s
£ 1ISREM 3

e Jounal

#7 International Journal of Scientific Research in Engineering and Management (IJSREM)
W Volume: 09 Issue: 11 | Nov - 2025

SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, [JSREM

Cloud Computing for File Storage and Encryption System

Radhika Audumbar Gore
ragore@(@dypcoeakurdi.ac.in
Dept. of Computer Engineering
D.Y. Patil College of Engineering,
Akurdi
Pune, India

Abstract—CSE is an increasingly popular approach to protect-
ing user data uploaded to cloud storage providers, wherein users
encrypt their files locally and upload ciphertext only, instead
of trusting the cloud service with plaintext or encryption keys.
This paper performs a comprehensive, threat-aware design and
analysis for CSE-based cloud file storage systems. We synthesize
findings from an empirical audit of widely used E2EE storage
providers and the author’s seminar synopsis to identify recurring
anti-patterns and concrete mitigations. Key contributions include:
(1) a practical architecture that combines authenticated symmet-
ric encryption (AES-GCM) for data confidentiality and integrity
with asymmetric key encapsulation (RSA-OAEP or ECIES)
for key distribution; (2) a carefully designed key hierarchy
including a KDF-derived master key, per-folder metadata keys
(MEKSs), and per-file ephemeral data encryption keys (DEKSs),
along with recommended secure handling and audit mechanisms;
(3) deployment-level mitigations such as key transparency or
append-only key logs, authenticated manifests and Merkle trees
for chunked-file integrity, and guidance on balancing KDF hard-
ness with device capabilities; and (4) diagrams and simulated re-
sults that quantify the performance and storage overhead trade-
offs of the proposed design. We show how common field vulner-
abilities (such as unauthenticated public keys, unauthenticated
chunk lists, IV reuse, and protocol downgrade) can be effectively
mitigated by adopting authenticated primitives, binding metadata
to content via Merkle roots, and enforcing versioned, signed
manifests. Our proposed system aims at being practical for web
and native clients, considerate of usability challenges (key recov-
ery, cross-device sync, deduplication), and mindful of regulatory
realities (auditing, enterprise recovery). The paper concludes
by recommending research directions: formal verification of
the protocol, privacy-preserving deduplication, and prototypes
demonstrating real-world usability and performance.

Index Terms—Cloud Storage, Client-Side Encryption, AES-
GCM, RSA-OAEP, Key Management, End-to-End Encryption,
Metadata Protection

1. INTRODUCTION

Cloud storage has transformed the ways in which individ-
uals and organizations manage, share, and back up data. The
economic model of “pay-as-you-grow” and the operational
simplicity of outsourcing storage infrastructure have driven
huge adoption across consumer and enterprise sectors. Yet, this
convenience introduces an intrinsic trust problem: entrusting
a third party with sensitive files means that the provider, or
an attacker able to control the provider, may gain access to
plaintext if it holds the encryption keys. Traditional server-
side encryption protects against external breaches but does

| https://ijsrem.com

Ms. Farhina S. Sayyad
fssayyad@dypcoeakurdi.ac.in
Dept. of Computer Engineering
D.Y. Patil College of Engineering,
Akurdi
Pune, India

Shreya Pandey
shreyapx247@gmail.com
Dept. of Computer Engineering
D.Y. Patil College of Engineering,
Akurdi
Pune, India

not defend against a compromised or malicious provider that
has access to key material. To this end, end-to-end encryption
(E2EE) and client-side encryption (CSE) push the crypto-
graphic operations on the client-side: files are encrypted before
leaving the client, and the keys stay under user control.

Despite the conceptual appeal of CSE, practical deploy-
ments expose a variety of pitfalls. Studies of commercial
E2EE storage offerings reveal repeated anti-patterns such
as unauthenticated public-key material, inappropriate use of
unauthenticated cipher modes (e.g., AES-CBC without MAC),
reuse of IVs or deterministic IV selection that leak similarity
information, unauthenticated chunk lists enabling reordering or
deletion attacks, and protocol downgrade attacks that reduce
KDF strength. Additionally, feature-driven requirements such
as cross-device sync, shareable links, recovery, and dedupli-
cation often motivate insecure shortcuts like server-escrowed
keys or embedding share passwords in URLs. The result is
a mismatch between marketing claims of “zero-knowledge”
encryption and real-world security properties.

