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Abstract—CSE is an increasingly popular approach to protect- 
ing user data uploaded to cloud storage providers, wherein users 
encrypt their files locally and upload ciphertext only, instead 
of trusting the cloud service with plaintext or encryption keys. 
This paper performs a comprehensive, threat-aware design and 
analysis for CSE-based cloud file storage systems. We synthesize 
findings from an empirical audit of widely used E2EE storage 
providers and the author’s seminar synopsis to identify recurring 
anti-patterns and concrete mitigations. Key contributions include: 

(1) a practical architecture that combines authenticated symmet- 
ric encryption (AES-GCM) for data confidentiality and integrity 
with asymmetric key encapsulation (RSA-OAEP or ECIES) 
for key distribution; (2) a carefully designed key hierarchy 
including a KDF-derived master key, per-folder metadata keys 
(MEKs), and per-file ephemeral data encryption keys (DEKs), 
along with recommended secure handling and audit mechanisms; 

(3) deployment-level mitigations such as key transparency or 
append-only key logs, authenticated manifests and Merkle trees 
for chunked-file integrity, and guidance on balancing KDF hard- 
ness with device capabilities; and (4) diagrams and simulated re- 
sults that quantify the performance and storage overhead trade- 
offs of the proposed design. We show how common field vulner- 
abilities (such as unauthenticated public keys, unauthenticated 
chunk lists, IV reuse, and protocol downgrade) can be effectively 
mitigated by adopting authenticated primitives, binding metadata 
to content via Merkle roots, and enforcing versioned, signed 
manifests. Our proposed system aims at being practical for web 
and native clients, considerate of usability challenges (key recov- 
ery, cross-device sync, deduplication), and mindful of regulatory 
realities (auditing, enterprise recovery). The paper concludes 
by recommending research directions: formal verification of 
the protocol, privacy-preserving deduplication, and prototypes 
demonstrating real-world usability and performance. 

Index Terms—Cloud Storage, Client-Side Encryption, AES- 
GCM, RSA-OAEP, Key Management, End-to-End Encryption, 
Metadata Protection 

 

I. INTRODUCTION 

Cloud storage has transformed the ways in which individ- 

uals and organizations manage, share, and back up data. The 

economic model of ”pay-as-you-grow” and the operational 

simplicity of outsourcing storage infrastructure have driven 

huge adoption across consumer and enterprise sectors. Yet, this 

convenience introduces an intrinsic trust problem: entrusting 

a third party with sensitive files means that the provider, or 

an attacker able to control the provider, may gain access to 

plaintext if it holds the encryption keys. Traditional server- 

side encryption protects against external breaches but does 

not defend against a compromised or malicious provider that 

has access to key material. To this end, end-to-end encryption 

(E2EE) and client-side encryption (CSE) push the crypto- 

graphic operations on the client-side: files are encrypted before 

leaving the client, and the keys stay under user control. 

Despite the conceptual appeal of CSE, practical deploy- 

ments expose a variety of pitfalls. Studies of commercial 

E2EE storage offerings reveal repeated anti-patterns such 

as unauthenticated public-key material, inappropriate use of 

unauthenticated cipher modes (e.g., AES-CBC without MAC), 

reuse of IVs or deterministic IV selection that leak similarity 

information, unauthenticated chunk lists enabling reordering or 

deletion attacks, and protocol downgrade attacks that reduce 

KDF strength. Additionally, feature-driven requirements such 

as cross-device sync, shareable links, recovery, and dedupli- 

cation often motivate insecure shortcuts like server-escrowed 

keys or embedding share passwords in URLs. The result is 

a mismatch between marketing claims of “zero-knowledge” 

encryption and real-world security properties. 

This paper takes a pragmatic, threat-aware approach. Build- 

ing on an empirical base (the uploaded base paper and the 

author’s seminar synopsis), we (a) classify the major failure 

modes observed in deployed E2EE systems, (b) propose a con- 

crete client/server architecture using authenticated primitives 

and cryptographic bindings to prevent the main attacks, (c) 

detail a key hierarchy and workflow suited to typical web 

and native clients, and (d) provide diagrams and simulated 

performance measurements to help implementers weigh trade- 

offs. Crucially, the design emphasizes provably secure building 

blocks where possible (AEAD, RSA-OAEP/ECIES, memory- 

hard KDFs, HMACs, Merkle trees) and practical deployment 

mechanisms (key transparency logs, signed manifests) that 

limit the power of a malicious server while remaining usable 

for end-users. 

