

Characterizations of $(\alpha p)^*$ - R₁ Spaces

R. Saranya ¹, R.Vijayalakshmi ²

Assistant Professor , Sri Ramakrishna College of Arts & Science for Women – Coimbatore Email id : <u>tsrsaranya@gmail.com</u> Assistant Professor, Shri Nehru Maha Vidyalaya College of Arts and Science – Coimbatore Email id : <u>gvthanu8417@gmail.com</u>

ABSTRACT: In this paper we introduce $(\alpha p)^* - R_1$ - spaces and we study some characterization of $(\alpha p)^* - R_1$ Spaces. We analyse the relation between $(\alpha p)^*$ - closed sets with already existing closed sets.

KEYWORDS: $(\alpha p)^*$ - closed sets, $(\alpha p)^*$ - open sets, $(\alpha p)^*$ -closure, $(\alpha p)^*$ - R₁ spaces.

I INTRODUCTION

Levine[7] introduced generalized closed sets (briefly g-closed sets) in topological spaces and studied their basic properties. O. Njastad[9] defined α - closed in 1965. N.Levine [6] introduced the class of semi-closed and semi-open sets in 1963. A. S. Mashhour[7] defined preopen and pre closed sets in 1982. L.Elvina Mary, R.Saranya [6] introduced $(\alpha p)^*$ - closed sets in 2017. The aim of this paper is to introduce a $(\alpha p)^*$ - R₁ spaces and we investigate some characterization of $(\alpha p)^*$ - R₁ - spaces.

II PRELIMINARIES

Definition 2.1 A subset A of a topological space (X,τ) is called

- (i) a semi-open set if $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A)) \subseteq A$,
- (ii) a preopen set if $A \subseteq int(cl(A))$ and a preclosed set if $cl(int(A)) \subseteq A$,
- (iii) an α open set if A \subseteq int(cl(int(A))) and an α -closed set if cl(int(cl(A))) \subseteq A,
- (iv) a semi-preopen set if $A \subseteq cl(int(cl(A)))$ and a semi-preclosed set if $int(cl(int(A))) \subseteq A$
- (v) a regular open set if A=int(cl(A)) and a regular closed set if cl(int(A))=A.

The semi-closure (resp.preclosure , semi-preclosure) of a subset A of a space (X,τ) is the intersection of all semi-closed(resp. preclosed, α -closed, semi-preclosed) sets that contain A and is denoted by scl(A) (resp.pcl(A), Acl(A), spcl(A)).

Definition 2.2 A subset A of a space (X,τ) is called

(i) a generalized closed (briefly g-closed) set[10] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X,τ) ; the compliment of a g-closed set is called a g-open set,

(ii) a semi-generalized closed (briefly sg-closed) set[2] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in(X, τ); the compliment of sg-closed set is called a sg-open set,

(iii) a generalized semi-closed (briefly gs-closed) set if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ)

(iv) an α -generalized closed (briefly α g-closed) set[3] if α cl(A) \subseteq U whenever A \subseteq U and U is α -open in (X, τ),

(v) a generalized α -closed (briefly g α -closed) set [3] if α cl(A) \subseteq U whenever A \subseteq U and U is α -open in (X, τ)

(vi) a g*- closed set [10] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X,τ) ,

(vii) a g^{**} -closed set [8] if cl(A) \subseteq U whenever A \subseteq U and U is g^{*} -open in (X, τ),

(viii) a generalized preclosed (briefly gp-closed) set if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) ,

(ix) a generalized semi-preclosed (briefly gsp-closed) set [5] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in(X, τ)

(x) a generalized pre regular closed (briefly gpr-closed) set [6] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X,τ) ,

 $(xi) \qquad a \ g^{\#}\text{-closed set [11] if } cl(A) \subseteq U \ \text{whenever } A \subseteq U \ \text{and } U \ \text{is } \alpha g\text{-open in } (X, \tau),$

(xii) a generalized α^{**} -closed (briefly $g\alpha^{**}$ -closed) set [3] if $\alpha cl(A) \subseteq int(cl(U))$ whenever $A \subseteq U$ and U is α -open in (X, τ),

(xiii) a μ^* -closed set [4] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $g\alpha^{**}$ -open in (X, τ) ,

(xiv) a g*s- closed set [9] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is gs-open in (X, τ) .

The compliment of the above mentioned sets are called their respective open sets.

