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ABSTRACT: In this paper we introduce (ap)*-R;- spaces and we study some characterization of (ap)*-R;
Spaces. We analyse the relation between (ap)*- closed sets with already existing closed sets.
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I INTRODUCTION

Levine[ 7 ] introduced generalized closed sets (briefly g-closed sets ) in topological spaces and studied their basic
properties. O. Njastad[9] defined « - closed in 1965. N.Levine [6] introduced the class of semi-closed and semi-open
sets in 1963. A. S. Mashhour[7] defined preopen and pre closed sets in 1982. L.Elvina Mary , R.Saranya [6]introduced
(ap)* - closed sets in 2017. The aim of this paper is to introduce a (ap)* - R1 spaces and we investigate some
characterization of (ap)* - R1 - spaces.

Il PRELIMINARIES
Definition 2.1 A subset A of a topological space (X,) is called

(i) a semi-open set if A c cl(int(A)) and a semi-closed set if int(cl(A)) €A,
(i) a preopen set if A < int(cl(A)) and a preclosed set if cl(int(A)) € A,
(iii)  an a-openset if A < int(cl(int(A))) and an « -closed set if cl(int(cl(A))) € A,
(iv) a semi-preopen set if AC cl(int(cl(A))) and a semi-preclosed set if int(cl(int(A))) CA
(v) a regular open set if A=int(cl(A))and a regular closed set if cl(int(A))=A.
The semi-closure (resp.preclosure , semi-preclosure) of a subset A of a space (X,1) is the intersection of all semi-
closed(resp. preclosed , a-closed, semi-preclosed) sets that contain A and is denoted by scl(A) (resp.pcl(A), Acl(A),

spcl(A)).
Definition 2.2 A subset A of a space (X,1) is called

(1) a generalized closed (briefly g-closed) set[10 ] if cl(A)SU whenever ACU and U is open in (X,t); the
compliment of a g-closed set is called a g-open set,

(i) a semi-generalized closed (briefly sg-closed) set[2] if scl(A)=U whenever ACU and U is semi-open in(X,t); the
compliment of sg-closed set is called a sg-open set,

(i) ageneralized semi-closed (briefly gs-closed) set if scl(A)SU whenever ACU and U is open in (X,t)

(iv) an a-generalized closed (briefly ag-closed) set[ 3 ] if acl(A)SU whenever AcU and U is a-open in
(X)),

(V) a generalized a-closed (briefly ga-closed) set [3 ] if acl(A)SU whenever ACU and U is a-open in
(X,7)

(vi) a g*- closed set [10 ] if cl(A)<U whenever ACU and U is g-open in (X,1),
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(vii) ag™-closed set [8] if cl(A)SU whenever ACU and U is g*-open in (X,1),

(viii)  ageneralized preclosed(briefly gp-closed) setif pcl(A)<U whenever ACU and U is open in (X,1),

(ix) a generalized semi-preclosed (briefly gsp-closed) set [ 5] if spcl(A)SU whenever ACU and U is open in(X,1)
x) a generalized pre regular closed (briefly gpr-closed) set [6 ] if pcl(A)SU whenever ACU and U is regular open
in (X,7),

(xi) a g*-closed set [ 11] if cl(A)SU whenever ACU and U is ag-open in (X,1),

(xii)  a generalized a**-closed (briefly ga**-closed) set [ 3 ] if acl(A)<int(cl(U)) whenever ACU and U is a-open in
X)),

(xiii) ap*-closed set[ 4] if cl(A)<U whenever ACU and U is go**-open in (X,T),

(xiv) ag*s- closed set [9] if scl(A)<U whenever ACU and U is gs-open in (X,1).

The compliment of the above mentioned sets are called their respective open sets.
Il .(ap)” - R1 Spaces

Definition 3.1.Let (3X, t) be a topological space and Ac><.Then the (ap)* - R1 kernel of A,denoted by (ap)* -

Ker(A) is defined to be the set (ap)* Ker(A)=N{Ue(ap)* O(X,t)|Ac U}.
Lemma 3.1. Let (X, 1) be a topological space and x € X. Then,y € (ap)* Ker({x}) if and only if x
€(ap)" -Cl({y}). Proof:Assume that y ¢
Ker({x}) Then there exista (ap)* -open set containing x suchthat y ¢ V. Therefore, we have X ¢
(ap)*-ClI( y ). The converse is similarly shown.