This paper takes a pragmatic, threat-aware approach. Build-
ing on an empirical base (the uploaded base paper and the
author’s seminar synopsis), we (a) classify the major failure
modes observed in deployed E2EE systems, (b) propose a con-
crete client/server architecture using authenticated primitives
and cryptographic bindings to prevent the main attacks, (c)
detail a key hierarchy and workflow suited to typical web
and native clients, and (d) provide diagrams and simulated
performance measurements to help implementers weigh trade-
offs. Crucially, the design emphasizes provably secure building
blocks where possible (AEAD, RSA-OAEP/ECIES, memory-
hard KDFs, HMACs, Merkle trees) and practical deployment
mechanisms (key transparency logs, signed manifests) that
limit the power of a malicious server while remaining usable
for end-users.

II. LITERATURE REVIEW

The literature on secure cloud file storage is broad, cov-
ering formal cryptographic models, systems-level designs,
and empirical audits of deployed services. On the formal
side, researchers have proposed models that capture desirable
security properties of E2EE cloud storage: confidentiality of
file contents, integrity of file contents and metadata, resis-
tance to a malicious server, secure sharing and revocation,

| Page 1

https://ijsrem.com/
mailto:fssayyad@dypcoeakurdi.ac.in
mailto:shreyapx247@gmail.com

© 2025, [JSREM

s
¢ 1ISREM 3

e Jounal

i Volume: 09 Issue: 11 | Nov - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

and efficient key rotation. Constructive contributions include
provably secure key-management frameworks, attribute-based
and predicate encryption schemes for fine-grained sharing, and
proxy re-encryption designs to improve efficiency during re-
keying or migration.

Empirical work complements theory: audits of real world
systems often reveal a disconnect between design claims and
implementation details. Notably, a detailed cryptanalysis of
several E2EE providers documented practical attacks across
multiple vendors. These fall into a few recurring classes:
(1) unauthenticated key material and keyoverwriting where
servers can substitute or malleate key blobs that clients accept;
(2) unauthenticated encryption modes e.g., use of unauthen-
ticated CBC that permits content tampering; (3) unauthenti-
cated chunking allowing a server to reorder or delete chunks
without detection; (4) leakage of metadata filenames, directory
structure, file sizes; and (5) protocol downgrade attacks where
server-supplied version negotiation forces weaker KDFs or
cipher choices. Combining these audit results with real im-
plementations highlights a set of anti-patterns implementers
should avoid. On the systems side, practical mechanisms have
been de- veloped to address facets of these problems. Authen-
ticated Encryption with Associated Data (AEAD) e.g., AES-
GCM or ChaCha20-Poly1305 is now a recommended prim-
itive for combined confidentiality and integrity. Merkle trees
provide efficient integrity for chunked data. Key transparency
and transparency logs, inspired by certificate transparency
ideas, help detect unauthorized key substitutions by maintain-
ing an append-only public ledger of key digests that clients
can audit. Privacypreserving deduplication schemes (blind-
dedup tokens, convergent encryption mitigations, and dedi-
cated IDbased key schemes) provide storage-space benefits
while limiting cross-user leakage. Memory-hard KDFs (scrypt
and Argon2id) mitigate offline dictionary attacks on password-
derived keys. Despite these advances, real-world services often
blend these ideas inconsistently or omit critical authenticated
bindings, leading to exploitable gaps. The literature therefore
suggests a two-pronged approach: adopt standard, thoroughly-
studied cryptographic primitives and bind metadata and key
material cryptographically to prevent server substitution, and
design workflow and UX elements that make secure behavior
the default (e.g., clear key fingerprints, optional hardware-
backed keys, and convenient recovery that does not require
frequent server-side key escrow). This paper builds on those
recommendations, grounding them in the observed vendor
faults and producing a cohesive, deployable architecture.

