

Characterization of µ**- R₁ Spaces

R. Saranya

Assistant Professor, Sri Ramakrishna College of Arts & Science for Women – Coimbatore Email id : tsrsaranya@gmail.com

ABSTRACT: In this paper we introduce $\mu^{**}R_1$ - spaces and we study some characterization of $\mu^{**}R_1$ - spaces. We analyse the relation between μ^{**} -closed sets with already existing closed sets.

KEYWORDS: μ^{**} -closed sets, μ^{**} -open sets, μ^{**} -closure, μ^{**} -R_o spaces.

I INTRODUCTION

Levine [7] introduced generalized closed sets (briefly g-closed sets) in topological spaces and studied their basic properties. R. Devi [4] introduced and studied μ^* -closed sets. Veerakumar [10] introduced g*-closed sets in topological spaces and studied their properties. Pauline Mary Helan [8] introduced and studied g** -closed sets in topological spaces. The aim of this paper is to introduce a $\mu^{**}R_1$ - spaces and we investigate some characterization of $\mu^{**}R_1$ - spaces.

II PRELIMINARIES

Definition 2.1 A subset A of a topological space (X,τ) is called

- (i) a semi-open set if $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A)) \subseteq A$,
- (ii) a preopen set if $A \subseteq int(cl(A))$ and a preclosed set if $cl(int(A)) \subseteq A$,
- (iii) an α open set if A \subseteq int(cl(int(A))) and an α -closed set if cl(int(cl(A))) \subseteq A,
- (iv) a semi-preopen set if $A \subseteq cl(int(cl(A)))$ and a semi-preclosed set if $int(cl(int(A))) \subseteq A$
- (v) a regular open set if A=int(cl(A)) and a regular closed set if cl(int(A))=A.

The semi-closure (resp.preclosure , semi-preclosure) of a subset A of a space (X,τ) is the intersection of all semi-closed(resp. preclosed , α -closed, semi-preclosed) sets that contain A and is denoted by scl(A) (resp.pcl(A), Acl(A), spcl(A)).

Definition 2.2 A subset A of a space (X,τ) is called

(i) a generalized closed (briefly g-closed) set[10] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X,τ) ; the compliment of a g-closed set is called a g-open set,

(ii) a semi-generalized closed (briefly sg-closed) set[2] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semiopen in(X, τ); the compliment of sg-closed set is called a sg-open set,

(iii) a generalized semi-closed (briefly gs-closed) set if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ)

(iv) an α -generalized closed (briefly α g-closed) set[3] if α cl(A) \subseteq U whenever A \subseteq U and U is α -open in (X, τ),

(v) a generalized α -closed (briefly g α -closed) set [3] if α cl(A) \subseteq U whenever A \subseteq U and U is α -open in (X, τ)

(vi) a g*- closed set [10] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X,τ) ,

(vii) a g^{**} -closed set [8] if cl(A) \subseteq U whenever A \subseteq U and U is g^{*} -open in (X, τ),

(viii) a generalized preclosed(briefly gp-closed) set if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X,τ) ,

(ix) a generalized semi-preclosed (briefly gsp-closed) set [5] if $spcl(A)\subseteq U$ whenever $A\subseteq U$ and U is open in(X, τ)

(x) a generalized pre regular closed (briefly gpr-closed) set [6] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X,τ) ,

(xi) a g[#]-closed set [11] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is αg -open in (X, τ) ,

(xii) a generalized α^{**} -closed (briefly $g\alpha^{**}$ -closed) set [3] if $\alpha cl(A) \subseteq int(cl(U))$ whenever $A \subseteq U$ and U is α -open in (X, τ),

(xiii) a μ^* -closed set [4] if cl(A) \subseteq U whenever A \subseteq U and U is $g\alpha^{**}$ -open in (X, τ),

(xiv) a g*s- closed set [9] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is gs-open in (X,τ) .

The compliment of the above mentioned sets are called their respective open sets.

III .µ**- R1 Spaces

Definition 3.1. A topological space (X, τ) is said to be μ^{**} -R₁ if for x, y in X with μ^{**} -Cl({x}) $\neq \mu^{**}$ -Cl({y}), there exist disjoint μ^{**} -open sets U and V such that μ^{**} -Cl({x}) is a subset of U and μ^{**} -Cl({y}) is a subset of V.

Theorem 3.1: If (X, τ) is $\mu^{**}-R_1$, then (X, τ) is $\mu^{**}-R_0$.

