921 | Page 1

Car Chase Game: Aegis from Foe

Prof. M.K.Vairalkar Riya Phulewar Sahil palandurkar Ritik Shaniware

Professor dept. computer
science engineering

dept. computer science
engineering

dept. computer science
engineering

dept. computer science
engineering

Govindro wanjari college
of engineering &

technology

Govindro wanjari college of
engineering &

technology

Govindro wanjari college
of engineering &

technology

Govindro wanjari college of
engineering &

technology

Nagpur, India Nagpur, India Nagpur, India Nagpur, India

cvairalkar@gmail.com riyaphulewar1804@gmail.com alandurkasahil@gmail.com ritikshaniware15@gmail.com

Abstract— This Bachelor thesis describes a case study , where

we are focusing on developing a car chasing game , using a

process upon agile development; an evolutionary development

method.

The thesis will cover implementation of graphics, physics

engine.

In the end , our case study will show that this development

process was an appropriate choice for our game development

project.

Keywords — software application game development

I. INTRODUCTION

 Developing software application is a time-consuming

process, and with time-consuming processes come high costs.

During the last years, several software development

methodologies often known as agile software development,

have become widely used by software developers to address

this issue .Many different development methodologies can be

more or less good , depending of the task and application type.

One of the software development methodologies is the

evolutionary software method , which as the name hints ,takes

on an evolutionary approach to the problem, and allows the

project to evolve through different stages of the project. Our

case study will show how well this develop a car chasing

game .Some requirements for the computer game were given

from the beginning, such as

3D graphics – The game must contain 3D models, and render

these in the game. 3D environments were never a

requirement, and platform games with 2D environment could

still open up for 3D objects.

II. PROBLEM STATMENT

 The game result must impress whoever plays the game .

It should last long and make the players come back and play

it over and over again.

Working with these requirements, we decided to use Unity 3D

as our platform to challenge for the project group , since all

had none or little experience in modelling ,spending time

learning how to model proper for our game Working with

these requirements, we decided to use Unity 3D as our

platform to develop our 3D game with. This decision was

made with regard to that the platform had many in-built tools

and provided a good framework for us to get started with the

development as fast as possible. The fact that Unity 3D also

used javascript as development language was also in

consideration, since we wanted to learn this newly developed

javascript language.

.

III. THE PRPOSED SYSTEM

 In this project, we were left free to decide what type of

game we wanted to develop. The suggestion was that a racing

game would be suitable, since such a game usually do not

depend on advanced assets, e.g. animated models. After some

brainstorming, it was decided that a racing game should be

developed.

Prasanna Indurkar Urvesh Rahate Kunal Shende

dept. computer science
engineering

dept. computer science
engineering

dept. computer science
engineering

Govindro wanjari college of
engineering &

technology

Govindro wanjari college of
engineering &

technology

Govindro wanjari college
of engineering &

technology

Nagpur, India Nagpur, India Nagpur, India

prasannaindurkar@gmail.com urveshrahate@gmail.com kunalshende@gmail.com

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 05 | May - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM13921 | Page 2

Our first step was to collect all the ideas from all the members

of the group and if possible discuss and combine them. And

the final solution to our question was developing a car chase

game in which there will be given time limit and till the

completion of the time player has to defend their car from the

police cars and if any one of the police car collides with

players car then the game will be over. After this we decided

to add some exciting levels

IV. MODEL OF SOFTWARE BASED GAME

A software process model

A software process model is a theoretical philosophy that

describes the best way of developing software. Based on

one or several models, a software process is formed

providing guidance on how to operate. A software

process model may also be described as an abstract

representation of a soft-ware process. The concept of the

process model is similar to an abstract java class, which

cannot be instantiated, but it can be implemented by

another class, thus providing basic guidelines for that

other class.

A model may for example demand customer

involvement, but it does not state exactly how. A process

implementing that model should involve the customer

in the process’ activities, but is free to choose how.

There is not only one type of process model, but two.

The first one is the most common, and described above.

The second type of process model is called a process

paradigm, which is a model even more general than an

ordinary process model. Such a model does not hold any

details on how the activities that lead to the completion of

a project should be performed, but what it does hold is

basic guidelines of how to develop software, and

assumptions about what sort of project could benefit from

implementing a particular model. With this in regard, one

can conclude that a process paradigm provides a

framework that may be adapted to form a process which

suits a particular project. There are three major process

paradigms that are commonly used today in software

engineering practice; the waterfall model, component-

based software engineering and evolutionary

development.

A. The Waterfall Model

The Waterfall Model is recommended for large and complex

systems that have a long life-time2. Some systems which
carry these attributes are also critical systems. This means that

if a fault would occur, it may result in:

• Threat to human life (death or injury)

• Economic loss

• Environmental damage

It is believed that the waterfall model would be an appropriate
choice when developing a critical system, since the model

emphasizes on thoroughness.

The basic concept is to take all the activities and treat them

separately. One activity is always followed by another, in the
same way water travels down some falls. This description

becomes even more obvious when looking at a visualization

of the model.

V. ADVANTAGES

1. Requirements definition:

All requirements on the system are found by talking to

system users. Example of requirements can be services,

constraints and goals, such as “We want a webpage that

colour-blind people can enjoy”.

