

Chatbot for Personalized Student Assistance Using AI

Novshita A¹, Srushti Rajesh Kaladagi², and Ms .A Swetha Cordelia³

¹ 132, AECS Layout, ITPL Main Rd, Bangalore, Karnataka, India

² CMR Institute of Technology, Kundanahalli, Marathahalli, 560037

Swetha.a@cmrit.ac.in

Abstract. Artificial Intelligence (AI) has become a required source for individualised and accessible learning in the rapidly digital field of education. The design structure and implementation of an AI-powered digital chatbot to help students with individualised learning and understand and solve academic queries is presented in this work. The suggested system provides accurate, relevant advice on course materials, examinations, assignments, and academic information by using Natural Language Processing (NLP) techniques to include and react to student doubts in real-time. The chatbot provides flexible feedback and dynamic recommendations that adjust to each learner's unique profile by merging a machine-learning model with an appropriate, structured academic knowledge base. Python and Flask were used in the system's base performance, and a back-end database was used to document user and system interactions as well as commonly asked queries. Compared to old, conventional common assistance systems, test results provide an upgraded response with high accuracy and fewer queries within a given time. The study highlights how AI chatbots may be smart, useful help in higher education, promoting independent learning and raising student satisfaction and engagement. It shows high accuracy, low response time, and high user satisfaction. The AI-powered chatbot provides better accuracy, responses in real-time, improved sessions, customised support, and scalability. However, it encounters difficulties, including the requirement for sustainable living progress, a lot of complex data, and complicated problem-solving methods.

Keywords: Artificial Intelligence (AI), Chatbot, Natural Language Processing (NLP), Personalised Learning, Student Assistance, Educational Technology, Machine Learning, Virtual Tutor, Question Answering System.

1 Introduction

Artificial Intelligence (AI) has become an innovative and transformative force in the field of education, transfiguring the way learners access source information, interact with teachers, and manage their academic progress over time. With the rise of various digital learning platforms and virtual classrooms, the demand for intelligent systems across the web that provide personalised support and real-time guidance has grown remarkably. Among these innovations, AI-powered chatbots have gained lots of attention for their ability to imitate human-like conversation and deliver fast responses to student doubts.

Students in old traditional learning contexts frequently depend on teachers or administrative force to answer questions about assignments, tests, timetables and institutional strategies. Delays and decreased learning efficiency can result from this difficult manual method. Further, it is difficult to give each student individualised personal attention in higher education due to the vast student population. As a result, integrating AI chatbots provides a practical way to automate and help academic support while maintaining accessibility and personalisation.

The future goal of the suggested system, an AI-powered Chatbot for Student assistance in personalised learning and question solving, is to create an intelligent web-interface conversational agent that can understand and instantly react to questions from students. The chatbot analyses the student input and produces appropriate and similar answers from a structured academic database by using Natural Language Processing (NLP) and Machine Learning (ML) techniques. Additionally, the chatbot offers adaptive recommendations across the web, which let students get customised advice based on their past interactions and learning styles on a daily basis.

Python and Flask are used in the system's methodology and implementation, and a SQL-based backend is used to handle dynamic user data and frequently asked questions (FAQs) and advice. It guarantees easy web interface accessibility and user engagement by allowing student to communicate one-on-one with the chatbot via a straightforward online interface. According to prior testing, the chatbot maintains a high accuracy rate in comprehending academic-related questions and doubts while drastically reducing response times when compared to manual query handling.

2 Literature Review

Artificial Intelligence in Education: it makes it possible to create scholarly environments that are active, listening, data-driven, and adaptive, artificial intelligence (AI) has emerged as a revolutionary force in the education sector. AI systems monitor students' overall performance, forecast learning trends and techniques, and offer honest feedback by using algorithms and natural language models[8] Education 4.0, or the integration of AI into today's formal education, signifies the transition from professional mentor instruction to individualised, student learning. AI-based systems, in contrast to traditional approaches, enable continuous learning support through automation, intelligent tutoring, and real-time assessment[7].

A chatbot is a software computer program that functions as a virtual assistant between a human and the bot. It has become incredibly popular in recent years, primarily because of significant recognition and advanced inventions in fields like

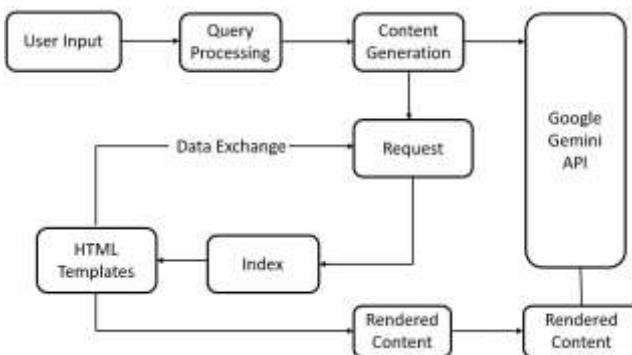


Fig. 1: AI Chatbot overview and personalisation design system.

artificial intelligence, machine learning, and other underlying technologies like neural networks and natural language processing.