Proof: Let U be μ^{**} -open and $x \in U$. If $y \notin U$, then since $x \notin \mu^{**}$ -Cl($\{y\}$), μ^{**} -Cl($\{x\}$) $\neq \mu^{**}$ Cl($\{y\}$). Hence, there exists a μ^{**} -open v_y such that μ^{**} -Cl($\{y\}$) $\subset v_y$ and $x \notin v_y$, which implies $y \notin \mu^{**}$ -Cl($\{x\}$). Thus μ^{**} -Cl($\{x\}$) \subset U. Therefore (X, τ) is μ^{**} -R0.

Theorem 3.2: A topological space (X, τ) is μ^{**} -R₁ if and only if for x, $y \in X$, μ^{**} - Ker({x}) $\neq \mu^{**}$ -Ker({y}), there exist disjoint μ^{**} -open sets U and V such that μ^{**} -Cl({x}) \subset U and μ^{**} -Cl({y}) \subset V. **Proof :** It follows from Definition.

Theorem 3.3 : If (X, τ) is $\mu^{**}-T_2$, then (X, τ) is $\mu^{**}-R_1$. **Proof.** Since X is $\mu^{**}-T_2$, then X is $\mu^{**}-R_1$. If x, y \in X such that $\mu^{**}-Cl(\{x\}) \neq \mu^{**}-Cl(\{y\})$, then $x \neq y$. There exists disjoint μ^{**} -open sets U and V such that $x \in U$ and $y \in V$; hence $\mu^{**}-Cl(\{x\}) = \{x\} \subset U$ and $\mu^{**}-Cl(\{y\}) = \{y\} \subset V$. Hence X is $\mu^{**}-R_1$.

Definition 3.2: A topological space (X, τ) is called $\mu^{**}-T_2$ if for any distinct pair of points x and y in X, there exist μ^{**} -open sets U and V in X containing x and y, respectively, such that $U \cap V = \emptyset$.

Theorem 3.4. If (X, τ) is $g\mu^{**}-T_2$, then (X, τ) is $\mu^{**}-R_1$.

Proof. Since X is μ^{**} - T_2 , then X is μ^{**} - R_1 . If x, y \in X such that μ^{**} -Cl({x}) $\neq \mu^{**}$ Cl({y}), then x \neq y. There exists disjoint μ^{**} -open sets U and V such that x \in U and y \in V; hence μ^{**} -Cl({x}) = {x} \subset U and μ^{**} -Cl({y}) = {y} \subset V. Hence X is μ^{**} -R1.

Theorem 3.5. For a topological space (X, τ) , the following statements are equivalent :

(1) (X, τ) is μ^{**} -R₁;

(2) If x, y \in X such that μ^{**} -Cl({x}) $\neq \mu^{**}$ -Cl({y}), then there exists μ^{**} -closed sets

 F_1 and F_2 such that $x \in F_1, \, y \notin F_1$, $y \in F2$, $x \notin F_2$ and $X = F_1 \cup F_2$.

Proof. (1) \Rightarrow (2) : Let x, y \in X such that μ^{**} -Cl({x}) $\notin \mu^{**}$ -Cl({y}), and hence x \neq y. Therefore, there exists disjoint μ^{**} -open sets U₁ and U₁such that x $\in \mu^{**}$ -Cl({x}) \subset U₁ and y $\in \mu^{**}$ -Cl({y}) \subset U₁. Then F₁ = X - U₂ and F₂ = X - U₁ are μ^{**} -closed sets such that x \in F₁, y \notin F₁, y \in F₂, x \notin F₂ and X = F₁ \cup F₂. (2) \Rightarrow (1) :Suppose that x and y

are distinct points of X, such that μ^{**} -Cl({x}) $\notin \mu^{**}$ Cl({y}). Therefore there exist μ^{**} -closed sets F₁ and F₂ such that $x \in F_1$, $y \notin F_1$, $y \in F_2$, $x \notin F_2$ and $X = F_1 \cup F_2$. Now, we set $U_1 = X - F_2$ and $U_2 = X - F_1$, then we obtain that $x \in U_1$, $y \in U_2$, $U_1 \cap U_2 = \emptyset$ and U_1 , U_2 are μ^{**} -open. This shows that (X, τ) is μ^{**} - T₂. Therefore (X, τ) is μ^{**} - R₁.