2. System and software design:

In this activity, the overall architecture of the system is

established.

3. Implementation and unit testing:

The software is implemented in units which also are

tested.

4. Integration and system testing :

The units are merged together into a complete system.

Further testing is required.

5. Operation and maintenance:

The system is delivered to the customer and put into

operation.

“Bugs” are almost always found, and therefore the system

required bug-fixing and maintenance.

In each of the activities described above, one or several

documents are produced. The idea is not to start on a new

activity until the documents belonging to the previous

activity is signed off, but in practice, this is not how it is

done. Instead most of the activities overlap and all the

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 05 | May - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM13921 | Page 3

documents feed information to the different activities.

Although these documents provide a good overlook

VI. ALGORITHM

A. We create two lists – Open List and Closed List

I. Initialize the open list

II. Initialize the closed list put the starting node on

the open list (you can leave its f at zero) III. while

the open list is not empty

1. find the node with the least f on the

open list,

call it "q"

2. pop q off the open list

3. generate q's 8 successors and set their

parents to q

4. for each successor

b. if successor is the goal, stop search

c. else, compute both g and h for

successor successor.g = q.g + distance

between successor

IV. and q successor.h = distance from goal to

successor (This can be done using many ways,

V. Manhattan, Diagonal and Euclidean

Heuristics)

VI. successor.f = successor.g + successor.h

a. if a node with the same position as

successor is in the OPEN list which has

a lower f than successor, skip this

successor

VII. iV) if a node with the same position as

successor is in the CLOSED list which has a

lower f than successor, skip this successor

VIII. otherwise, add the node to the open list end

(for loop) e) push q on the closed list end

(while loop)

B. User Interface

File > New Project

We don’t have to import any of the packages at this point, but

do specify the save to location in the dialog window. We kept

all our project related assets in this location to avoid missing

files and broken links later in the game development process.

File > Save Scene as…

User Interface Components:

1. Scene: This is where you will place any visual assets in

your Unity environment. It will update in realtime when

you are previewing the game. Note the manipulator on

the top right; this allows you to switch between a number

of standard views. We are currently in the perspective

view (toggle between isometric (2D) and perspective

(3D)). Although this doesn't matter too much, it allows

us to view our scene with a vanishing point, which is the

standard way Unity games will display.

2. Game: When you're not actively running the game, it

will show a rendering of how the game will look,

ignoring graphical effects that need to be computed at

run-time, from the point of view of the main camera.

When you’re previewing the game, you'll be playing

through this window. Since our scene is currently empty,

all this window is showing is the background color.

3. . Hierarchy: This lists all the objects in the currently

loaded scene, and any children they may have. Children

are objects that can be thought of as subordinate to the

parent object; wherever the top object moves, they'll

follow, keeping the current offset they have to this

object. This is an important concept for Unity beginners

to understand; we'll cover it more in detail later and in

the workshops.

4. Project/Assets view: This is a list of all custom assets

for our game, including graphical assets, sound, scripts

(more on these later), prefabs (pre- assembled game

objects), and much more. Our current game is currently

using only one empty scene (titled “myFirstScene”).

5. Inspector: Since we currently don't have any objects

selected in the Hierarchy or the Project/Assets view, it’s

completely blank. The inspector allows us to look at and

tweak individual settings of various game objects and

assets, as well as adjust some global settings. The

Inspector is content-sensitive and changes its parameters

based on which game object/asset is selected. This is also

a place to show you your project settings and

preferences by choosing them from the Edit menu.

6. Graphical icons for moving the scene and its contents

:The hand allows us to pan around the scene; when

combined with other scene camera controls, Unity

becomes very easy to navigate (see below). The icon on

its right, which looks like four arrows, allows you to

move a selected object around. We call this transforming

the object. The next icon

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 05 | May - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM13921 | Page 4

Level 1 – Dessert

 Level 2 – snow Land

Level 3 – Evergreen Forest(Day)

Aegis from foe, a car chase game using Unity

Software, and C# language.

 The game’s physics, camera control, and movement

along with background and levels, all of these have

been explained in details, with the help of slides

VIII. ACKNOWLEDGMENT

 We present to you the project paper on Car

Chase Game : Aegis From Foe .We feel very much

delighted in expressing sense of gratitude to our Project guide

Prof.M.K.Vairalkar, for his timely help during the

presentation of the project and for their constant

encouragement and valuable guidance. The development of

our project would have been impossible without the firm

support of our guide.

IX. REFERENCES

 We have gone through certain books, done some research work using
internet, understanding the technologies being used in our project work.

The following references are

• http://unity3d
.com/support/documentation/Components/class-

Texture2D.html

• http://unity3d .com/learn/tutorials/modules

• http://unity3d .com/learn

• http://catlikecoding.com>Catlike Coding>Unity

• http://unity3dstudent.com/

• http://cgcookie.com/unity

.

allows for rotation of the object, and the final one

allows for uniform scaling of the object .

7. Playback bar. This allows us to play, pause, and

stop running our game in the Unity editor. This is

the quickest and easiest way to test and tweak the

game .

C. O ur game levels

Level 4 – Evergreen Forest(Night)

VII. C O NCLUSION

http://www.ijsrem.com/