Lemma 3.2. Let (3X, t) be a topological space and A a subset of X. Then, (ap)* - Ker(A) = {x
e X |(ap)* -ClI({xF) N A +# 0}. Proof. Let X € (ap)* -Ker(A) and (ap)” -
CIl({x}) N A = 0. Therefore, X £ X- (ap)* -CIl({x}) which is a (ap)* -open set

containing A. But this is impossible, since x € (ap)*- Ker(A). Consequently, (ap)*- CI({x}) N A # 0.
Now, let x € X such that (ap)*- CI({x}) N A #. Suppose that X £ (ap)*Ker(A). Then, there exists a
(ap)*-open set U containing A and X £ U. Lety € (ap)*-CI({x3}) NA. Thus, U is a (ap)*-neigbourhood of y
such that x £ U. By this contradiction X €(ap)*- Ker(A).

Lemma 3.3. The following statements are equivalent for any points x and y in a topological space (X, 1)
: (1) (ap)*-Ker({x3}) £ (ap)*-Ker({y});

() (ap)*-CI({x3) #(ap)"-ClI({y}). Proof. (1) = (2) :
Let(ap)*-Ker({x})# (ap)*-Ker({y}). Then there exists a point z in X such that z € (ap)*-Ker({x}) and
z £ (ap)*-Ker({y}). From z € (ap)*-Ker({x3}) it follows that {x} N(ap)*-
Ker({z}) # 0 which implies X € (ap)*-Cl({z}).By z £ (ap)*-Ker({y}), we have {y} N (ap)*-
Cl{z}) = 0. Since xe(ap)*-Cl({z}, (ap)*-Cl({x})c(ap)*-Cl({z}) and {y}n
(ap)*-CI({x3}) = 0. Therefore it follows that (ap)*-Cl({x}) # (ap)*-
Cl({y})Now (ap)*-Ker({x3}) £ (ap)"-Ker({y}) implies that (ap)*-CI({x}) # (ap)"-CI({y}).

(2) = (1) : Suppose that (ap)*-CI({x}) # (ap)*-CIl({y}). Then there exists a point z in XX such that z €
(ap)*-CIl({x}) and z £ (ap)*-CIl({y}). It means that there exists a (ap)*-open set containing z and

therefore X but not v, i.e, ¥y £ (ap)"-Ker({x3}) and hence (ap)*-Ker({x}) #+
(ap)*-Ker({y}). Definition 3.2. A topological space (X, 7) is said to be a (ap)*-R: space if
every (ap)*-open set contains the (ap)*- closure of each of its singletons.

Proposition 3.1. For a topological space (X, t), the following properties are equivalent: (i)(><, t) is(ap)*-R1 space;
(2)Forany F € (ap)*C(>X,1),X £F implies F c U and x £ U for some Ue(ap)*O(X, 1);
(3)Forany F € (ap)*C(>X, 1), X £F implies F N(ap)*"CI{x}) =¢; (4)For any distinct
points x and y of XX, either (ap)*-CI({x3}) = (ap)*-CI({y}) or (ap)*-CI({x3})
N(ap)*-Cl({y}) = 0. Proof. (1) = (2) : LetF €
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(ap)*C(>X,t) and X £ F. Then by (1) (ap)' CI{x}F) c X-F.SetU =X -
(ap)*CI({X3}), then U € (ap)*O(X, 1), FcUandx£U.

(2)=>(@3) :LetLet F € (ap)* C(X,t)and x £ F. There exists U €
(ap)*O(X,t)suchthat F c U and x £ U. Since U € (ap)"O(X, 1)N (ap)*CI{x3}) =
@and F n (ap)*CI{x3})= 0. (3)=>(4) : Let
(ap) CI({x}) # (ap)*CIl({y}) for distinct points x,y € X. so there exists z € (ap)*CI( x ) such that z¢
(ap)*CI(y )(orz €(ap)*CI( y ). such that Z & (ap)*CI( x )). There exists V& (ap)*O(X, 1).