Theorem 3.6. A topological space (X, τ) is μ^{**} - R_1 if and only if for $x, y \in X$, $bKer(\{x\}) \neq \mu^{**}$ -Ker $(\{y\})$, there exist disjoint μ^{**} -open sets U and V such that μ^{**} - $Cl(\{x\}) \subset U$ and μ^{**} - $Cl(\{y\}) \subset V$. **Proof.** Proof follows from the definition.

Definition 3.3: A point x of a topological space (X, τ) is a μ^{**} - θ -accumulation point of a subset $A \subset X$, if for each μ^{**} -open U of X containing x, μ^{**} -Cl(U) $\cap A \neq \emptyset$. The set μ^{**} -Cl(A) of all μ^{**} - θ -accumulation points of A is called the μ^{**} - θ -closure of A. The set A is said to be μ^{**} - θ -closed if μ^{**} -Cl $\theta(A) = A$. Complement of a μ^{**} - θ -closed set is said to be μ^{**} - θ -open.

Lemma 3.1: For any subset A of a topological space (X, τ) , μ^{**} -Cl $(A) \subset \mu^{**}$ -Cl $\theta(A)$.

Lemma 3.2: Let x and y are points in a topological space (X, τ) . Then $y \in \mu^{**}$ -Cl $\theta(\{x\})$ if and only if $x \in \mu^{**}$ -Cl $\theta(\{y\})$. **Theorem 3.7.** A topological space (X, τ) is μ^{**} - R_1 if and only if for each $x \in X$, μ**- $Cl(\{x\}) = \mu^{**} - Cl\theta(\{x\}).$ **Proof:** Necessity: Assume that X is μ^{**} - R₁ and $y \in \mu^{**}$ -Cl $\theta(\{x\})-\mu^{**}$ -Cl $(\{x\})$. Then there exists a μ^{**} -open set U containing y such that μ^{**} -Cl(U) $\cap \{x\} \neq \emptyset$ but $U \cap \{x\} =$ Ø. Thus μ^{**} -Cl{y}) \subset U, μ^{**} -Cl({x}) \cap U = Ø. Hence μ^{**} -Cl({x}) $\neq \mu^{**}$ -Cl({y}). Since X is μ^{**} -R₁, there exist disjoint μ^{**} -open sets U₁ and U₂ such that μ^{**} -Cl({x}) \subset U₁ and μ^{**} -Cl({y}) \subset U₂. Therefore X – U₁ is a μ^{**} -closed μ^{**} -neigbourhood at y which does not contain x. Thus $y \notin \mu^{**}$ -Cl $\theta(\{x\})$. This is a contradiction. Sufficiency: Suppose that μ^{**} -Cl({x}) = μ^{**} -Cl θ ({x}) for each $x \in X$. We first prove that X is μ^{**} - R₀.Let x belong to the μ^{**} -open set U and y Since μ^{**} -Cl $\theta(\{y\}) = \mu^{**}$ Cl $(\{y\}) \subset X - U$, we have $x \notin \mu^{**}$ -Cl $\theta(\{y\})$ and €U. $y \notin \mu^{**}$ -Cl $\theta(\{x\}) = \mu^{**}$ Cl $(\{x\})$. It follows that μ^{**} -Cl $(\{x\}) \subset U$. Therefore (X, τ) is μ^{**} - R₀. Now, let a, b \in

X with μ^{**} -Cl({a}) $\neq \mu^{**}$ -Cl({b}). (X, τ) is μ^{**} -T₁ and $b \notin \mu^{**}$ -Cl θ ({a}) and hence there exists a μ^{**} -open set U containing b such that a $\notin \mu^{**}$ -Cl(U). Therefore, we obtain $b \in U$, a $\in X - \mu^{**}$ -Cl(U) and U $\cap (X - \mu^{**}$ -Cl(U)) = \emptyset . This shows that (X, τ) is μ^{**} -T₂. It follows that (X, τ) is μ^{**} -R₁. **Theorem 3.8:** For a topological space (X, τ) the following are equivalent: (1) (X, τ) is μ^{**} -R₁; (2) (X, τ) is μ^{**} -symmetric.