II. LITERATURE REVIEW 

The literature on secure cloud file storage is broad, cov- 

ering formal cryptographic models, systems-level designs, 

and empirical audits of deployed services. On the formal 

side, researchers have proposed models that capture desirable 

security properties of E2EE cloud storage: confidentiality of 

file contents, integrity of file contents and metadata, resis- 

tance to a malicious server, secure sharing and revocation, 
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and efficient key rotation. Constructive contributions include 

provably secure key-management frameworks, attribute-based 

and predicate encryption schemes for fine-grained sharing, and 

proxy re-encryption designs to improve efficiency during re- 

keying or migration. 

Empirical work complements theory: audits of real world 

systems often reveal a disconnect between design claims and 

implementation details. Notably, a detailed cryptanalysis of 

several E2EE providers documented practical attacks across 

multiple vendors. These fall into a few recurring classes: 

(1) unauthenticated key material and keyoverwriting where 

servers can substitute or malleate key blobs that clients accept; 

(2) unauthenticated encryption modes e.g., use of unauthen- 

ticated CBC that permits content tampering; (3) unauthenti- 

cated chunking allowing a server to reorder or delete chunks 

without detection; (4) leakage of metadata filenames, directory 

structure, file sizes; and (5) protocol downgrade attacks where 

server-supplied version negotiation forces weaker KDFs or 

cipher choices. Combining these audit results with real im- 

plementations highlights a set of anti-patterns implementers 

should avoid. On the systems side, practical mechanisms have 

been de- veloped to address facets of these problems. Authen- 

ticated Encryption with Associated Data (AEAD) e.g., AES- 

GCM or ChaCha20-Poly1305 is now a recommended prim- 

itive for combined confidentiality and integrity. Merkle trees 

provide efficient integrity for chunked data. Key transparency 

and transparency logs, inspired by certificate transparency 

ideas, help detect unauthorized key substitutions by maintain- 

ing an append-only public ledger of key digests that clients 

can audit. Privacypreserving deduplication schemes (blind- 

dedup tokens, convergent encryption mitigations, and dedi- 

cated IDbased key schemes) provide storage-space benefits 

while limiting cross-user leakage. Memory-hard KDFs (scrypt 

and Argon2id) mitigate offline dictionary attacks on password- 

derived keys. Despite these advances, real-world services often 

blend these ideas inconsistently or omit critical authenticated 

bindings, leading to exploitable gaps. The literature therefore 

suggests a two-pronged approach: adopt standard, thoroughly- 

studied cryptographic primitives and bind metadata and key 

material cryptographically to prevent server substitution, and 

design workflow and UX elements that make secure behavior 

the default (e.g., clear key fingerprints, optional hardware- 

backed keys, and convenient recovery that does not require 

frequent server-side key escrow). This paper builds on those 

recommendations, grounding them in the observed vendor 

faults and producing a cohesive, deployable architecture. 

 

III. PROPOSED SYSTEM AND METHODOLOGY 

This section presents a concrete system architecture and 

workflow for a client-side encrypted cloud file storage sys- 

tem that targets a malicious-server threat model. Our design 

objectives are: (1) ensure confidentiality and integrity of file 

contents even when the server is malicious; (2) minimise meta- 

data leakage (filenames, directory structure, file sizes) to the 

extent practical; (3) provide efficient sharing and revocation 

with limited bandwidth costs; and (4) remain usable for end- 

users across web and native clients. 

 

 

Fig. 1: Threat model: malicious-server setting and attacker 

capabilities. 

