

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com | Page 1

Cloud Computing for File Storage and Encryption System

Radhika Audumbar Gore

ragore@@dypcoeakurdi.ac.in

Dept. of Computer Engineering

D.Y. Patil College of Engineering,

Akurdi

Pune, India

Ms. Farhina S. Sayyad

fssayyad@dypcoeakurdi.ac.in

Dept. of Computer Engineering

D.Y. Patil College of Engineering,

Akurdi

Pune, India

Shreya Pandey

shreyapx247@gmail.com

Dept. of Computer Engineering

D.Y. Patil College of Engineering,

Akurdi

Pune, India

Abstract—CSE is an increasingly popular approach to protect-
ing user data uploaded to cloud storage providers, wherein users
encrypt their files locally and upload ciphertext only, instead
of trusting the cloud service with plaintext or encryption keys.
This paper performs a comprehensive, threat-aware design and
analysis for CSE-based cloud file storage systems. We synthesize
findings from an empirical audit of widely used E2EE storage
providers and the author’s seminar synopsis to identify recurring
anti-patterns and concrete mitigations. Key contributions include:

(1) a practical architecture that combines authenticated symmet-
ric encryption (AES-GCM) for data confidentiality and integrity
with asymmetric key encapsulation (RSA-OAEP or ECIES)
for key distribution; (2) a carefully designed key hierarchy
including a KDF-derived master key, per-folder metadata keys
(MEKs), and per-file ephemeral data encryption keys (DEKs),
along with recommended secure handling and audit mechanisms;

(3) deployment-level mitigations such as key transparency or
append-only key logs, authenticated manifests and Merkle trees
for chunked-file integrity, and guidance on balancing KDF hard-
ness with device capabilities; and (4) diagrams and simulated re-
sults that quantify the performance and storage overhead trade-
offs of the proposed design. We show how common field vulner-
abilities (such as unauthenticated public keys, unauthenticated
chunk lists, IV reuse, and protocol downgrade) can be effectively
mitigated by adopting authenticated primitives, binding metadata
to content via Merkle roots, and enforcing versioned, signed
manifests. Our proposed system aims at being practical for web
and native clients, considerate of usability challenges (key recov-
ery, cross-device sync, deduplication), and mindful of regulatory
realities (auditing, enterprise recovery). The paper concludes
by recommending research directions: formal verification of
the protocol, privacy-preserving deduplication, and prototypes
demonstrating real-world usability and performance.

Index Terms—Cloud Storage, Client-Side Encryption, AES-
GCM, RSA-OAEP, Key Management, End-to-End Encryption,
Metadata Protection

I. INTRODUCTION

Cloud storage has transformed the ways in which individ-

uals and organizations manage, share, and back up data. The

economic model of ”pay-as-you-grow” and the operational

simplicity of outsourcing storage infrastructure have driven

huge adoption across consumer and enterprise sectors. Yet, this

convenience introduces an intrinsic trust problem: entrusting

a third party with sensitive files means that the provider, or

an attacker able to control the provider, may gain access to

plaintext if it holds the encryption keys. Traditional server-

side encryption protects against external breaches but does

not defend against a compromised or malicious provider that

has access to key material. To this end, end-to-end encryption

(E2EE) and client-side encryption (CSE) push the crypto-

graphic operations on the client-side: files are encrypted before

leaving the client, and the keys stay under user control.

Despite the conceptual appeal of CSE, practical deploy-

ments expose a variety of pitfalls. Studies of commercial

E2EE storage offerings reveal repeated anti-patterns such

as unauthenticated public-key material, inappropriate use of

unauthenticated cipher modes (e.g., AES-CBC without MAC),

reuse of IVs or deterministic IV selection that leak similarity

information, unauthenticated chunk lists enabling reordering or

deletion attacks, and protocol downgrade attacks that reduce

KDF strength. Additionally, feature-driven requirements such

as cross-device sync, shareable links, recovery, and dedupli-

cation often motivate insecure shortcuts like server-escrowed

keys or embedding share passwords in URLs. The result is

a mismatch between marketing claims of “zero-knowledge”

encryption and real-world security properties.