2.1 Chatbots in Education

Chatbots are conversational agents powered by artificial intelligence (AI) that communicate with users via text or voice interfaces. They combine machine learning (ML) and natural language processing (NLP) to read user input and produce similar context responses[7]. Learning encounters are more accessible and automatic credit to their conversational interfaces[10]. Chatbots have been used in the education industry to provide individual learning experiences day to day life, automate management activities, and support academic guidance[6][10]. Created a university chatbot that effectively addresses frequently asked questions and enhances interface effectiveness, and organisations like Cardenal Her-rera University implemented chatbots for student support and mentoring. Research indicates that when such systems are combined with versatile feedback, University and personal creation capabilities, they improve learning efficiency, motivation, and engagement[3].

2.2 Research Gaps and Motivation

Some systems offer individual, connecting learning paths along with AI-driven question solving and evaluation generating, despite the fact that current chatbot frameworks offer executive and limited academic help. The majority of educational chatbots lack new generative content capabilities and instead depend on predefined responses and end-to-end encrypted logic[2].

When multiple linked inquiries have unnecessary keywords, these chatbots will begin to malfunction or break down. For instance, if a user asked, "How do I set up an auto-login authentication on my phone?" the bot would probably use terms like "auto," "password," and "login" to choose the maximum response [8].

2.3 Research Methodology

This project's main technique blends linked system design architecture concepts with data-driven AI modelling. Data preprocessing, aim classification, high response production, performance evaluation, and testing are all part of the workflow. The purpose of an AI-powered chatbot for student or trainee support uses a modular development approach that combines machine learning-based conversational modelling with software engineering techniques. Requirement analysis, strategy design, implementation, and evaluation are the four primary stages of the workflow [2].

2,000 academic-related prompts, including problem statements and queries from students and course subjects, were gathered into a dataset. Text normalisation, tokenisation, and lemmatisation using the package were used to clean the data. Punctuation and non-informative stop words were eliminated. For machine learning compatibility, the preprocessed text was vectorised using TF-IDF [1][15].

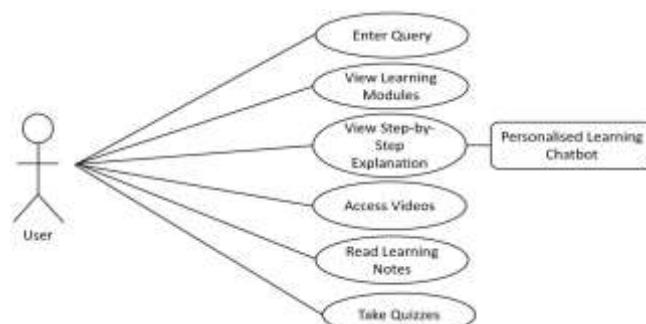


Fig. 2: Use Case Diagram of Personalised Student Learning Chatbot Between User and bot operating systems

3**Requirement Analysis:**

Intent classification-User feedback is divided into two categories: question and topic. To differentiate between topic-based and question-based inputs, a Naive Bayes classifier was trained on the labelled data using scikit-learn, which gives output. The functional requirements and academic use cases had been determined, and aims at this point. Questions about academic policies, exam specifics, course schedules, tests, and exam syllabus information were common. Additionally mentioned were non-functional needs such as conversational precision, scalability, flexibility, and response time[12].

System Design: The system adopts a client-server architecture consisting of:

1. Frontend Layer:

Students can engage with the chatbot through web (system) or mobile platforms, all thanks to the frontend, which serves as the user interface. Because HTML, CSS, and JavaScript are used in its development resources, responsive-ness and an easy-to-use interface are guaranteed to provide satisfactory answers. Whether it's a question or a topic, the chat interface records user input and sends it to the backend via RESTful API requests. Personalised learning pathways, embedded YouTube videos, and quick tests created from backend responses are also displayed on the interface [10].