 

 

At a high level, the system uses a hybrid cryptosystem: 

files are encrypted with ephemeral symmetric Data Encryption 

Keys (DEKs) using an AEAD scheme (AES-GCM); DEKs are 

then wrapped using an asymmetric key encapsulation mecha- 

nism (RSA-OAEP for legacy compatibility or ECIES/X25519- 

based hybrid for efficiency on mobile clients). Metadata such 

as filenames and directory manifests are encrypted under 

per-folder Metadata Encryption Keys (MEKs). To prevent 

key substitution, critical key blobs (encrypted private keys, 

group key files) are authenticated and recorded to a tamper- 

evident audit structure (e.g., append-only key-transparency 

logs or server-signed certificates verified against client-stored 

fingerprints). 

The key hierarchy starts from a user password P , which 

is processed with a memory-hard key derivation function 

(scrypt or Argon2id) with a per-user salt to produce a high- 

entropy master key Kmaster. On-device, an asymmetric key- 

pair (sku, pku) is generated and sku is encrypted under 

Kmaster, producing an encrypted key blob that is stored server- 

side. Importantly, the encrypted key blob is accompanied 

by authenticity data (HMAC or signature) whose verification 

ensures a malicious server cannot silently swap key material. 

The system supports optional device-backed secrets (Secure 

Enclave, TPM) to protect long-lived keys locally and to speed 

authentication. 

For chunked files, the client divides data into content- 

defined chunks and encrypts each chunk independently under 

AES-GCM with unique nonces. The ciphertexts of these 

chunks are arranged into a Merkle tree; the root is included in 

the manifest and authenticated under the MEK. This prevents 

reordering or deletion attacks if the server swaps or removes 

chunks the Merkle root will no longer match. For dedupli- 

cation, the design recommends private blinded dedupe tokens 

rather than naive convergent encryption to avoid trivial cross- 

user leakage. 

Sharing is implemented by wrapping DEKs for recipients’ 

public keys and by including HMAC bindings in sharing 

records to prevent tampering. For revocation, lightweight 

techniques such as proxy re-encryption can be used to avoid 

full re-upload of content when the set of authorized recipients 

changes; alternatively, rotate per-folder MEKs and rewrap 

DEKs for remaining recipients. Recovery is handled via op- 

tional social recovery (Shamir-based split keys among trustees) 

or enterprise escrow (audited admin-wrapped keys); in all 

User (Client) 
Encrypts / Decrypts 

Owns secrets 

Encrypted Uploads 

 

Manifest Queries 
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Stores ciphertexts 
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Fig. 2: Encryption workflow with manifest verification and 

Merkle integrity checks. 

encryption with associated data (AEAD), providing both con- 

fidentiality and integrity in a single primitive. Encryption 

produces ciphertext C and an authentication tag T given key 

K, nonce N , associated data A, and message M : 

(C, T ) ← AES-GCMK(N, A; M ) 

Security obligations: non-reuse of nonce N with the same 

key K; unique nonces for each AEAD operation and mono- 

tonic or random generation strategies that avoid collisions. 

On resource-constrained platforms, ChaCha20-Poly1305 is 

an alternative AEAD offering similar security with better 

performance on some processors and is recommended if AES 

hardware acceleration is absent. 

B. Asymmetric Key Encapsulation 

DEKs are ephemeral symmetric keys and must be deliv- 

ered to authorized recipients securely. For key wrapping, we 

recommend RSA-OAEP for backward compatibility in enter- 

prise environments, and ECIES-like schemes with X25519 

or Curve25519 for modern clients where lower latency and 

smaller keys are desirable. RSA-OAEP provides IND-CCA 

security under standard assumptions; ECIES (hybrid ECDH + 

KDF + AEAD) offers efficient key exchange and is preferable 

for mobile clients. The basic wrapping uses: 

CDEK ← Encpk(DEK) 

and the recipient uses their private key to recover DEK. 

C. Key Derivation Functions 

User passwords are processed with memory-hard KDFs to 

derive the master key Kmaster: 

Kmaster = scrypt(P, salt, N, r, p) 

or 

Kmaster = Argon2id(P, salt, t, m, p) 
 
 
 
 

 
Fig. 3: Key hierarchy: User to KDF branching into keypair 

and MEK. 

 

recovery variants, auditability and explicit user consent are 

emphasized to avoid silent escrow attacks. 