III. PROPOSED SYSTEM AND METHODOLOGY

This section presents a concrete system architecture and
workflow for a client-side encrypted cloud file storage sys-
tem that targets a malicious-server threat model. Our design
objectives are: (1) ensure confidentiality and integrity of file
contents even when the server is malicious; (2) minimise meta-
data leakage (filenames, directory structure, file sizes) to the
extent practical; (3) provide efficient sharing and revocation
with limited bandwidth costs; and (4) remain usable for end-
users across web and native clients.

| https://ijsrem.com

Cloud Provider

User (Cllent) W ‘ Encrypted Uploads ' .
¢ ¥ Stores ciphertexts

Encrypts / Decrypts % — >
Owns secrets J w) May be malicious

Attacker
Malicious operator
Network attacker

Fig. 1: Threat model: malicious-server setting and attacker
capabilities.

At a high level, the system uses a hybrid cryptosystem:
files are encrypted with ephemeral symmetric Data Encryption
Keys (DEKSs) using an AEAD scheme (AES-GCM); DEKs are
then wrapped using an asymmetric key encapsulation mecha-
nism (RSA-OAEP for legacy compatibility or ECIES/X25519-
based hybrid for efficiency on mobile clients). Metadata such
as filenames and directory manifests are encrypted under
per-folder Metadata Encryption Keys (MEKs). To prevent
key substitution, critical key blobs (encrypted private keys,
group key files) are authenticated and recorded to a tamper-
evident audit structure (e.g., append-only key-transparency
logs or server-signed certificates verified against client-stored
fingerprints).

The key hierarchy starts from a user password P , which
is processed with a memory-hard key derivation function
(scrypt or Argon2id) with a per-user salt to produce a high-
entropy master key Kmaser. On-device, an asymmetric key-
pair (sks, pks) is generated and sk, is encrypted under
Kmnaster, producing an encrypted key blob that is stored server-
side. Importantly, the encrypted key blob is accompanied
by authenticity data (HMAC or signature) whose verification
ensures a malicious server cannot silently swap key material.
The system supports optional device-backed secrets (Secure
Enclave, TPM) to protect long-lived keys locally and to speed
authentication.

For chunked files, the client divides data into content-
defined chunks and encrypts each chunk independently under
AES-GCM with unique nonces. The ciphertexts of these
chunks are arranged into a Merkle tree; the root is included in
the manifest and authenticated under the MEK. This prevents
reordering or deletion attacks if the server swaps or removes
chunks the Merkle root will no longer match. For dedupli-
cation, the design recommends private blinded dedupe tokens
rather than naive convergent encryption to avoid trivial cross-
user leakage.

Sharing is implemented by wrapping DEKs for recipients’
public keys and by including HMAC bindings in sharing
records to prevent tampering. For revocation, lightweight
techniques such as proxy re-encryption can be used to avoid
full re-upload of content when the set of authorized recipients
changes; alternatively, rotate per-folder MEKs and rewrap
DEKs for remaining recipients. Recovery is handled via op-
tional social recovery (Shamir-based split keys among trustees)
or enterprise escrow (audited admin-wrapped keys); in all

| Page 2

https://ijsrem.com/

et A
¢ 1ISREM 3

e Jounal

i Volume: 09 Issue: 11 | Nov - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

1. User selects file

2. Generate DEK
encrypt file (AES-GCM)

3. Wrap DEK using
public keys

L
4. Compute Merkle root
Create manifest

5. Upload ciphertext
+ wrapped DEKs

6. Server stores blobs
Responds to queries

7. Client verifies
Decrypts file

Fig. 2: Encryption workflow with manifest verification and

Merkle integrity checks.
KDF
Kl'ﬂaSlCl’

Keypair MEK
[(sku, pku) I per-folder]
Fig. 3: Key hierarchy: User to KDF branching into keypair
and MEK.

Device Enclave
(optional)

recovery variants, auditability and explicit user consent are
emphasized to avoid silent escrow attacks.