such thaty ¢ V and z € V; hence X& V. Hence,we have x¢ (ap)*CIl(y).By(3),

we obtain (ap)*CI(x})N (ap)*Cl({y}) = @.The proof for otherwise is similar

(4)=>(1):LetV €(ap)*O(X,t)and x e V. Foreachy £ v, X =y and x&(ap)*Cl({y}.This shows that
(ap)*ClI({x}))# (ap)*Cl({y}). By (4) (ap)"CI({x})Nn (ap)*Cl({y}) =@ foreachy
€ X — V and hence (ap)* CI{XI)N (Uyex—v(ap)*Cl({y} )= ©.0n the other hand ,since

Ve (ap)"OCX,t)andy € X—V,we have (ap)*Cl({y}) cX-V and hence

X=V=Uyex-v(ap)*Cl({y} Therefore we obtain (X -V )N (ap)*CI({x3}) = @.and (ap)*"CI({xFcV . This

shows that (X, 1) is a (ap)*-R1 space. Corollary 3.1. A topological space (>X, 1) is a
(ap)*-R1 space if and only if for any xandy in X, (ap)*CI({x3}) # (ap)*'Cl({y}) =>

(ap)* CI{X}) N(ap) CI{y})=0 Proof. It follows from Proposition 3.1.

Theorem 3.1. A topological space (X, t) is a (ap)*- R space if and only if for any points x and y in X, (ap)*Ker({x})
# (ap)*Ker({y}) => (ap)*Ker({x}) N (ap)*Ker({y}) = 0. Proof. Suppose that (X, 1)
is a (ap)*-R1 space, for any points x and y in X if (ap)*Ker({x}) #
(ap)*Ker({y}) then (ap)*CI({x}) # (ap)*Cl({y}).We prove that (ap)*Ker({x}) N
(ap)*Ker({y}) = @.Let z € (ap)*Ker({x}) (ap)*Ker({y}). By z € (ap)* Ker({x}), it follows that x €

(ap)*ClI({z}). Since x € (ap)*CI{x}), (ap)*CI({x}) = (ap)*CI({z}).Similarly, we have (ap)*Cl({y}) = (ap)*Cl({z})
= (ap)*CI({x}). This is a contradiction and therefore,we have (ap)*Ker({x}) N (ap)*Ker({y}) =@ Conversely , let for

any points x and y in X (ap)*Ker({x}) # (ap)*Ker({y}) implies (ap)*Ker({x}) N
(ap)“Ker({y}) = @.(ap)*CI({x}) # (ap)*CI({y}), then (ap)"Ker({x}) # (ap)*Ker({y}). Therefore
(ap)*Ker({x}) N (ap)*Ker({y}) = @ which implies (ap)*CI({x}) N (ap)*CI({y}) = @.Since z € (ap)*CI({x}) implies
that X € (ap)*Ker({z}) and therefore (ap)*Ker({x}) N (ap)*Ker({z}) # @. By hypothesis, we
have (ap)*Ker({x}) = (ap)*Ker({z}). Then z € (ap)*CI({x})N(ap)*Cl({y})implies that

(ap)*Ker({x}) = (ap)*Ker({z}) = (ap)*Ker({y}). But this is a contradiction. Therefore, (ap)*Cl({x}) N
(ap)*CI{y}) =0 and (X, 1)isa (ap)*-R1 space. Theorem 3.2. For a topological
space (X, 1), the following properties are equivalent : (1) (X, t)is a (ap)*-R1 space;

(2) For any nonempty set A and G € (ap)*o(X, t ) such that A N G # @, there exists F e (ap)oX,t
)suchthat ANF # @ and F c G; (3)Any G € (ap)* -o(X,1),G=
U{FeG € (ap)*-o(X, 1) F c G}, (4) Any F € (ap)*-o(X, 1), F=N{G € (ap)*-o(X,
1), |[FCc G} (5) For any x € X, (ap)*-CI({x}) c (ap)*-Ker({x})

Proof. (1) = (2) : Let A be a nonempty set of X and G € (ap)*-o(X, t), such that ANG=#Q. There
exists x € AN G. Since x € G € (ap)*-o(X, 1), u**-Cl({x}) c G. Set F = (ap)*-CI({x}), then F € (ap)* -
oX,t),Fc Gand ANF # Q. 2=>@3):LetGe
(ap)* -o(X, 1), then G D U{F € (ap)*-o(X, 1), )| F € G}. Let x be any point of G. There exists F € (ap)*-o(X, 1),
such that x € F and F < G. Hence, we have X €FcU{F e (ap)*-o(X,1), | F < G}hence
G=U{F € (ap)-o(X,1),|F c G}. (3) = (4) : Straightforward.