Proof: (1) \Rightarrow (2). If $x \notin \mu^{**}$ -Cl({y}). Then there exist a μ^{**} -open set U containing x such that $y \notin U$. Hence $y \notin \mu^{**}$ -Cl(U). The converse is similarly shown. (2) \Rightarrow (1) Let U be a μ^{**} -open set and $x \in U$. If $y \notin U$, then $x \notin \mu^{**}$ -Cl({y}) and hence $y \notin \mu^{**}$ -Cl({x}) This implies that μ^{**} -Cl({x}) \subset U.Hence (X, τ) is μ^{**} -R₁ **Theorem 3.9:**For a topological space (X, τ), the following statements are equivalent: (1) (X, τ) is a μ^{**} -R₁ space; (2) If x, $y \in X$, then $y \in \mu^{**}$ -Cl({x}) if and only if every net in X μ^{**} converging to $y \mu^{**}$ -converges to x. **Proof:** (1) \rightarrow (2): Let x, $y \in X$ such that $y \in \mu^{**}$ -Cl({x}). Suppose that {Xa}a $\in A$ be a net in X such that {Xa}a $\in A \mu^{**}$ -converges to y. Since $y \in \mu^{**}$ -Cl({x}), we have μ^{**} -Cl({x}) = μ^{**} -Cl({y}). Therefore $x \in \mu^{**}$ -Cl({y}). This means that {Xa}a $\in A \mu^{**}$ -converges to x. Conversely, let x, y $\in X$ such that every net in X μ^{**} -converging to y μ^{**} -converges to x. Then $x \in \mu^{**}$ -Cl({y}) .we have

 $\mu^{**}-Cl(\{x\}) = \mu^{**}-Cl(\{y\}).$ Therefore $y \in \mu^{**}-Cl(\{x\}). (2) \rightarrow (1)$: Assume that x and y are any two points of X such that ge-Cl($\{x\}$) \cap geCl($\{y\}$) $\neq \emptyset$. Let $z \in \mu^{**}-Cl(\{x\}) \cap \mu^{**}-Cl(\{y\})$. So there exists a net $\{x\alpha\}\alpha\in\wedge \text{ in }\mu^{**}Cl(\{x\})$ such that $\{x\alpha\}\alpha\in\wedge \mu^{**}$ -converges to z. Since $z \in \mu^{**}-Cl(\{y\})$, then $\{x\alpha\}\alpha\in\wedge \mu^{**}$ -converges to y. It follows that $y \in \mu^{**}-Cl(\{x\})$. By the same token we obtain $x \in \mu^{**}-Cl(\{y\})$. Therefore $\mu^{**}-Cl(\{x\}) = \mu^{**}-Cl(\{y\})$ and (X, τ) is $\mu^{**}-R_1$.

4. OTHER PROPERTIES OF $\mu^{**}\text{-}OPEN$ SETS

Definition 4.1: A subset A of a topological space X is called a $\mu^{**}D$ -set if there are two U, $V \in \mu^{**}o(X, \tau)$ such that $U \neq X$ and A=U-V. One can observe that every μ^{**} -open set U different from X is a $\mu^{**}D$ -set if A = U and $V = \emptyset$.

Definition 4.2: A topological space (X, τ) is called: (i) $\mu^{**}D_0$ if for any distinct pair of points x and y of X there exists a $\mu^{**}D$ -set of X containing y but not x. (ii) $\mu^{**}D_1$ if for any distinct pair of points x and y of X there exists a $\mu^{**}D$ -set of X containing x but not y and a $\mu^{**}D$ - set of X containing y but not x. (iii) $\mu^{**}D_1$ if for any distinct pair of points x and y of X there exists a $\mu^{**}D$ -set of X containing x but not y and a $\mu^{**}D$ - set of X containing y but not x. (iii) $\mu^{**}D_2$ if for any distinct pair of points x and y of X there exists disjoint $\mu^{**}D$ -sets G and E of X containing x and y, respectively. (iv) $\mu^{**}-T_0$ if for any distinct pair of points in X, there is a μ^{**} -open set containing one of the points but not the other.

Remark 4.1: (i) If (X, τ) is μ^{**} - T_i , then it is μ^{**} - $T_i - 1$, i = 1, 2. (ii) If (X, τ) is μ^{**} - T_i , then (X, τ) is μ^{**} - D_i , i = 0, 1, 2. (iii) If (X, τ) is μ^{**} - D_i , then it is μ^{**} - $D_i - 1$, i = 1, 2.

Theorem 4.1: For a topological space (X, τ) the following statements are true: (1) (X, τ) is μ^{**} - D₀ if and only if it is μ^{**} - T₀. (2) (X, τ) is μ^{**} - D₁if and only if it is μ^{**} - D₂.