IV. ENCRYPTION ALGORITHMS AND MATHEMATICAL 

FOUNDATIONS 

This section justifies and details the cryptographic primitives 

chosen for the proposed system. Our design emphasizes the 

use of standard, well-vetted building blocks and demonstrates 

how they combine to provide confidentiality, integrity, and 

authenticated metadata. 

where parameters (work factor, memory, and parallelism) 

should be tuned to balance security (resistance to GPU/brute- 

force) and usability (unlock latency on user devices). Use 

conservative defaults and allow clients to calibrate based on 

device class (desktop, mobile). 

D. Merkle Trees for Chunk Integrity 

To secure chunked files, each chunk i produces a ciphertext 

ci and authentication tag ti via AEAD. Chunks are arranged 

into a Merkle tree internal nodes are hash digests (SHA- 

256) of their children. The root R is stored in the manifest 

(encrypted under MEK). If the server reorders or drops chunks, 

the root verification fails, enabling detection of tampering. 

E. HMACs and Signed Manifests 

While AEAD provides per-chunk integrity, manifests and 

key blobs use HMAC-SHA256 or digital signatures to guaran- 

tee authenticity. For example, a manifest M may be protected 

as: 

 

A. Authenticated Symmetric Encryption (AES-GCM) 

For file content encryption we recommend AES in Ga- 

lois/Counter Mode (GCM). AES-GCM offers authenticated 

τ = HMACKmanifest (M ) 

where Kmanifest is derived from MEK or Kmaster. Alternatively, 

manifests may be signed with the user’s asymmetric key and 

verified by clients. 

3. Wrap DEK using 
public keys 

4. Compute Merkle root 
Create manifest 

1. User selects file 

2. Generate DEK 
encrypt file (AES-GCM) 

User 

KDF 

 

Device Enclave 

(optional) 

Keypair 
 

MEK 

per-folder 
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F. Zero-Knowledge and Optional Advanced Primitives 

Zero-knowledge proofs (ZKPs) can be used in privacy- 

preserving components (e.g., to prove possession of a secret 10 

without revealing it during recovery protocols) and for token- based 

deduplication protocols. While not required for the 

baseline design, we note ZKPs as future extensions to improve 5 
privacy-preserving features. 

V. RESULTS AND DISCUSSION 

We present a qualitative and simulated quantitative evalu- 

ation of the proposed design. The evaluation focuses on (1) 

security improvements relative to common field vulnerabili- 

0 

0 200 400 600 800 1,000 

File size (MB) 

ties, (2) client-side performance overheads for encryption and 

key wrapping, and (3) practical usability trade-offs concerning 

key management, sharing, and recovery. 

 

A. Security Improvements 

Compared to the failure modes documented in empirical 

audits, the proposed architecture provides robust mitigations: 

• Key substitution: By recording key digests in a tamper- 

evident log and enforcing HMAC/signed manifests, a 

malicious server cannot silently swap a user’s public key 

or encrypted private key blob without detection by the 

client. 

• Tampering of chunks: AEAD (AES-GCM) removes 

the unauthenticated encryption issue. Merkle trees ensure 

chunk integrity; any reordering or deletion becomes de- 

tectable by comparing root digests. 

• Protocol downgrade: Clients enforce minimum protocol 

versions and validate manifests cryptographically, pre- 

venting server-induced downgrades to weak KDF iter- 

ations. 

• Metadata leakage: Per-folder MEKs protect filenames 

and directory manifests; metadata exposure is minimised 

to only necessary indices and can be further obfuscated. 

 

B. Simulated Performance Evaluation 

We conducted microbenchmarks simulated for illustrative 

purposes to measure encryption time for files of varying sizes 

(10 MB to 1 GB). The objective is to compare per-file AES- 

GCM encryption, naive AES-CBC encryption, and AES-GCM 

with chunking and Merkle overhead. The results (illustrative) 

indicate: 

• AES-GCM and AES-CBC have similar throughput for 

bulk encryption on modern CPUs when AES hardware 

acceleration is available, with AES-GCM incurring mod- 

est tag-generation cost. 

• Chunking and Merkle construction add CPU and mem- 

ory overhead proportional to number of chunks; how- 

ever, chunking enables parallel encryption and network- 

friendly uploads, balancing the cost. 

• Key wrapping (RSA-OAEP) introduces fixed cost per file 

for wrapping DEKs for recipients; ECIES with X25519 

can reduce the latency and message size for mobile 

clients. 