IV. ENCRYPTION ALGORITHMS AND MATHEMATICAL
FOUNDATIONS

This section justifies and details the cryptographic primitives
chosen for the proposed system. Our design emphasizes the
use of standard, well-vetted building blocks and demonstrates
how they combine to provide confidentiality, integrity, and
authenticated metadata.

A. Authenticated Symmetric Encryption (AES-GCM)

For file content encryption we recommend AES in Ga-
lois/Counter Mode (GCM). AES-GCM offers authenticated

© 2025, IJSREM | https://ijsrem.com

encryption with associated data (AEAD), providing both con-
fidentiality and integrity in a single primitive. Encryption
produces ciphertext C and an authentication tag T given key
K, nonce N, associated data A, and message M :

(G, T) < AES-GCMK(N, A; M)

Security obligations: non-reuse of nonce N with the same
key K; unique nonces for each AEAD operation and mono-
tonic or random generation strategies that avoid collisions.
On resource-constrained platforms, ChaCha20-Poly1305 is
an alternative AEAD offering similar security with better
performance on some processors and is recommended if AES
hardware acceleration is absent.

B. Asymmetric Key Encapsulation

DEKs are ephemeral symmetric keys and must be deliv-
ered to authorized recipients securely. For key wrapping, we
recommend RSA-OAEP for backward compatibility in enter-
prise environments, and ECIES-like schemes with X25519
or Curve25519 for modern clients where lower latency and
smaller keys are desirable. RSA-OAEP provides IND-CCA
security under standard assumptions; ECIES (hybrid ECDH +
KDF + AEAD) offers efficient key exchange and is preferable
for mobile clients. The basic wrapping uses:

Coek < Encp(DEK)

and the recipient uses their private key to recover DEK.

C. Key Derivation Functions

User passwords are processed with memory-hard KDFs to
derive the master key Kmaster:

Kmaster = SCrypt(P, salt, N, r, p)

or
Kmaster = Argon2id(P, salt, t, m, p)

where parameters (work factor, memory, and parallelism)
should be tuned to balance security (resistance to GPU/brute-
force) and usability (unlock latency on user devices). Use
conservative defaults and allow clients to calibrate based on
device class (desktop, mobile).

D. Merkle Trees for Chunk Integrity

To secure chunked files, each chunk i produces a ciphertext
c¢i and authentication tag t; via AEAD. Chunks are arranged
into a Merkle tree internal nodes are hash digests (SHA-
256) of their children. The root R is stored in the manifest
(encrypted under MEK). If the server reorders or drops chunks,
the root verification fails, enabling detection of tampering.

E. HMACs and Signed Manifests
While AEAD provides per-chunk integrity, manifests and
key blobs use HMAC-SHA256 or digital signatures to guaran-
tee authenticity. For example, a manifest M may be protected
as:
t = HMACk

manifest (M)
where Kmanifest 1S derived from MEK or Kmaser. Alternatively,
manifests may be signed with the user’s asymmetric key and

verified by clients.

| Page 3

https://ijsrem.com/

© 2025, [JSREM

Volume: 09 Issue: 11 | Nov - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

F. Zero-Knowledge and Optional Advanced Primitives

Zero-knowledge proofs (ZKPs) can be used in privacy-
preserving components (e.g., to prove possession of a secret

without revealing it during recovery protocols) and for token- based

deduplication protocols. While not required for the
baseline design, we note ZKPs as future extensions to improve
privacy-preserving features.

V. RESULTS AND DISCUSSION

We present a qualitative and simulated quantitative evalu-
ation of the proposed design. The evaluation focuses on (1)
security improvements relative to common field vulnerabili-
ties, (2) client-side performance overheads for encryption and
key wrapping, and (3) practical usability trade-offs concerning
key management, sharing, and recovery.

A. Security Improvements

Compared to the failure modes documented in empirical
audits, the proposed architecture provides robust mitigations:

- Key substitution: By recording key digests in a tamper-
evident log and enforcing HMAC/signed manifests, a
malicious server cannot silently swap a user’s public key
or encrypted private key blob without detection by the
client.