III . $(\alpha p)^*$ - R₁ Spaces

Definition 3.1.Let (\mathbf{X}, τ) be a topological space and $\mathbf{A} \subset \mathbf{X}$. Then the $(\alpha p)^*$ - \mathbf{R}_1 kernel of \mathbf{A} , denoted by $(\alpha p)^*$ - $(\alpha p)^* \operatorname{Ker}(A) = \bigcap \{ U \in (\alpha p)^* \operatorname{O}(X, \tau) | A \subset U \}.$ Ker(A) is defined to be the set **Lemma 3.1.** Let (X, τ) be a topological space and $x \in X$. Then, $y \in (\alpha p)^* \operatorname{Ker}(\{x\})$ if and only if \mathbf{x} **Proof:**Assume that $y \notin$ $\in (\alpha p)^*$ -Cl({y}). Ker({x}) Then there exist a $(\alpha p)^*$ -open set containing x such that $y \notin V$. Therefore, we have $x \notin V$. $(\alpha p)^*$ -Cl(y). The converse is similarly shown. **Lemma 3.2.** Let (\mathbf{X}, τ) be a topological space and A a subset of X. Then, $(\alpha p)^*$ - Ker(A) = { x $\in \mathbf{X} \mid (\alpha p)^* - \mathrm{Cl}(\{\mathbf{x}\}) \cap \mathbf{A} \neq \emptyset \}.$ **Proof.** Let $x \in (\alpha p)^*$ - Ker(A) and $(\alpha p)^*$ - $Cl(\{x\}) \cap A = \emptyset$. Therefore, $x \notin X$ - $(\alpha p)^*$ -Cl($\{x\}$) which is a $(\alpha p)^*$ -open set containing A. But this is impossible, since $x \in (\alpha p)^*$ - Ker(A). Consequently, $(\alpha p)^*$ - Cl({x}) $\cap A \neq \emptyset$. Now, let $x \in X$ such that $(\alpha p)^* - Cl(\{x\}) \cap A \neq 0$ Suppose that $x \notin (\alpha p)^* Ker(A)$. Then, there exists a $(\alpha p)^*$ -open set U containing A and $x \notin U$. Let $y \in (\alpha p)^*$ -Cl($\{x\}$) $\cap A$. Thus, U is a $(\alpha p)^*$ -neigbourhood of y such that $x \notin U$. By this contradiction $x \in (\alpha p)^*$ - Ker(A). Lemma 3.3. The following statements are equivalent for any points x and y in a topological space (X, τ) (1) $(\alpha p)^*$ -Ker({x}) $\neq (\alpha p)^*$ -Ker({y}); (2) $(\alpha p)^*$ -Cl({x}) $\neq (\alpha p)^*$ -Cl({y}). **Proof.** (1) \Rightarrow (2) : Let $(\alpha p)^*$ -Ker $(\{x\}) \neq (\alpha p)^*$ -Ker $(\{y\})$. Then there exists a point z in X such that $z \in (\alpha p)^*$ -Ker $(\{x\})$ and From $z \in (\alpha p)^*$ -Ker({x}) it follows that {x} $\cap (\alpha p)^*$ $z \notin (\alpha p)^*$ -Ker({y}). $x \in (\alpha p)^*$ -Cl({z}). By $z \notin (\alpha p)^*$ -Ker({y}), we have {y} \cap (\alpha p)^*- $Ker(\{z\}) \neq \emptyset$ which implies $Cl(\{z\}) = \emptyset$. Since $x \in (\alpha p)^*$ - $Cl(\{z\}, (\alpha p)^*$ - $Cl(\{x\}) \subset (\alpha p)^*$ - $Cl(\{z\})$ and $\{y\}$ $(\alpha p)^*$ -Cl({x}) \neq $(\alpha p)^*$ - $(\alpha p)^*$ -Cl({x}) = \emptyset . Therefore it follows that $Cl(\{y\})Now (\alpha p)^*-Ker(\{x\}) \neq (\alpha p)^*-Ker(\{y\}) \text{ implies that } (\alpha p)^*-Cl(\{x\}) \neq (\alpha p)^*-Cl(\{y\}).$ (2) \Rightarrow (1) : Suppose that $(\alpha p)^*$ -Cl({x}) $\neq (\alpha p)^*$ -Cl({y}). Then there exists a point z in X such that $z \in$ $(\alpha p)^*$ -Cl({x}) and z \notin (\alpha p)^*-Cl({y}). It means that there exists a $(\alpha p)^*$ -open set containing z and therefore x but not y, i.e., $y \notin (\alpha p)^*$ -Ker({x}) and hence $(\alpha p)^*$ -Ker({x}) \neq $(\alpha p)^*$ -Ker({y}). **Definition 3.2.** A topological space (X, τ) is said to be a $(\alpha p)^*$ -R₁ space if every $(\alpha p)^*$ -open set contains the $(\alpha p)^*$ - closure of each of its singletons. **Proposition 3.1.** For a topological space (X, τ) , the following properties are equivalent: (i) (X, τ) is $(\alpha p)^*$ -R₁ space; (2)For any $F \in (\alpha p)^* C(X, \tau)$, $x \notin F$ implies $F \subset U$ and $x \notin U$ for some U $\in (\alpha p)^* O(\mathbf{X}, \tau);$ (3) For any $F \in (\alpha p)^* C(X, \tau)$, $x \notin F$ implies $F \cap (\alpha p)^* Cl(\{x\}) = \emptyset$; (4)For any distinct points x and y of X, either $(\alpha p)^*$ -Cl({x}) = $(\alpha p)^*$ -Cl({y}) or $(\alpha p)^*$ -Cl({x}) $\cap (\alpha p)^* - \operatorname{Cl}(\{y\}) = \emptyset.$ **Proof.** (1) \Rightarrow (2) : Let F \in