Fig. 4: Illustrative encryption time vs file size (simulated 

microbenchmarks). 

 

6 
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Fig. 5: Number of vulnerability classes observed per provider. 

 

C. Usability Considerations 

Security often incurs usability burdens. Key stretching de- 

lays (memory-hard KDFs) increase unlock latency; manifest 

verification and key-transparency checks add network round 

trips. We recommend progressive approaches: an initial fast 

unlock based on a locally cached, encrypted key (short-term 

cache), with background re-stretching that updates key blobs 

to stronger parameters. For sharing, the wrapping cost can be 

reduced by group key files (GKF) where per-folder DEKs are 

wrapped once per recipient rather than for each file. Recovery 

options (social recovery, printable backup tokens, enterprise 

escrow) need clear UX that makes consequences explicit to 

users. 

 

D. Limitations 

This evaluation is largely conceptual and simulated: real- 

world performance and UX need empirical measurement 

across diverse devices and networks. Also, certain features 

(search over encrypted data, server-side processing) require 

advanced cryptographic tools (searchable encryption or homo- 

morphic techniques) which are currently costly and are left as 

future work. 

VI. CHALLENGES AND SOLUTIONS 

Adopting robust client-side encryption in cloud products 

raises several engineering, usability, and policy challenges. 
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Below we describe key challenges and practical solutions that 

maintain security without making the system unusable. 

 

A. Key Management and Recovery 

Challenge: Users forget passwords; devices are lost; enter- 

prise policies demand recoverability. Naive solutions (server- 

side key escrow) reintroduce a central point of compromise. 

Solution: adopt layered recovery mechanisms. For consumers, 

social recovery schemes split a recovery secret using Shamir 

Secret Sharing among trusted contacts reconstruction requires 

a threshold of shares, preventing unilateral recovery by a mali- 

cious server. For enterprise deployments, escrowed admin keys 

can be used but must be strictly auditable and require explicit 

consent; mechanisms like certificate-pinned admin keys and 

admin action logs provide accountability. Additionally, provide 

printable or device-bound recovery tokens that users can store 

offline. 

 

 

B. Deduplication vs Privacy 

Challenge: Deduplication saves storage but deterministic 

encryption (convergent encryption) leaks file equality and 

enables brute-force attacks on predictable files. Solution: pre- 

fer privacy-preserving deduplication techniques: blind dedupe 

tokens (clients compute a token using a blinded value and 

server assists in matching without learning plaintext), or per- 

user encryption plus server-assisted indexing with proof-of- 

possession protocols. When deduplication is enabled, clearly 

inform users about privacy trade-offs and limit dedupe to 

non-sensitive classes or enterprise-only contexts with explicit 

policy. 

 

 

C. Performance and Device Diversity 

Challenge: Memory-hard KDFs and AEAD operations are 

CPU- and memory-intensive on low-end devices. Solution: 

calibrate KDF parameters automatically based on device class, 

maintain a short-term encrypted key cache guarded by local 

OS protections, and use hardware-backed cryptography (TPM, 

Secure Enclave) to accelerate operations where available. 

Allow users to opt-in to security-performance trade-offs with 

clear guidance. 

 

 

D. Malicious Server and Javascript Delivery 

Challenge: Web clients are vulnerable if the server can 

serve malicious JavaScript that exfiltrates keys. Solution: 

provide browser extension options that pin code locally, 

use Subresource Integrity (SRI) where possible, and push 

for reproducible build and signed client bundles. For high- 

assurance use-cases, native clients and browser extensions re- 

duce attack surface compared to web-served JS. Additionally, 

strong operational defenses multi-party hosting of client code, 

reproducible signed artifacts raise the bar for attackers. 

 

 
 

 

 

 

Fig. 6: Attack classes mapped to defensive measures. 

 

 

E. Auditability and Transparency 

Challenge: Users cannot easily verify that providers are not 

substituting keys or manipulating manifests. Solution: adopt 

key transparency logs (append-only, Merkle-tree based) that 

publish public key digests. Clients can fetch and verify log 

roots and detect unauthorized registrations or replacements. 