- Tampering of chunks: AEAD (AES-GCM) removes
the unauthenticated encryption issue. Merkle trees ensure
chunk integrity; any reordering or deletion becomes de-
tectable by comparing root digests.

- Protocol downgrade: Clients enforce minimum protocol
versions and validate manifests cryptographically, pre-
venting server-induced downgrades to weak KDF iter-
ations.

- Metadata leakage: Per-folder MEKs protect filenames
and directory manifests; metadata exposure is minimised
to only necessary indices and can be further obfuscated.

B. Simulated Performance Evaluation

We conducted microbenchmarks simulated for illustrative
purposes to measure encryption time for files of varying sizes
(10 MB to 1 GB). The objective is to compare per-file AES-
GCM encryption, naive AES-CBC encryption, and AES-GCM
with chunking and Merkle overhead. The results (illustrative)
indicate:

- AES-GCM and AES-CBC have similar throughput for
bulk encryption on modern CPUs when AES hardware
acceleration is available, with AES-GCM incurring mod-
est tag-generation cost.

- Chunking and Merkle construction add CPU and mem-
ory overhead proportional to number of chunks; how-
ever, chunking enables parallel encryption and network-
friendly uploads, balancing the cost.

- Key wrapping (RSA-OAEP) introduces fixed cost per file
for wrapping DEKSs for recipients; ECIES with X25519
can reduce the latency and message size for mobile
clients.

| https://ijsrem.com

T T T T T T
—o— AES-GCM (per-file)
@10 LT AES-CBC (naive) |
QE) —— AES-GCM + Chunk
£
g
25 | |
=
=
&5
0 [|
| | | | |

0 200 400 600

File size (MB)

|
800 1,000

Fig. 4: Illustrative encryption time vs file size (simulated

microbenchmarks).

6 | |

2

54 :

2

z

52

=

E

o L
ync pCloud Icedrive Seafile Tresorit

Fig. 5: Number of vulnerability classes observed per provider.

C. Usability Considerations

Security often incurs usability burdens. Key stretching de-
lays (memory-hard KDFs) increase unlock latency; manifest
verification and key-transparency checks add network round
trips. We recommend progressive approaches: an initial fast
unlock based on a locally cached, encrypted key (short-term
cache), with background re-stretching that updates key blobs
to stronger parameters. For sharing, the wrapping cost can be
reduced by group key files (GKF) where per-folder DEKs are
wrapped once per recipient rather than for each file. Recovery
options (social recovery, printable backup tokens, enterprise
escrow) need clear UX that makes consequences explicit to
users.

D. Limitations

This evaluation is largely conceptual and simulated: real-
world performance and UX need empirical measurement
across diverse devices and networks. Also, certain features
(search over encrypted data, server-side processing) require
advanced cryptographic tools (searchable encryption or homo-
morphic techniques) which are currently costly and are left as
future work.

VI. CHALLENGES AND SOLUTIONS

Adopting robust client-side encryption in cloud products
raises several engineering, usability, and policy challenges.

| Page 4

https://ijsrem.com/

© 2025, [JSREM

s
¢ 1ISREM 3

e Jounal

i Volume: 09 Issue: 11 | Nov - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

Below we describe key challenges and practical solutions that
maintain security without making the system unusable.

A. Key Management and Recovery

Challenge: Users forget passwords; devices are lost; enter-
prise policies demand recoverability. Naive solutions (server-
side key escrow) reintroduce a central point of compromise.
Solution: adopt layered recovery mechanisms. For consumers,
social recovery schemes split a recovery secret using Shamir
Secret Sharing among trusted contacts reconstruction requires
a threshold of shares, preventing unilateral recovery by a mali-
cious server. For enterprise deployments, escrowed admin keys
can be used but must be strictly auditable and require explicit
consent; mechanisms like certificate-pinned admin keys and
admin action logs provide accountability. Additionally, provide
printable or device-bound recovery tokens that users can store
offline.