USREM

Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930 $(\alpha p)^* C(\mathbf{X}, \tau)$ and $\mathbf{x} \notin \mathbf{F}$. Then by (1) $(\alpha p)^* Cl(\{x\}) \subset X - F$. Set U = X - F $(\alpha p)^* \operatorname{Cl}(\{x\}), \text{ then } U \in (\alpha p)^* \operatorname{O}(\mathbf{X}, \tau),$ $\mathbf{F} \subset \mathbf{U}$ and $\mathbf{x} \notin \mathbf{U}$. (2) => (3) : Let Let $F \in (\alpha p)^* C(X, \tau)$ and $x \notin F$. There exists $U \in$ $(\alpha p)^* O(\mathbf{X}, \tau)$ such that $\mathbf{F} \subset \mathbf{U}$ and $\mathbf{x} \notin \mathbf{U}$. Since $U \in (\alpha p)^* O(\mathbf{X}, \tau) \cap (\alpha p)^* Cl(\{\mathbf{x}\}) =$ \emptyset and $F \cap (\alpha p)^* Cl(\{x\}) = \emptyset$. (3) => (4): Let $(\alpha p)^* Cl(\{x\}) \neq (\alpha p)^* Cl(\{y\})$ for distinct points x, $y \in X$. so there exists $z \in (\alpha p)^* Cl(x)$ such that $z \notin (\alpha p)^* Cl(x)$ $(\alpha p)^* Cl(y)$ (or $z \in (\alpha p)^* Cl(y)$). such that $z \notin (\alpha p)^* Cl(x)$). There exists $V \in (\alpha p)^* O(X, \tau)$. such that $y \notin V$ and $z \in V$; hence $x \in V$. Hence, we have $x \notin (\alpha p)^* Cl(y).By(3)$, we obtain $(\alpha p)^* Cl(x \}) \cap (\alpha p)^* Cl(\{y\}) = \emptyset$. The proof for otherwise is similar (4) => (1): Let $V \in (\alpha p)^* O(X, \tau)$ and $x \in V$. For each $y \notin v$, $x \neq y$ and $x \notin (\alpha p)^* Cl(\{y\})$. This shows that By (4) $(\alpha p)^* Cl(\{x\}) \cap (\alpha p)^* Cl(\{y\}) = \emptyset$ for each y $(\alpha p)^* \operatorname{Cl}(\{x\}) \neq (\alpha p)^* \operatorname{Cl}(\{y\}).$ $\in X - V$ and hence $(\alpha p)^* Cl(\{x\})) \cap (\bigcup_{y \in X-V} (\alpha p)^* Cl(\{y\}) = \emptyset$. On the other hand, since $V \in (\alpha p)^* O(X, \tau)$ and $y \in X - V$, we have $(\alpha p)^* Cl(\{y\}) \subset X - V$ and hence X-V=U_{v∈X-V}(αp)*Cl({y}.Therefore we obtain (X-V) ∩ (αp)*Cl({x}) = Ø.and (αp)*Cl({x}⊂V. This shows that (X, τ) is a $(\alpha p)^*$ -R₁ space. **Corollary 3.1.** A topological space (\mathbf{X}, τ) is a x and y in X, $(\alpha p)^* Cl(\{x\}) \neq (\alpha p)^* Cl(\{y\}) \Rightarrow$ $(\alpha p)^*$ -R₁ space if and only if for any $(\alpha p)^* \operatorname{Cl}(\{x\}) \cap (\alpha p)^* \operatorname{Cl}(\{y\}) = \emptyset$ **Proof.** It follows from Proposition 3.1. **Theorem 3.1.** A topological space (X, τ) is a $(\alpha p)^*$ - R₁ space if and only if for any points x and y in X, $(\alpha p)^*$ Ker({x}) $\neq (\alpha p)^* \operatorname{Ker}(\{y\}) \Longrightarrow (\alpha p)^* \operatorname{Ker}(\{x\}) \cap (\alpha p)^* \operatorname{Ker}(\{y\}) = \emptyset.$ **Proof.** Suppose that (X, τ) is a $(\alpha p)^*$ -R₁ space, for any points x and y in X if $(\alpha p)^* \operatorname{Ker}(\{x\}) \neq$ $(\alpha p)^* \text{Ker}(\{y\})$ then $(\alpha p)^* \text{Cl}(\{x\}) \neq (\alpha p)^* \text{Cl}(\{y\})$. We prove that $(\alpha p)^* \operatorname{Ker}(\{x\}) \cap$ $(\alpha p)^* \operatorname{Ker}(\{y\}) = \emptyset.