(4) = (5) : Let x be any point of X and y /€ (ap)*Ker({x}). There exists V € (ap)*-o(X, t), such thatx € Vandy ¢V
; hence (ap)*-Cl({y}) N V=0. By (4) (N{G € (ap)*-o(X, t),| (ap)*-Cl({y})cG})N V =@ and there exists G €
(ap)*-o(X, 1),such that x & G and (ap)*-Cl({y}) c G. Therefore, (ap)*-Cl({x}) N G=@ and y /e v -CI({x}).
Consequently, we obtain (ap)*-CI({x}) c (ap)*-Ker({x}). (5) = (1) : Let G € (ap)*-o(X, 1), and

X € G.Let ye (ap)*-Ker({x}),then x € (ap)*Cl({y}) and y € G. This implies that Ker({x}) c G. Therefore, we
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obtain x € (ap)*- CI({x}) c (ap)*-Ker({x}) c G. This shows that (X, 1) is a (ap)*-R1 space
Corollary 3.2. For a topological space (X, t ), the following properties are equivalent : (Hh(X,t)isa
(ap)”-Ru space; (2) (ap)*- CI({x}) = (ap)*-
Ker({x}) for all x € X. Proof. (1) = (2) : Let (X, 1) be a (ap)*-R1
space. It follows that (ap)*- CI({x}) c(ap)*-Ker({x}) for each x € X. Suppose y
€(ap)*-Ker({x}), then X € (ap)*-Cl({y}) and (ap)*-CI({x}) = (ap)*-CI({y}). Therefore, y € (ap)*-
CI({x}) and hence (ap)*-Ker({x}) < (ap)*-CI({x}).This shows that (ap)*-CI({x}) = (ap)*-Ker({x}). (2) = (1).
Theorem 3.3. For a topological space (X, 1), the following properties are equivalent : (H X, t)is
a (ap)*-R1 space; (2) IfFis (ap)*-
closed, then F = (ap)*-Ker(F); (3) If Fis (ap)*-
closed and x € F, then (ap)*-Ker({x}) c F; (4) If x € X, then
(ap)*-Ker({x}) c (ap)*-CI({x}). Proof. (1) = (2) :
Suppose that F is (ap)*-closed and x /€ F. Thus X — F is (ap)*-open and X € X —F. Since (X, 1) is (ap)* —
R1 p**-Cl({x}) € X — F. Thus (ap)*-CI({x}) N F =@ and X & (ap)*-Ker(F). Therefore (ap)*-Ker(F) = F.
(2) = (3) : Ingeneral, A c B implies (ap)*-Ker(A) c (ap)*-Ker(B). Therefore, it follows from (2) that (ap)*-
Ker({x}) c (ap)*-Ker(F) = F. (3)<=> (4) : Since x
€(ap)*-Cl({x}) and (ap)*CI({x}) is (ap)*-closed, by (3) (ap)”-Ker({x}) c(ap)*-CI({x}).
(4) <=> (1) : Letx €(ap)*-CI({y}). Theny € (ap)*-Ker({x}). Since X € (ap)*-
CI{x}) and (ap)*-CI({x}) is (ap)*-closed, by (4) we obtain y € (ap)*-Ker({x}) c (ap)*-
CI({x}). Therefore x €(ap)*CI({y}) implies y € (ap)*-CI({x}). The converse is obvious and (X, t
) is (ap)™-Ru space. Definition 3.3. A topological space (X, 1) is (ap)*-
symmetric if for x and y in X, X € (ap)*-Cl({y}) implies y € (ap)*-CI({x}).
Definition 3.4. A subset A of a topological space (X, 1) is called a ((ap)*, (ap)*)closed set (briefly ((ap)*,
(ap)*)closed) if (ap)*-CI(A) c U whenever A c U and U is (ap)*-open in (X, 7).
Lemma 3.4. Every p**-closed set is ((ap)*, (ap)*) - closed. Theorem 3.4. A
topological space (X, 1) is (ap)*-symmetric if and only if {x} is ((ap)*, (ap)*) - closed for each x € X.