Proof:(1) We prove only the necessity condition since the sufficiency condition is stated in Remark 4.1(ii). Necessity. Let (X, τ) be μ^{**} - D₀. Then for each distinct pair x, $y \in X$, at least one of x, y, say x, belongs to a $\mu^{**}D$ -set G but $y \notin G$. Let $G = U_1 \setminus U_2$ where $U_1 \neq X$ and $U_1, U_2 \in \mu^{**}O(X, \tau)$. Then $x \in U_1$, and for y $\notin G$ we have two cases: (a) $y \notin U_1$; (b) $y \in U_1$ and $y \in U_2$. In case (a), U1 contains x but not y; In case (b), U2 contains y but not x. Hence X is μ^{**} - T₀. (2) Sufficiency. Remark 5.1(iii). Necessity. Let X be a $\mu^{**} - D_1 \text{ topological space. Then for each distinct pair x, y \in X , we have } \mu^{**}D \text{ -sets } G_1, G_1 \text{ such that } x \in G_1, y \notin G_1; y \in G_2, x \notin G_2. \text{ Let } G_1 = U_1 \setminus U_2, G_2 = U_3 \setminus U_4. \text{ From } x \notin G_2, we have either x \notin U_3 \text{ or } x \in U_3 \text{ and } x \in U_4. \text{ Now we consider the following two cases separately (1) } x \notin U_3. \text{ From } y \notin G_1 \text{ we have two subcases:} (a) y \notin U_1. \text{ From } x \in U_1 \setminus U_2 \text{ we have } x \in U_1 \setminus (U_2 \cup U_3) \text{ and from } y \in U_3 \setminus U_4 \text{ we have } y \in U_3 \setminus (U_1 \cup U_4) \text{ .}$ Therefore, $(U_1 \setminus (U_2 \cup U_3)) \cap (U_3 \setminus (U_1 \cup U_4) = \emptyset. \text{ (b) } y \in U_1 \text{ and } y \in U_2. \text{ We have } x \in U_1 \setminus U_2, y \in U_2.$ $(U_1 \setminus U_2) \cap U_2 = \emptyset. (2) x \in U_3 \text{ and } x \in U_4.$ We have $y \in U_3 \setminus U_4, x \in U_4. (U_3 \setminus U_4) \cap U_4 = \emptyset.$ From the discussion above we know that the space X is $\mu^{**} - D_2.$

Theorem 4.2: For a μ^{**} -T₀ topological space (X, τ) each pair of distinct points x, y of X, μ^{**} -Cl({x}) $\neq \mu^{**}$ -Cl({y}).

Proof:Let x, y be any two distinct points of X. Since, X is μ^{**} -T₀, there exists a μ^{**} - open set G containing x or y, say x but not y. Then G^C is a μ^{**} -closed set which does not contain x but contains y. Since μ^{**} -Cl({y}) is the smallest μ^{**} -closed set containing y, Clb({y}) \subset G^C, and so x $\notin \mu^{**}$ -Cl({y}). Consequently μ^{**} -Cl({x}) $\neq \mu^{**}$ -Cl({y}).

Theorem 4.3: A topological space X is μ^{**} -T₂ if and only if the intersection of all μ^{**} -closed μ^{**} -neighbourhood of each point of X is reduced to that point.

Proof: Necessity: Let X be μ^{**} -T₂and $x \in X$. Then for each $y \in X$ which is distinct from x, there exist μ^{**} open sets G and H such that $x \in G$, $y \in H$ and $G \cap H = \emptyset$. Since $x \in G \subset H^C$, hence H^C is a μ^{**} -closed μ^{**} neighbourhood of x to which y does not belong. Consequently, the intersection of all μ^{**} -closed μ^{**} neighbourhood of x is reduced to $\{x\}$. Sufficiency: Let x, $y \in X$ and $x \neq y$. Then by hypothesis
there exists a μ^{**} -closed μ^{**} neighbourhood U of x such that $y \notin U$. Now there is a μ^{**} open set G such that $x \in G \subset U$. Thus G and G^C are disjoint μ^{**} -open sets containing x
and y respectively. Hence X is μ^{**} -T₂.

Definition 4.3: A function $f: (X, \tau) \to (Y, \sigma)$ is μ^{**} -irresolute if the inverse image of each μ^{**} -open set is μ^{**} -open.