\operatorname{Let} z \in (\alpha p)^* \operatorname{Ker}(\{x\}) (\alpha p)^* \operatorname{Ker}(\{y\}).$ By $z \in (\alpha p)^*$ Ker({x}), it follows that $x \in$ $(\alpha p)^* Cl(\{z\})$. Since $x \in (\alpha p)^* Cl(\{x\}), (\alpha p)^* Cl(\{x\}) = (\alpha p)^* Cl(\{z\})$. Similarly, we have $(\alpha p)^* Cl(\{y\}) = (\alpha p)^* Cl(\{z\})$ $= (\alpha p)^* Cl(\{x\})$. This is a contradiction and therefore, we have $(\alpha p)^* Ker(\{x\}) \cap (\alpha p)^* Ker(\{y\}) = \emptyset$ Conversely, let for any points x and y in X $(\alpha p)^*$ Ker $(\{x\}) \neq (\alpha p)^*$ Ker $(\{y\})$ implies $(\alpha p)^* \operatorname{Ker}(\{x\}) \cap$ $(\alpha p)^* \operatorname{Ker}(\{y\}) = \emptyset.(\alpha p)^* \operatorname{Cl}(\{x\}) \neq (\alpha p)^* \operatorname{Cl}(\{y\}), \text{ then },$ $(\alpha p)^* \text{Ker}(\{x\}) \neq (\alpha p)^* \text{Ker}(\{y\})$. Therefore $(\alpha p)^* \operatorname{Ker}(\{x\}) \cap (\alpha p)^* \operatorname{Ker}(\{y\}) = \emptyset$ which implies $(\alpha p)^* \operatorname{Cl}(\{x\}) \cap (\alpha p)^* \operatorname{Cl}(\{y\}) = \emptyset$. Since $z \in (\alpha p)^* \operatorname{Cl}(\{x\})$ implies that $x \in (\alpha p)^* \text{Ker}(\{z\})$ and therefore $(\alpha p)^* \text{Ker}(\{x\}) \cap (\alpha p)^* \text{Ker}(\{z\}) \neq \emptyset$. By hypothesis, we have $(\alpha p)^* \operatorname{Ker}(\{x\}) = (\alpha p)^* \operatorname{Ker}(\{z\})$. Then $z \in (\alpha p)^* \operatorname{Cl}(\{x\}) \cap (\alpha p)^* \operatorname{Cl}(\{y\})$ implies that $(\alpha p)^* \operatorname{Ker}(\{x\}) = (\alpha p)^* \operatorname{Ker}(\{z\}) = (\alpha p)^* \operatorname{Ker}(\{y\})$. But this is a contradiction. Therefore, $(\alpha p)^* Cl(\{x\}) \cap$ $(\alpha p)^* \operatorname{Cl}(\{y\}) = \emptyset$ and (X, τ) is a $(\alpha p)^* - R_1$ space. **Theorem 3.2.** For a topological space (X, τ) , the following properties are equivalent : (1) (X, τ) is a $(\alpha p)^*$ -R₁ space; (2) For any nonempty set A and $G \in (\alpha p)^* o(X, \tau)$ such that $A \cap G \neq \emptyset$, there exists $F \in (\alpha p)^* o(X, \tau)$) such that $A \cap F \neq \emptyset$ and $F \subset G$; (3) Any $G \in (\alpha p)^*$ -o(X, τ), G = $\cup \{ F \in G \in (\alpha p)^* \text{-} o(X, \tau) | F \subset G \};$ (4) Any $F \in (\alpha p)^*$ -o(X, τ), $F = \cap \{G \in (\alpha p)^*$ -o(X, τ), | F \subset G }; (5) For any $x \in X$, $(\alpha p)^*$ -Cl($\{x\}$) $\subset (\alpha p)^*$ -Ker($\{x\}$) **Proof.** (1) \Rightarrow (2): Let A be a nonempty set of X and G $\in (\alpha p)^*$ -o(X, τ), such that $A \cap G \neq \emptyset$. There exists $x \in A \cap G$. Since $x \in G \in (\alpha p)^*$ -o(X, τ), μ^{**} -Cl({x}) $\subset G$. Set $F = (\alpha p)^*$ -Cl({x}), then $F \in (\alpha p)^*$ $o(X, \tau), F \subset G \text{ and } A \cap F \neq \emptyset.