This paper takes a pragmatic, threat-aware approach. Build-

ing on an empirical base (the uploaded base paper and the

author’s seminar synopsis), we (a) classify the major failure

modes observed in deployed E2EE systems, (b) propose a con-

crete client/server architecture using authenticated primitives

and cryptographic bindings to prevent the main attacks, (c)

detail a key hierarchy and workflow suited to typical web

and native clients, and (d) provide diagrams and simulated

performance measurements to help implementers weigh trade-

offs. Crucially, the design emphasizes provably secure building

blocks where possible (AEAD, RSA-OAEP/ECIES, memory-

hard KDFs, HMACs, Merkle trees) and practical deployment

mechanisms (key transparency logs, signed manifests) that

limit the power of a malicious server while remaining usable

for end-users.

II. LITERATURE REVIEW

The literature on secure cloud file storage is broad, cov-

ering formal cryptographic models, systems-level designs,

and empirical audits of deployed services. On the formal

side, researchers have proposed models that capture desirable

security properties of E2EE cloud storage: confidentiality of

file contents, integrity of file contents and metadata, resis-

tance to a malicious server, secure sharing and revocation,

https://ijsrem.com/
mailto:fssayyad@dypcoeakurdi.ac.in
mailto:shreyapx247@gmail.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com | Page 2

and efficient key rotation. Constructive contributions include

provably secure key-management frameworks, attribute-based

and predicate encryption schemes for fine-grained sharing, and

proxy re-encryption designs to improve efficiency during re-

keying or migration.

Empirical work complements theory: audits of real world

systems often reveal a disconnect between design claims and

implementation details. Notably, a detailed cryptanalysis of

several E2EE providers documented practical attacks across

multiple vendors. These fall into a few recurring classes:

(1) unauthenticated key material and keyoverwriting where

servers can substitute or malleate key blobs that clients accept;

(2) unauthenticated encryption modes e.g., use of unauthen-

ticated CBC that permits content tampering; (3) unauthenti-

cated chunking allowing a server to reorder or delete chunks

without detection; (4) leakage of metadata filenames, directory

structure, file sizes; and (5) protocol downgrade attacks where

server-supplied version negotiation forces weaker KDFs or

cipher choices. Combining these audit results with real im-

plementations highlights a set of anti-patterns implementers

should avoid. On the systems side, practical mechanisms have

been de- veloped to address facets of these problems. Authen-

ticated Encryption with Associated Data (AEAD) e.g., AES-

GCM or ChaCha20-Poly1305 is now a recommended prim-

itive for combined confidentiality and integrity. Merkle trees

provide efficient integrity for chunked data. Key transparency

and transparency logs, inspired by certificate transparency

ideas, help detect unauthorized key substitutions by maintain-

ing an append-only public ledger of key digests that clients

can audit. Privacypreserving deduplication schemes (blind-

dedup tokens, convergent encryption mitigations, and dedi-

cated IDbased key schemes) provide storage-space benefits

while limiting cross-user leakage. Memory-hard KDFs (scrypt

and Argon2id) mitigate offline dictionary attacks on password-

derived keys. Despite these advances, real-world services often

blend these ideas inconsistently or omit critical authenticated

bindings, leading to exploitable gaps. The literature therefore

suggests a two-pronged approach: adopt standard, thoroughly-

studied cryptographic primitives and bind metadata and key

material cryptographically to prevent server substitution, and

design workflow and UX elements that make secure behavior

the default (e.g., clear key fingerprints, optional hardware-

backed keys, and convenient recovery that does not require

frequent server-side key escrow). This paper builds on those

recommendations, grounding them in the observed vendor

faults and producing a cohesive, deployable architecture.