Theorem 4.4: If $f: (X, \tau) \to (Y, \sigma)$ is a μ^{**} -irresolute surjective function and E is a $\mu^{**}D$ -set in Y, then the inverse image of E is a $\mu^{**}D$ -set in X.

Proof: Let E be a $\mu^{**}D$ -set in Y. Then there are μ^{**} -open sets U_1 and U_2 in Y such that $E = U_1 \setminus U_2$ and $U_1 \neq Y$. By the μ^{**} - irresoluteness of f, f⁻¹ (U₁) and f⁻¹ (U₂) are μ^{**} -open in X. Since $U_1 \neq Y$, we have f⁻¹ (U₁) \neq X. Hence f⁻¹ (E) = f⁻¹ (U₁) \setminus f⁻¹ (U₂) is a $\mu^{**}D$ -set.

Theorem 4.5: If (Y, σ) is μ^{**} - D_1 and $f: (X, \tau) \to (Y, \sigma)$ is g[~]-irresolute and bijective, then (X, τ) is μ^{**} - D_1 .

Proof: Suppose that Y is a μ^{**} - D₁ space. Let x and y be any pair of distinct points in X. Since f is injective and Y is μ^{**} - D₁, there exist μ^{**} D -sets G_X and G_Y of Y containing f(x) and f(y) respectively, such that f(y) \in / G_X and f(x) \in / G_Y, f⁻¹ (G_X) and f⁻¹ (G_Y) are μ^{**} D -sets in X containing x and y respectively. This implies that X is a μ^{**} - D₁space.

Theorem 4.6: A topological space (X, τ) is μ^{**} - D_1 if and only if for each pair of distinct points x, $y \in X$, there exists a \tilde{g} -irresolute surjective function $f: (X, \tau) \to (Y, \sigma)$, where Y is a μ^{**} - D_1 space such that f(x) and f(y) are distinct.

Proof:Necessity. For every pair of distinct points of X, it suffices to take the identity function on X. Sufficiency. Let x and y be any pair of distinct points in X. By hypothesis, there exists a μ^{**} -irresolute,

surjective function f of a space X onto a μ^{**} - D_1 space Y such that $f(x) \neq f(y)$. Therefore, there exist disjoint $\mu^{**}D$ -sets G_X and G_Y in Y such that $f(x) \in G_X$ and $f(y) \in G_Y$. Since f is μ^{**} -irresolute and surjective, $f^{-1}(G_X)$ and $f^{-1}(G_Y)$ are disjoint $\mu^{**}D$ -sets in X containing x and y, respectively. Hence X is μ^{**} - D_1 space.

REFERENCES

[1]. D.Andrijevic, Semi-pre open sets, Mat. Vesnic, 38(1) 1986, 24-32. [2]. P. Bhattacharya and B.K. Lahri, semi-generalized closed sets in topology, Indian J.Math., 29 (3) (1987), 375 – 382. [3].R.Devi, H. Maki and K. Balachandran, α-generalized closed maps and generalized α- closed maps, Indian J. pure. Appl. Math., 29 (1) (1998), 37 - 49. [4]. R.Devi, C.Vanitha and V.Kokilavani, µ*- closed sets in topological spaces, Bulletin of pure and applied sciences., 26(1)(2007), 81 - 87. [5].J.Dontchev, on generalizing semi-pre open set, Mem. Fac. Sci. Kochi Univ.Ser.A.Math., 16 (1995), 35 - 48. [6].Y. Gnanambal, On generalized pre – regular closed sets in topological spaces, Indian J. pure . Appl. Math., 28 (3) (1997), 351 – 360. [7]. N. Levin, Semi – open sets and semi – continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36 – 41. [8]. Paulin Mary Helen. M, Veronica Vijayan, Ponnuthai Selvarani, g** - closed sets in topological spaces, IJMA 3 (5), 2012, [9]. Pushpalatha.A and Anitha.k., g*s - closed sets in 1 - 15. topological spaces, Int. J. Contemp.Math. Sciences., 6 (19) (2011) 917 – 921. [10].M.K.R.S. Veera Kumar, Between closed sets and g - closed sets, Mem. Fac. Sci. Kochi Univ.Ser.A.Math., 21 (2000), 1-19. [11].M.K.R.S.

Veera Kumar , g# - closed sets in topological spaces, Mem . Fac. Sci. Kochi Univ.Ser.A.Math., 24 (2003), 1 - 13.