$ $(2) \Rightarrow (3)$: Let $G \in$ $(\alpha p)^*$ -o(X, τ), then $G \supset \cup \{F \in (\alpha p)^*$ -o(X, τ), $) \mid F \subset G\}$. Let x be any point of G. There exists $F \in (\alpha p)^*$ -o(X, τ), such that $x \in F$ and $F \subset G$. Hence, we have $x \in F \subset \bigcup \{F \in (\alpha p)^* \text{-o}(X, \tau), | F \subset G\}$ hence $\mathbf{G} = \bigcup \{ \mathbf{F} \in (\alpha p)^* \text{-} \mathbf{o}(\mathbf{X}, \tau), | \mathbf{F} \subset \mathbf{G} \}.$ $(3) \Rightarrow (4)$: Straightforward. (4) \Rightarrow (5): Let x be any point of X and $y \neq (\alpha p)^* \text{Ker}(\{x\})$. There exists $V \in (\alpha p)^* - o(X, \tau)$, such that $x \in V$ and $y \notin V$; hence $(\alpha p)^*$ -Cl($\{y\}$) $\cap V = \emptyset$. By (4) ($\cap \{G \in (\alpha p)^*$ -o(X, τ), $|(\alpha p)^*$ -Cl($\{y\}$) $\subset G\}$) $\cap V = \emptyset$ and there exists $G \in (\alpha p)^*$ -O(X, τ), $|(\alpha p)^*$ -Cl($\{y\}$) $\subset G\}$) $\cap V = \emptyset$ and there exists $G \in (\alpha p)^*$ -O(X, τ), $|(\alpha p)^*$ -Cl($\{y\}$) $\subset G\}$) $\cap V = \emptyset$ and there exists $G \in (\alpha p)^*$ -O(X, τ), $|(\alpha p)^*$ -Cl($\{y\}$) $\subset G\}$) $\cap V = \emptyset$ and there exists $G \in (\alpha p)^*$ -O(X, τ), $|(\alpha p)^*$ -Cl($\{y\}$) $\subset G\}$) $\cap V = \emptyset$ and there exists $G \in (\alpha p)^*$ -O(X, τ), $|(\alpha p)^*$ -Cl($\{y\}$) $\cap V = \emptyset$ and there exists $G \in (\alpha p)^*$ -O(X, τ), $|(\alpha p)^*$ -Cl($\{y\}$) $\cap V = \emptyset$ and there exists $G \in (\alpha p)^*$ -O(X, τ), $|(\alpha p)^*$ -Cl($\{y\}$) $\subset G\}$) $\cap V = \emptyset$ and there exists $G \in (\alpha p)^*$ -O(X, τ), $|(\alpha p)^*$ -Cl($\{y\}$) $\cap V = \emptyset$ and there exists $G \in (\alpha p)^*$ -O(X, τ), $|(\alpha p)^*$ -Cl($\{y\}$) $\cap V = \emptyset$ and there exists $G \in (\alpha p)^*$ -O(X, τ), $|(\alpha p)^*$ -Cl($\{y\}$) $\cap V = \emptyset$ and there exists $G \in (\alpha p)^*$ -O(X, τ), $|(\alpha p)^*$ -Cl($\{y\}$) $\cap V = \emptyset$ and there exists $G \in (\alpha p)^*$ -O(X, τ), $|(\alpha p)^*$ -Cl($\{y\}$) $\cap V = \emptyset$ and there exists $G \in (\alpha p)^*$ -O(X, τ), $|(\alpha p)^*$ -Cl($\{y\}$) $\cap V = \emptyset$ and $(\alpha p)^*$ -Cl($\{y\}$) $\cap V = (\alpha p)^*$ -O(X, τ), $(\alpha p)^*$ -Cl($\{y\}$) $\cap V = (\alpha p)^*$ $(\alpha p)^*$ -Cl({y}) \subset G. Therefore, $(\alpha p)^*$ -Cl({x}) \cap G = Ø and y / \in v -Cl({x}). $(\alpha p)^*$ -o(X, τ), such that x \notin G and Consequently, we obtain $(\alpha p)^*$ -Cl({x}) $\subset (\alpha p)^*$ -Ker({x}). (5) \Rightarrow (1): Let $G \in (\alpha p)^*$ -o(X, τ), and $x \in G.Let y \in (\alpha p)^*-Ker(\{x\})$, then $x \in (\alpha p)^*Cl(\{y\})$ and $y \in G$. This implies that $Ker({x}) \subset G$. Therefore, we