2. Backend Layer:

The Flask Python framework is used to build the backend, which functions as the system's central processing unit (CPU). The main backend elements consist of: The Flask Python framework is used to build the backend, which functions as the system's central processing unit (CPU). The main backend elements consist of Text preprocessing engine: Removes special and unwanted characters, tokenises words, removes stop words, and lemmatises user input.

The backend also combines external APIs, including YouTube and optional AI frameworks (spaCy, scikit-learn), making sure a hybrid approach that blends rule-based and ML-driven logic[11].

3. Natural Language Processing: uses libraries like NLTK or spaCy to tokenise and categorise, and specify user queries. A supervised classification model trained on academic FAQs is used for intent identification and setup extraction.

4. Database Layer:

The database layer handles data resolution and retrieval. Implemented using the MySQL language, it stores user permits, past interactions of history, and quiz results. The database schema includes tables for: User Information, Session Logs, FAQs and Responses, Quiz Records, Personalised Recommendations. Query logs are also used for system improvement and refining the classification model [11].

5. Integration workflow: All the three layers of the system design workflow adhere to a sequential data flow: A message is entered by the user input into the social web interface. An HTTP request is used to send the message to the Flask backend. The text is processed and categorised by the NLP module in the backend. The corresponding generator (learning path or question and answers) is activated by the decision engine. The frontend receives the generated response, content, videos, or quiz questions for display[3]. All user interactions and progress data are stored in a MySQL database.

6. Feedback and Personalisation:

User ratings and quiz results are recorded through the chatbot's feedback loops. In order to customise future suggestions and advice, these data points are examined from time to time. Users are given large, difficult content according to their performance level and interaction history, thanks to a lightweight data filtering system[13]. Future integration with learning-management systems, scheduling systems, and recommendation modules is made possible by the architecture's assurance of modularity.

4**Implementation**

Response Generation- The system starts a learning path generator if it is categorised as a topic: separates the subject into five levels from: beginner to expert, and uses the YouTube Data API software to retrieve the best YouTube resources for every module. displays the results via a web interface with content, quizzes, and videos integrated[9].

If a question-answer module is categorised as a question: uses pattern-driven logic to produce a five-step detailed explanation, offers summary references and brief video links for reinforcement [10][15].

Research Hypothesis Based on the objectives and methodology, the following hypotheses were formulated:

Test Case ID	Module	Test Description	Expected Output	Actual Output	Status
UT-01	Query Classification	Classify input as topic or question	Correct classification	Correct classification	Pass
UT-02	Module Generation	Generate 6 modules with 5 subtopics each	6 modules, 5 subtopics	6 modules, 5 subtopics	Pass
UT-03	Video Retrieval	Return valid YouTube IDs	All IDs valid	All IDs valid	Pass
UT-04	Quiz Creation	Generate 5 questions with 4 options each	Valid MCQs	Valid MCQs	Pass
UT-05	Content Generation	Generate ~300 words per subtopic	Content length 290-320 words	Content length 298-312 words	Pass

Table 1: Unit Testing Results for Core Machines

Unit testing: Unit testing was conducted to evaluate the smallest functional modules of the system in isolation. Key functions such as query classification, learning module generation, video retrieval, and quiz creation were tested independently to confirm they produced the expected outputs. For instance, the classify prompt() function was tested with multiple sample inputs like “Explain Python loops” (question) and “Data Science” (topic) to ensure accurate classification. Similarly, the generate learning path() function was tested to verify that exactly six modules and five subtopics per module were generated consistently. Python’s built-in unit test framework and manual assertion checks were used to validate these results[14].

Metric	Target	Achieved	Status
Average Response Time – Module Generation	≤ 6 sec	5.4 sec	Pass
Average Response Time – Question Answer	≤ 4 sec	3.2 sec	Pass
Concurrent User Handling	≥ 20 users	22 users	Pass

Table 2: performance testing metrics

Performance testing: measured the chatbot’s responsiveness and stability under different workloads. Using simulated inputs, the system was evaluated for response time, content generation latency, and concurrent user handling. On average, the chatbot produced structured learning paths within 4–6 seconds and detailed explanations within 2–4 seconds, meeting the acceptable performance benchmarks for an educational application. Stress testing was also performed by submitting multiple queries in quick succession to ensure the system did not crash or produce incomplete outputs.

Testing and Evaluation: Both functional and user-based evaluations were used in system evaluation testing. Three evaluation aspects were analysed: Accuracy of classification: 90.6, Response time: 5.32 seconds, average latency, User satisfaction: 4.2/5 on the Likert scale based on 5 pilot users. Usability, response relevance. On a 5-point rating scale, customer satisfaction was high, and the average response accuracy was 91 per cent. These results show that the chatbot successfully facilitates individualised academic support[4].