Proof. Assume that x € (ap)*-CI({y}) buty & (ap)*-CI({x}). This means that the complement of (ap)*-CI({x})
contains y. Therefore the set {y} is a subset of the complement of (ap)*-CI({x}). This implies that (ap)*CI({y}) is a
subset of the complement of (ap)*-CI({x}). Now the complement of (ap)*-CI({x}) contains x which is a
contradiction. Conversely, suppose that {x} c E € (ap)*-O(X, t ) but (ap)*-CI({x}) is not a subset of E. This means
that (ap)*-CI({x}) and the complement of E are not disjoint. Lety € ((ap)*-Cl({x}) N Ec). Now
we have x € (ap)*-Cl({y}) c E°and x ¢ E. But this is a contradiction.

Definition 3.5. A topological space (X, 1) is called (ap)*-To if for any distinct pair of points x and y in X, there is a
(ap)*-open U in X containing x but not y and a (ap)*-open set V in X containing y but not x.

Theorem 3.5. A topological space (X, t) is (ap)*-To if and only if the singletons are (ap)*-
closed sets. Proof. Suppose that (X, 7) is
(ap)*-Toand x € X. Lety € {x}°. Then x # y and so there exists a (ap)*-open

set Uy such that y € Uy but x ¢ Uy. Consequently y € Uy c {x}°i.e., {x}* = u{ Uy ly € {x}} which is (ap)*-open.
Conversely. Suppose that {p} is (ap)*-closed for every p € X. Let X,y € X withx #y . Now x #y implies y € {x}*.

Hence{x}"is a(ap)*-open set containing y but not x. Similarly {y}° is a (ap)*-open set containing x but not y.
Accordingly X is a (ap)*-To space. Theorem 3.6. For a topological space
(X, 1) the following are equivalent: (X, t)is (ap)*-R1; (2) (X, t)is (ap)*-
symmetric. Proof. (1) = (2). If x
¢ (ap)*-Cl({y}). Then there exist a (ap)*-open set U containing x such thaty ¢ U. Hence y ¢ (ap)*-CI(U). The
converse is similarly shown. (2) = (1): Let U be a (ap)*-open setand x € U.
Ify ¢ U, then x ¢(ap)*-CI({y}) and hence yé& (ap)*-CI({x}) This implies that (ap)*-CI({x}) c U. Hence (X, t)
is (ap)*-Ru. Definition 3.6. A filterbase F is called (ap)*-convergent to a point x in X, if for any
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(ap)*-open set U of X containing X, there exists B in F such that B is a subset of U. Lemma 3.5.
Let (X, 1) be a topological space and let x and y be any two points in X such that every net in X (ap)*-converging to y
w**-converges to x. Then x € (ap)*-CI({y}). Proof.
Suppose that x, =y for each n € N. Then {x.}» €N is a net in (ap)*-CI({y}). Since {Xn}n €N (ap)*-converges
toy, then {Xn}» €N (ap)*-converges to x and this implies that x € (ap)*-CI({y}).
Theorem 3.7. For a topological space (X, 1), the following statements are equivalent: (D) X,t)isa (ap)*-R:

space; (2) If x,y € X, theny € (ap)*-CI({x}) if and only if every net in X convergingtoy (ap)*-converges to X.
Proof. (1)—(2): Let X, y € X such thaty € (ap)*-CI({x}). Suppose that {x, } o cx b€ anetinsuch that {x, } 4 ex
(ap)*-converges to y. Since y € (ap)*-CI({x}), we have (ap)*-CI({x}) = (ap)*-CI({y}).
Therefore X € (ap)*-CI({y}). This means that {x, } 4, (ap)*-converges to x. Conversely, let X, y € X such that every
netin X (ap)*-convergingtoy (ap)*-convergesto X. Then x € (ap)*-Cl({y}) by Lemma I3.2. By Theorem
3.5, we have (ap)*-CI({x}) = (ap)*-CI({y}). Therefore y € (ap)*-CI({x}).

(2)—(1): Assume that x and y are any two points of X such that (ap)*-Cl({x}) N (ap)*-CI({y}) 6= 0. Let z € (ap)*-
CI({x}) N (ap)*-CI({y}). So there exists a net {x, } o ex in geCl({x}) such that {xa}aEA -converges to z. Since z €
(ap)*-CI({y}), then {x, } « ex (ap)*converges to y. It follows that y € (ap)*-CI({x}). By the same taken we obtain x €
(ap)*-Cl({y}). Therefore (ap)*CI({x}) = (ap)*Cl({y}) and (X, 1) is (ap)*-R1
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