B. Deduplication vs Privacy

Challenge: Deduplication saves storage but deterministic
encryption (convergent encryption) leaks file equality and
enables brute-force attacks on predictable files. Solution: pre-
fer privacy-preserving deduplication techniques: blind dedupe
tokens (clients compute a token using a blinded value and
server assists in matching without learning plaintext), or per-
user encryption plus server-assisted indexing with proof-of-
possession protocols. When deduplication is enabled, clearly
inform users about privacy trade-offs and limit dedupe to
non-sensitive classes or enterprise-only contexts with explicit
policy.

C. Performance and Device Diversity

Challenge: Memory-hard KDFs and AEAD operations are
CPU- and memory-intensive on low-end devices. Solution:
calibrate KDF parameters automatically based on device class,
maintain a short-term encrypted key cache guarded by local
OS protections, and use hardware-backed cryptography (TPM,
Secure Enclave) to accelerate operations where available.
Allow users to opt-in to security-performance trade-offs with
clear guidance.

D. Malicious Server and Javascript Delivery

Challenge: Web clients are vulnerable if the server can
serve malicious JavaScript that exfiltrates keys. Solution:
provide browser extension options that pin code locally,
use Subresource Integrity (SRI) where possible, and push
for reproducible build and signed client bundles. For high-
assurance use-cases, native clients and browser extensions re-
duce attack surface compared to web-served JS. Additionally,
strong operational defenses multi-party hosting of client code,
reproducible signed artifacts raise the bar for attackers.

| https://ijsrem.com

Unauthenticated Key transparency
public keys + Certs

Unauthenticated Use AEAD
encryption (AES-GCM)
Unauthenticated Merkle tree
chunking over chunks

Protocol Version enforce
downgrade + Manifests

Fig. 6: Attack classes mapped to defensive measures.

E. Auditability and Transparency

Challenge: Users cannot easily verify that providers are not
substituting keys or manipulating manifests. Solution: adopt
key transparency logs (append-only, Merkle-tree based) that
publish public key digests. Clients can fetch and verify log
roots and detect unauthorized registrations or replacements.
Public transparency combined with notification and out-of-
band fingerprints reduces risk of silent substitution.

VII. COMPARATIVE ANALYSIS

We compare the proposed system against the classes of vul-
nerabilities found in the surveyed E2EE providers and discuss
how practical mitigations match observed failure modes. The
objective is not to produce a full empirical benchmarking of
vendors, but to map failure modes to mitigations and outline
the trade-offs.

A. Mappings from Observed Failures to Defenses

The base audit revealed common issues: unauthenticated
public keys (allowing key substitution), unauthenticated ci-
phertexts and chunk lists (allowing tampering), protocol down-
grade (weakening KDFs), and metadata leakage. For each
class:

- Unauthenticated public keys: Implement key-
transparency logs and require clients to validate
public-key digests or certificates before using them.
This prevents a malicious server from injecting attacker-
controlled public keys.

- Unauthenticated ciphertexts: Replace unauthenticated
modes with AEAD (AES-GCM) and reject legacy unau-
thenticated modes. Ensure clients detect and refuse to
decrypt messages with missing or invalid tags.

- Unauthenticated chunking: Use per-chunk AEAD and
Merkle-root binding in the manifest. Clients verify the
Merkle root before accepting chunk lists.

| Page 5

https://ijsrem.com/

© 2025, [JSREM

Volume: 09 Issue: 11 | Nov - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

- Protocol downgrade: Include version tags in manifests
and require clients to refuse minimum versions; use
signed manifests to prevent a server from downgrading
silently.

- Metadata leakage: Encrypt filenames, sizes, and direc-
tory manifests under MEKs when possible. When servers
need indices for functionality, minimize exposed fields
and consider padding or obfuscation for sizes and counts.

B. Practical Trade-offs

Applying these mitigations increases complexity: more
cryptographic operations, larger manifests, possible re-
encryption costs during rotation, and UX challenges for re-
covery. Nevertheless, the security benefits are significant. For
enterprise contexts where auditability and confidentiality are
paramount, the trade-offs favor the secure configuration. For
consumer applications, default configurations should prioritize
safe options but allow optional convenience features that are
clearly marked.