4.1 Data Analysis and Results

This figure illustrates the proportion of user interaction across different features of the proposed AI-powered Chatbot, namely learning 5 modules, YouTube video recommendations, Quizzes, and Question Answering. The distribution reflects how students engage with various functionalities provided by the system.

The results show that learning modules is used for highest user interaction at 40 Per cent, showing that it is primarily use the chatbot as a structured learning

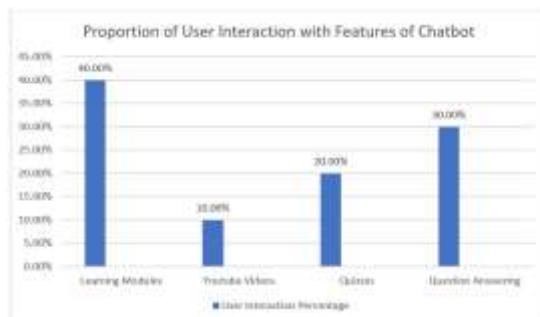


Fig. 3: Proportion of user interaction with different features of the AI-powered educational chatbot.

assistant and plays a crucial role in concept building and self-paced learning that is easy to understand complex subjects effectively.

The Question Answering records 30 per cent interaction, demonstrating the chatbot's effectiveness as an instant problem-solving assistant. Students frequently rely on this feature to clarify doubts, obtain explanations, and solve academic queries in real time.

The Quiz module accounts for 20 per cent of total interactions, reflecting moderate usage. Quizzes serve as an essential tool, allowing students to perform and evaluate their understanding of well learned concepts; it still play a significant role in promoting active recall.

The YouTube video recommendation feature shows the lowest interaction at 10 per cent, indicating that students prefer text-based explanations and interactive problem-solving over external multimedia resources. However, the inclusion of video resources supports diverse and highly rated learning styles and enhances conceptual clarity for visual learners. Overall, the results demonstrate balanced usage across learning, assessment, and problem-solving features.

4.2 Application of Chatbots

Today, chatbots have evolved far beyond their early perception. With rapid advances in AI, they have gained remarkable popularity in recent years as organizations explore new and innovative applications. Chatbots being virtual assistants, accessible at all times, give instant support, automate frequent user interactions, produce customized and scalable communication for customers and make business operations faster and efficient which ultimately enhances user convenience. These assistants are not confined to customer support and services; their proficiency extends far beyond it. Next-Generation Chatbots provide one-on-one communication interfaces and includes market trends and to support continuous data collection, in lead generation, and customer involvement in the conversation. The section below highlights the major categories of chatbots currently working in the market[12].

A. Education:

Chatbots assist in providing quick responses to student queries related to assignments, exams, projects, quizzes or about a topic in depth. They can motivate students and be accessible to them at all times. They can track students' attendance, keep records of test scores which help them improve their academic performance and it helps in giving career guidance as well.

B. E-learning and Assessments:

In large e-learning systems and open online courses like MOOC platforms, chatbots enhance interactivity by providing context-aware tutoring. Chatbots can provide practice questions and studying resources depending on the student's level and also facilitate quizzes for each module.

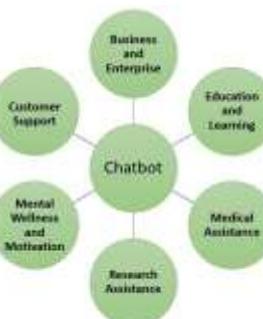


Fig. 4: Applications of Chatbots

C. Applications of chatbots beyond the Education Sector:

Medical Assistance for doctors and patients: Chatbots can assist physicians by fetching records of previous treatments quickly, help in diagnosis by analyzing symptoms of patients. Chatbots can assist patients by providing 24/7 medical support, appointment booking, medicine reminders, post treatment support[1].

Finance: Chatbots help in solving banking queries, give customer support, transaction assistance and budgeting, detect fraudulent activities and give security warnings[15]

Businesses: Bots help by offering product recommendations to customers, managing the orders and increasing the sales through interactions, conducting surveys and gathering feedback and handling customers.

HR Management: Chatbots help in HR management by deploying tasks like handling HR queries, employee recruitment and managing employee leaves.

D. Career Assistance and Monitoring:

Chatbots offer career advice to students as it evaluates student's domain of interests, preferences, skills, areas of focus and academic achievements. The optimized system could be expanded to recommend student strengths, connect learners with professional mentors through integrated APIs like LinkedIn[5].