Public transparency combined with notification and out-of- 

band fingerprints reduces risk of silent substitution. 

 

VII. COMPARATIVE ANALYSIS 

We compare the proposed system against the classes of vul- 

nerabilities found in the surveyed E2EE providers and discuss 

how practical mitigations match observed failure modes. The 

objective is not to produce a full empirical benchmarking of 

vendors, but to map failure modes to mitigations and outline 

the trade-offs. 

 

A. Mappings from Observed Failures to Defenses 

The base audit revealed common issues: unauthenticated 

public keys (allowing key substitution), unauthenticated ci- 

phertexts and chunk lists (allowing tampering), protocol down- 

grade (weakening KDFs), and metadata leakage. For each 

class: 

• Unauthenticated public keys: Implement key- 

transparency logs and require clients to validate 

public-key digests or certificates before using them. 

This prevents a malicious server from injecting attacker- 

controlled public keys. 

• Unauthenticated ciphertexts: Replace unauthenticated 

modes with AEAD (AES-GCM) and reject legacy unau- 

thenticated modes. Ensure clients detect and refuse to 

decrypt messages with missing or invalid tags. 

• Unauthenticated chunking: Use per-chunk AEAD and 

Merkle-root binding in the manifest. Clients verify the 

Merkle root before accepting chunk lists. 

Unauthenticated 

encryption 

Version enforce 

+ Manifests 

Merkle tree 

over chunks 

Use AEAD 
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+ Certs 
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• Protocol downgrade: Include version tags in manifests 

and require clients to refuse minimum versions; use 

signed manifests to prevent a server from downgrading 

silently. 

• Metadata leakage: Encrypt filenames, sizes, and direc- 

tory manifests under MEKs when possible. When servers 

need indices for functionality, minimize exposed fields 

and consider padding or obfuscation for sizes and counts. 

 

B. Practical Trade-offs 

Applying these mitigations increases complexity: more 

cryptographic operations, larger manifests, possible re- 

encryption costs during rotation, and UX challenges for re- 

covery. Nevertheless, the security benefits are significant. For 

enterprise contexts where auditability and confidentiality are 

paramount, the trade-offs favor the secure configuration. For 

consumer applications, default configurations should prioritize 

safe options but allow optional convenience features that are 

clearly marked. 

 

VIII. CONCLUSION AND FUTURE WORK 

This paper presented a threat-aware design for client- 

side encrypted cloud file storage that mitigates major real- 

world failure modes previously observed in deployed E2EE 

solutions. By combining authenticated symmetric encryp- 

tion (AES-GCM), robust key encapsulation (RSA-OAEP or 

ECIES), memory-hard KDFs (scrypt or Argon2id), Merkle- 

based integrity for chunking, and tamper-evident key trans- 

parency logs, implementers can prevent common attacks such 

as key substitution, chunk tampering, and protocol down- 

grades. The architecture balances security and practicality: 

per-file DEKs and per-folder MEKs give fine-grained control; 

Merkle roots and signed manifests enforce integrity; and 

carefully designed recovery options avoid silent server escrow. 

Despite these improvements, practical deployment chal- 

lenges remain. Recovery workflows must be usable while 

preserving security. Deduplication and server-side processing 

require privacy-aware protocols to avoid information leakage. 

Web clients face the unique challenge of secure code delivery 

(the server could deliver malicious JavaScript); mitigations 

include reproducible signed bundles and native clients for 

high-assurance users. Integrating searchable encryption or 

homomorphic methods may enable richer server-side features 

while preserving confidentiality, but current solutions involve 

significant performance and complexity trade-offs. 

Future work includes formalizing the protocol in a provable 

security model under a malicious-server adversary and imple- 

menting a reference client (web plus native) to measure real- 

world performance and usability across device classes. Fur- 

ther research into privacy-preserving deduplication, efficient 

proxy re-encryption for low-cost revocation, and practical key- 

transparency infrastructures (scalable, privacy-friendly logs) 

will make CSE more deployable. Finally, user studies on 

recovery UX and acceptable latencies will help determine 

practical parameter choices for KDFs and caching strategies. 

The paper’s diagrams and simulated plots give implementers 

a foundation for continued experimentation and prototyping. 
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