VIII. CONCLUSION AND FUTURE WORK

This paper presented a threat-aware design for client-
side encrypted cloud file storage that mitigates major real-
world failure modes previously observed in deployed E2EE

solutions. By combining authenticated symmetric encryp-
tion (AES-GCM), robust key encapsulation (RSA-OAEP or
ECIES), memory-hard KDFs (scrypt or Argon2id), Merkle-
based integrity for chunking, and tamper-evident key trans-
parency logs, implementers can prevent common attacks such

as key substitution, chunk tampering, and protocol down-
grades. The architecture balances security and practicality:
per-file DEKs and per-folder MEKSs give fine-grained control;

Merkle roots and signed manifests enforce integrity; and
carefully designed recovery options avoid silent server escrow.

Despite these improvements, practical deployment chal-
lenges remain. Recovery workflows must be usable while
preserving security. Deduplication and server-side processing
require privacy-aware protocols to avoid information leakage.
Web clients face the unique challenge of secure code delivery
(the server could deliver malicious JavaScript); mitigations
include reproducible signed bundles and native clients for
high-assurance users. Integrating searchable encryption or
homomorphic methods may enable richer server-side features
while preserving confidentiality, but current solutions involve

significant performance and complexity trade-offs.

Future work includes formalizing the protocol in a provable
security model under a malicious-server adversary and imple-
menting a reference client (web plus native) to measure real-
world performance and usability across device classes. Fur-
ther research into privacy-preserving deduplication, efficient
proxy re-encryption for low-cost revocation, and practical key-
transparency infrastructures (scalable, privacy-friendly logs)
will make CSE more deployable. Finally, user studies on
recovery UX and acceptable latencies will help determine
practical parameter choices for KDFs and caching strategies.
The paper’s diagrams and simulated plots give implementers
a foundation for continued experimentation and prototyping.

| https://ijsrem.com

ACKNOWLEDGEMENTS

The authors thank the seminar guide and the researchers
whose empirical audits informed the threat model used in this
work. The uploaded base audit and seminar synopsis were used
to build the comparative analysis and threat-aware mitigations.

REFERENCES

[1] J. Hofmann and K. T. Truong, “End-to-End Encrypted Cloud Storage
in the Wild: A Broken Ecosystem,” in Proc. ACM SIGSAC Conf. on
Computer and Communications Security (CCS), Salt Lake City, UT,
USA, Oct. 2024, pp. 3988—4001.

[2] M. Backendal, M. Haller, and K. Paterson, “A Formal Treatment of End-
to-End Encrypted Cloud Storage,” in Advances in Cryptology — CRYPTO
2024, Lecture Notes in Computer Science, vol. 14921. Springer, Cham,
2024, pp. 3-35.

[3] M. Backendal, M. Haller, and K. Paterson, “End-to-End Encrypted
Cloud Storage,” IEEE Security & Privacy, vol. 22, no. 2, pp. 42-51,
Mar.—Apr. 2024.

[4] M. Y. Shakor, M. Mmodulakunta, and S. B. Nidoni, “Dynamic AES
Encryption and Blockchain Key Management for Secure Cloud Storage,”
IEEE Access, vol. 12, pp. 6124-6137, 2024.

[5S] M. Song, X. Liu, S. Fu, and Y. Zhang, “LSDedup: Layered Secure
Deduplication for Cloud Storage,” IEEE Transactions on Computers,
vol. 73, no. 2, pp. 586-599, Feb. 2024.

[6] S.P.Maurya, V. S. Makwana, and R. Tated, “Neural Secret Key Enabled
Secure Cloud Storage with Client-Side Encryption,” e-Prime - Advances
in Electrical Engineering, Electronics and Energy (Elsevier), vol. 7, Art.
no. 100477, Mar. 2025.

[71 S. Ali, A. N. Khan, M. Anwar, and R. J. Mstafa, “Advancing Cloud
Security: Unveiling the Protective Potential of Homomorphic Encryption
and Covert Sharing Techniques,” Egyptian Informatics Journal (Else-
vier), vol. 26, Art. no. 100459, Sep. 2024.