International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025
 SJIF Rating: 8.586
 ISSN: 2582-3930

obtain $x \in (\alpha p)^*$ - Cl({x}) $\subset (\alpha p)^*$ -Ker({x}) $\subset G$. This shows that (X, τ) is a $(\alpha p)^*$ -R₁ space **Corollary 3.2.** For a topological space (X, τ) , the following properties are equivalent : (1) (X, τ) is a $(\alpha p)^*$ -R₁ space; (2) $(\alpha p)^* - Cl(\{x\}) = (\alpha p)^* Ker({x})$ for all $x \in X$. **Proof.** (1) \Rightarrow (2) : Let (X, τ) be a $(\alpha p)^*$ -R₁ space. It follows that $(\alpha p)^*$ - Cl({x}) $\subset (\alpha p)^*$ -Ker({x}) for each x \in X. Suppose y $x \in (\alpha p)^*$ -Cl({y}) and $(\alpha p)^*$ -Cl({x}) = $(\alpha p)^*$ -Cl({y}). Therefore, $y \in (\alpha p)^*$ - $\in (\alpha p)^*$ -Ker({x}), then $Cl({x})$ and hence $(\alpha p)^*$ -Ker $({x}) \subset (\alpha p)^*$ -Cl $({x})$. This shows that $(\alpha p)^*$ -Cl $({x}) = (\alpha p)^*$ -Ker $({x})$. (2) \Rightarrow (1). **Theorem 3.3.** For a topological space (X, τ) , the following properties are equivalent : (1) (X, τ) is a $(\alpha p)^*$ -R₁ space; (2) If F is $(\alpha p)^*$ closed, then $F = (\alpha p)^*$ -Ker(F); (3) If F is $(\alpha p)^*$ closed and $x \in F$, then $(\alpha p)^*$ -Ker $(\{x\}) \subset F$; (4) If $x \in X$, then $(\alpha p)^*$ -Ker $(\{x\}) \subset (\alpha p)^*$ -Cl $(\{x\})$. **Proof.** (1) \Rightarrow (2) : Suppose that F is $(\alpha p)^*$ -closed and x / \in F. Thus X – F is $(\alpha p)^*$ -open and $x \in X - F$. Since (X, τ) is $(\alpha p)^*$ $x ∉ (αp)^*$ -Ker(F). Therefore $(αp)^*$ -Ker(F) = F. R1 μ^{**} -Cl({x}) \subset X – F. Thus $(\alpha p)^{*}$ -Cl({x}) \cap F = Ø and (2) ⇒ (3) : In general, A ⊂ B implies $(\alpha p)^*$ -Ker(A) ⊂ $(\alpha p)^*$ -Ker(B). Therefore, it follows from (2) that $(\alpha p)^*$ - $\operatorname{Ker}(\{x\}) \subset (\alpha p)^* \operatorname{-Ker}(F) = F.$ (3) <=> (4) : Since x $\in (\alpha p)^*$ -Cl({x}) and $(\alpha p)^*$ Cl({x}) is $(\alpha p)^*$ -closed, by (3) $(\alpha p)^*$ -Ker $(\{x\}) \subset (\alpha p)^*$ -Cl $(\{x\})$. (4) $\leq > (1)$: Let $x \in (\alpha p)^*$ -Cl($\{y\}$). Then $y \in (\alpha p)^*$ -Ker($\{x\}$). Since $x \in (\alpha p)^*$ - $Cl({x})$ and $(\alpha p)^*-Cl({x})$ is $(\alpha p)^*$ -closed, by (4) we obtain $y \in (\alpha p)^*$ -Ker({x}) $\subset (\alpha p)^*$ - $Cl({x})$. Therefore $x \in (\alpha p)^*Cl({y})$ implies $y \in (\alpha p)^*$ -Cl({x}). The converse is obvious and (X, τ) is $(\alpha p)^*$ -R₁ space. **Definition 3.3.** A topological space (X, τ) is $(\alpha p)^*$ symmetric if for x and y in X, $x \in (\alpha p)^*$ -Cl({y}) implies $y \in (\alpha p)^*$ -Cl({x}). **Definition 3.4.