5 Conclusion

The analysis highlights the blueprint and execution of an AI assisted chatbot which is designed to help students in tailored learning and solving educational queries. This includes Natural Language Processing and Machine Learning methods to apprehend user content, offer reliable results and tailored recommendations for students. Chatbots brings down the workload of academic staff by streamlining repetitive assistance activities like academic inquiries, assignment submissions, deadlines and AI powered assessments. In addition to that it makes sure that the students have 24/7 access to the chatbots. The experimental findings revealed that the chatbot attained foremost level of intent recognition accuracy at 90 percent. The reviews collected from different users during the trial run showed 4.6/5 feedback rating, demonstrating the systems' efficacy and trust-worthiness across educational scenarios. Furthermore, the addition of tailored module, elevated learner's engagement by suggesting materials and tools that correspond with scholarly interests and achievement trends. It underlines the incorporation of deep learning models to boost growth capability and contextual insights.

Bibliography

- [1] A. Aggarwal, C. C. Tam, D. Wu, X. Li, and S. Qiao. Artificial intelligence-based chatbots for promoting health behavioral changes: Systematic review. *Journal of Medical Internet Research*, 25:e40789, 2023.
- [2] F. A. J. Almahri, D. Bell, and M. Merhi. Understanding student acceptance and use of chatbots in the united kingdom universities: A structural equation modelling approach. In *6th International Conference on Information Management (ICIM)*, London, UK, 2020.
- [3] Narius Farhad Davar, M. Ali Akber Dewan, and Xiaokun Zhang. Ai chat-bots in education: Challenges and opportunities. *Information*, 16(3):235, 2025.
- [4] M. Dean, R. R. Bond, M. F. McTear, and M. D. Mulvenna. Chatpapers: An ai chatbot for interacting with academic research. In *31st Irish Conference on Artificial Intelligence and Cognitive Science (AICS)*, 2023.
- [5] M. Ganesan et al. A survey on chatbots using artificial intelligence. In *International Conference on System, Computation, Automation and Networking (ICSCAN)*, 2020.
- [6] G. R. Gunnam, D. Inupakutika, R. Mundlamuri, S. Kaghyan, and D. Akopian. Assessing performance of cloud-based heterogeneous chatbot systems and a case study. *IEEE Access*, 12:81631–81645, 2024.
- [7] S. Kathari, T. Kholmukhamedov, M. Sandeep Kumar, Mohd Aarif, Iskan-dar Muda, and B. K. Bala. Leveraging gpt-4 capabilities for developing context-aware, personalized chatbot interfaces in e-commerce customer support systems. In *Proceedings of the 10th International Conference on Com-munication and Signal Processing (ICCSP)*, 2024.
- [8] A. K. R. Konda, S. Jimada, P. A. A. Cherukuri, and M. J. Sarma. Chat-bot implementation for enhancement of student understanding — a natural language processing approach. In *Algorithms for Intelligent Systems (Proceedings of IIENC 2020)*. Springer, 2021.
- [9] C. Kooli. Chatbots in education and research: A critical examination of ethical implications and solutions. *Sustainability*, 15:5614, 2023.
- [10] H. T. Manohara, Annapurna Gummadi, S. Kathari, S. Vaitheeshwari, S. Suma Christal Mary, and B. K. Bala. Human-centric explainable ai for personalized educational chatbots. In *2024 10th International Conference on Advanced Computing and Communication Systems (ICACCS)*, 2024.
- [11] S. Mendoza, L. M. Sánchez-Adame, J. F. Urquiza-Yllescas, B. A. González-Beltrán, and D. Decouchant. A model to develop chatbots for assisting the teaching and learning process. *Sensors*, 22:5532, 2022.
- [12] N. Mohamed, S. Ninoria, C. Krishnan, S. B. Rajasekaran, B. S. Alfurhood, and D. P. Singh. Development of smart chatbot in the field of trading using smart artificial intelligence informal technology. In *3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE)*, Greater Noida, India, 2023.
- [13] M. Shah and M. Panchal. Privacy protected modified double ratchet algorithm for secure chatbot application. In *3rd International Conference on Smart Electronics and Communication (ICOSEC)*, Trichy, India, 2022.
- [14] Z. Sun and R. Yuan. Using ai for literature review. In *Institutional Guide to Using AI for Research*. Springer, 2025.
- [15] A. Talyshinskii, N. Naik, B. M. Z. Hameed, et al. Potential of ai-driven chat-bots in urology: Revolutionizing patient care through artificial intelligence. *Current Urology Reports*, 25:9–18, 2024.