[8] S.Ranaand D. Sharma, “A Comprehensive Survey of Cryptography Key
Management Systems for Cloud Computing,” Journal of Information
Security and Applications (Elsevier), vol. 78, Art. no. 103595, Nov.
2023.

[9] J. Yu, R. Shu, Y. Mu, and W. Susilo, “Cloud Storage Auditing and Data

Sharing with Data Deduplication and Private Information Protection,”

Computers & Security (Elsevier), vol. 143, Art. no. 103910, Aug. 2024.

J. Dave, M. S. Obaidat, and R. Tated, “Secure and Efficient Key

Management for Deduplicated Cloud Storage Systems,” in Proc. [EEE

Int. Conf. on Communications (ICC), Rome, Italy, May 2023, pp. 5547—

5552.

M. Song, X. Liu, S. Fu, and C. Xie, “Enabling Transparent Dedupli-

cation and Auditing for Encrypted Data in Cloud,” IEEE Transactions

on Dependable and Secure Computing, vol. 20, no. 6, pp. 5252-5267,

Nov.-Dec. 2023.

L. Li, Y. Zhang, M. Xu, and R. H. Deng, “Secure and Efficient Cloud

Ciphertext Deduplication Based on Intel SGX,” IEEE Transactions on

Services Computing, vol. 16, no. 4, pp. 2877-2890, Jul.—Aug. 2023.

S. Ahmad, S. Mehfuz, S. Urooj, and N. Alsubaie, “Machine Learning-

Based Intelligent Security Framework for Secure Cloud Key Manage-

ment,” Cluster Computing (Springer), vol. 27, no. 4, pp. 4975-4991,

Jun. 2024.

H. Dahshan, A. Elkaseer, and A. Kamel, “An Efficient Cryptographic-

Based Access Control Mechanism for Cloud Storage,” Journal of

Information Hiding and Multimedia Signal Processing, vol. 15, no. 3,

pp. 146-158, Jul. 2024.

Y. Zhang, X. Chen, J. Li, and D. S. Wong, “Privacy-Preserving Cloud

Storage with Secure Deduplication and Efficient Revocation,” [EEE

Transactions on Cloud Computing, vol. 11, no. 2, pp. 1876-1889, Apr.—

Jun. 2023.

H. Wang, D. He, J. Shen, and Z. Zheng, “Verifiable Searchable Encryp-

tion with Secure Deduplication for Cloud Storage,” IEEE Transactions

on Services Computing, vol. 16, no. 1, pp. 680—-693, Jan—Feb. 2023.

Y. Liu, Y. Jiang, J. Zhang, and K. Liang, “Secure Cloud Storage Scheme

with Key-Exposure Resilience and Efficient User Revocation,” Computer

Networks (Elsevier), vol. 236, Art. no. 110013, Dec. 2024.

P. Kumar, R. Kumar, G. Srivastava, and G. P. Gupta, “Blockchain-

Based Cloud Storage with Client-Side Encryption and Secure Key

Management,” in Proc. IEEE Int. Conf. on Advanced Networks and

Telecommunications Systems (ANTS), Goa, India, Dec. 2023, pp. 1-6.

[10]

(1]

[12]

[13]

[14]

[15]

(16]

(171

(18]

| Page 6

https://ijsrem.com/

International Journal of Scientific Research in Engineering and Management (IJSREM)
Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

[19] X. Chen, J. Li, X. Huang, J. Ma, and W. Lou, “Secure Data Sharing with
Efficient Revocation and Deduplication for Cloud Storage,” ACM
Transactions on Storage, vol. 20, no. 1, Art. no. 3, pp. 1-28, Feb. 2024.

[20] Y. Yang, X. Liu, and R. H. Deng, “Lightweight Secure Deduplication in
Cloud Storage for Mobile Devices,” in Proc. Annual Computer Security
Applications Conf. (ACSAC), Austin, TX, USA, Dec. 2023, pp. 278-290.

© 2025, IJSREM | https://ijsrem.com | Page 7

https://ijsrem.com/