** A subset A of a topological space (X, τ) is called a $((\alpha p)^*, (\alpha p)^*)$ closed set (briefly $((\alpha p)^*, (\alpha p)^*)$) $(\alpha p)^*$)closed) if $(\alpha p)^*$ -Cl(A) \subset U whenever A \subset U and U is $(\alpha p)^*$ -open in (X, τ). **Lemma 3.4**. Every μ^{**} -closed set is $((\alpha p)^*, (\alpha p)^*)$ - closed. Theorem 3.4. A topological space (X, τ) is $(\alpha p)^*$ -symmetric if and only if {x} is $((\alpha p)^*, (\alpha p)^*)$ - closed for each $x \in X$. Proof. Assume that $x \in (\alpha p)^*$ -Cl({y}) but $y \notin (\alpha p)^*$ -Cl({x}). This means that the complement of $(\alpha p)^*$ -Cl({x}) contains y. Therefore the set {y} is a subset of the complement of $(\alpha p)^*$ -Cl({x}). This implies that $(\alpha p)^*$ Cl({y}) is a $(\alpha p)^*$ -Cl({x}). Now the complement of $(\alpha p)^*$ -Cl({x}) contains x which is a subset of the complement of contradiction. Conversely, suppose that $\{x\} \subset E \in (\alpha p)^*$ -O(X, τ) but $(\alpha p)^*$ -Cl($\{x\}$) is not a subset of E. This means that $(\alpha p)^*$ -Cl({x}) and the complement of E are not disjoint. Let $y \in ((\alpha p)^* - Cl(\{x\}) \cap Ec)$. Now we have $x \in (\alpha p)^*$ -Cl({y}) $\subset E^c$ and $x \notin E$. But this is a contradiction. **Definition 3.5.** A topological space (X, τ) is called $(\alpha p)^*$ -T₀ if for any distinct pair of points x and y in X, there is a $(\alpha p)^*$ -open U in X containing x but not y and a $(\alpha p)^*$ -open set V in X containing y but not x. **Theorem 3.5.** A topological space (X, τ) is $(\alpha p)^*$ -T₀ if and only if the singletons are $(\alpha p)^*$ closed sets. **Proof.** Suppose that (X, τ) is $(\alpha p)^*$ -T₀ and x \in X. Let y \in {x}^c. Then $x \neq y$ and so there exists a $(\alpha p)^*$ -open set U_y such that $y \in U_y$ but $x \notin U_y$. Consequently $y \in U_y \subset \{x\}^c$ i.e., $\{x\}^c = \bigcup \{U_y / y \in \{x\}^c\}$ which is $(\alpha p)^*$ -open. Conversely. Suppose that $\{p\}$ is $(\alpha p)^*$ -closed for every $p \in X$. Let $x, y \in X$ with $x \neq y$. Now $x \neq y$ implies $y \in \{x\}^c$. Hence $\{x\}^{c}$ is $a(\alpha p)^{*}$ -open set containing y but not x. Similarly $\{y\}^c$ is a $(\alpha p)^*$ -open set containing x but not y. Accordingly X is a $(\alpha p)^*$ -T₀ space. Theorem 3.6. For a topological space (X, τ) the following are equivalent: (1) (X, τ) is $(\alpha p)^*$ -R₁; (2) (X, τ) is $(\alpha p)^*$ symmetric. **Proof.** (1) \Rightarrow (2). If x $\notin (\alpha p)^*$ -Cl({y}). Then there exist a $(\alpha p)^*$ -open set U containing x such that $y \notin U$. Hence $y \notin (\alpha p)^*$ -Cl(U). The converse is similarly shown. (2) \Rightarrow (1): Let U be a $(\alpha p)^*$ -open set and x \in U. y∉ $(\alpha p)^*$ -Cl({x}) This implies that $(\alpha p)^*$ -Cl({x}) ⊂ U. Hence (X, τ) If $y \notin U$, then $x \notin (\alpha p)^*$ -Cl({y}) and hence **Definition 3.6.** A filterbase F is called $(\alpha p)^*$ -convergent to a point x in X, if for any is $(\alpha p)^*$ -R_{1.}

Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586

ISSN: 2582-3930

 $(\alpha p)^*$ -open set U of X containing x, there exists B in F such that B is a subset of U. Lemma 3.5. Let (X, τ) be a topological space and let x and y be any two points in X such that every net in X (αp)*-converging to y μ^{**} -converges to x. Then $x \in (\alpha p)^*$ -Cl({y}). **Proof.** Suppose that $x_n = y$ for each $n \in N$. Then $\{x_n\}_n \in N$ is a net in $(\alpha p)^*$ -Cl($\{y\}$). Since $\{x_n\}_n \in \mathbb{N}$ $(\alpha p)^*$ -converges to y, then $\{x_n\}_n \in N(\alpha p)^*$ -converges to x and this implies that $x \in (\alpha p)^*$ -Cl($\{y\}$). **Theorem 3.7.** For a topological space (X, τ) , the following statements are equivalent: (1) (X, τ) is a $(\alpha p)^*$ -R₁ space; (2) If x, y \in X, then y $\in (\alpha p)^*$ -Cl({x}) if and only if every net in X converging to y $(\alpha p)^*$ -converges to x. **Proof.** (1) \rightarrow (2): Let x, y \in X such that y $\in (\alpha p)^*$ -Cl({x}). Suppose that $\{x_\alpha\}_{\alpha \in \Lambda}$ be a net in such that $\{x_\alpha\}_{\alpha \in \Lambda}$ $(\alpha p)^*$ -converges to y. Since $y \in (\alpha p)^*$ -Cl({x}), we have $(\alpha p)^*-\operatorname{Cl}(\{x\}) = (\alpha p)^*-\operatorname{Cl}(\{y\}).$ Therefore $x \in (\alpha p)^*$ -Cl({y}). This means that $\{x_\alpha\}_{\alpha \in \Lambda} (\alpha p)^*$ -converges to x. Conversely, let x, $y \in X$ such that every $(\alpha p)^*$ -converging to y $(\alpha p)^*$ -converges to x. Then $x \in (\alpha p)^*$ -Cl({y}) by Lemma 13.2. By Theorem net in X 3.5, we have $(\alpha p)^*$ -Cl({x}) = $(\alpha p)^*$ -Cl({y}). Therefore $y \in (\alpha p)^*$ -Cl({x}). (2) \rightarrow (1): Assume that x and y are any two points of X such that $(\alpha p)^*$ -Cl({x}) $\cap (\alpha p)^*$ -Cl({y}) $6=\emptyset$. Let $z \in (\alpha p)^*$ - $Cl({x}) \cap (\alpha p)^*$ -Cl({y}). So there exists a net ${x_{\alpha}}_{\alpha \in \Lambda}$ in geCl({x}) such that ${x_{\alpha}}_{\alpha \in \Lambda}$ -converges to z. Since $z \in$ $(\alpha p)^*$ -Cl({y}), then $\{x_{\alpha}\}_{\alpha \in \Lambda} (\alpha p)^*$ converges to y. It follows that $y \in (\alpha p)^*$ -Cl({x}). By the same taken we obtain $x \in (\alpha p)^*$ -Cl({x}). $(\alpha p)^*$ -Cl({y}). Therefore $(\alpha p)^*$ Cl({x}) = $(\alpha p)^*$ Cl({y}) and (X, τ) is $(\alpha p)^*$ -R₁ REFERENCES [1]. D. Andrijevic, Semipreopen sets, Mat. Vesnik, 38(1) (1986), 24-32. [2]. S.P.Arya and T. Nour, Characterizations of s-normal spaces, Indian J. Pure. Appl. Math., 21(8)(1990), 717-719. [3]. P.Bhattacharya and B. K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(3)(1987), 375-382. [4]. R.Devi, K. Balachandran and H. Maki, Semi-generalized closed maps and generalized closed maps, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 14(1993), 41-54. [5]. J.Dontchev, On generalizing semipreopen sets, Mem. Fac. Sci. Kochi. Ser. A. Math., 16(1995), 35-48. [6].L.Elvina Mary, R.Saranya, On $(\alpha p)^*$ - closed sets, ijma - 8 (3), 2017, 21 – 29. [7]. N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.

[8]. A. S. Mashhour, M. E. Abd. El-Monsef and S. N. El-Deep, On pre-continuous and weak pre-continuous mappings, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53. [9]. H. Maki, R. Devi and K.

Balachandran, Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi Uni. Ser. A, Math., 15(1994), 51-63.

[10]. O. Njastad, On Some Classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.