III. PROPOSED SYSTEM AND METHODOLOGY

This section presents a concrete system architecture and

workflow for a client-side encrypted cloud file storage sys-

tem that targets a malicious-server threat model. Our design

objectives are: (1) ensure confidentiality and integrity of file

contents even when the server is malicious; (2) minimise meta-

data leakage (filenames, directory structure, file sizes) to the

extent practical; (3) provide efficient sharing and revocation

with limited bandwidth costs; and (4) remain usable for end-

users across web and native clients.

Fig. 1: Threat model: malicious-server setting and attacker

capabilities.

At a high level, the system uses a hybrid cryptosystem:

files are encrypted with ephemeral symmetric Data Encryption

Keys (DEKs) using an AEAD scheme (AES-GCM); DEKs are

then wrapped using an asymmetric key encapsulation mecha-

nism (RSA-OAEP for legacy compatibility or ECIES/X25519-

based hybrid for efficiency on mobile clients). Metadata such

as filenames and directory manifests are encrypted under

per-folder Metadata Encryption Keys (MEKs). To prevent

key substitution, critical key blobs (encrypted private keys,

group key files) are authenticated and recorded to a tamper-

evident audit structure (e.g., append-only key-transparency

logs or server-signed certificates verified against client-stored

fingerprints).

The key hierarchy starts from a user password P , which

is processed with a memory-hard key derivation function

(scrypt or Argon2id) with a per-user salt to produce a high-

entropy master key Kmaster. On-device, an asymmetric key-

pair (sku, pku) is generated and sku is encrypted under

Kmaster, producing an encrypted key blob that is stored server-

side. Importantly, the encrypted key blob is accompanied

by authenticity data (HMAC or signature) whose verification

ensures a malicious server cannot silently swap key material.

The system supports optional device-backed secrets (Secure

Enclave, TPM) to protect long-lived keys locally and to speed

authentication.

For chunked files, the client divides data into content-

defined chunks and encrypts each chunk independently under

AES-GCM with unique nonces. The ciphertexts of these

chunks are arranged into a Merkle tree; the root is included in

the manifest and authenticated under the MEK. This prevents

reordering or deletion attacks if the server swaps or removes

chunks the Merkle root will no longer match. For dedupli-

cation, the design recommends private blinded dedupe tokens

rather than naive convergent encryption to avoid trivial cross-

user leakage.

Sharing is implemented by wrapping DEKs for recipients’

public keys and by including HMAC bindings in sharing

records to prevent tampering. For revocation, lightweight

techniques such as proxy re-encryption can be used to avoid

full re-upload of content when the set of authorized recipients

changes; alternatively, rotate per-folder MEKs and rewrap

DEKs for remaining recipients. Recovery is handled via op-

tional social recovery (Shamir-based split keys among trustees)

or enterprise escrow (audited admin-wrapped keys); in all

User (Client)
Encrypts / Decrypts

Owns secrets

Encrypted Uploads

Manifest Queries

Cloud Provider
Stores ciphertexts
May be malicious

tampered JS may collude

Attacker
Malicious operator
Network attacker

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com | Page 3

5. Upload ciphertext

+ wrapped DEKs

6. Server stores blobs

Responds to queries

7. Client verifies
Decrypts file

Fig. 2: Encryption workflow with manifest verification and

Merkle integrity checks.

encryption with associated data (AEAD), providing both con-

fidentiality and integrity in a single primitive. Encryption

produces ciphertext C and an authentication tag T given key

K, nonce N , associated data A, and message M :

(C, T) ← AES-GCMK(N, A; M)

Security obligations: non-reuse of nonce N with the same

key K; unique nonces for each AEAD operation and mono-

tonic or random generation strategies that avoid collisions.

On resource-constrained platforms, ChaCha20-Poly1305 is

an alternative AEAD offering similar security with better

performance on some processors and is recommended if AES

hardware acceleration is absent.

B. Asymmetric Key Encapsulation

DEKs are ephemeral symmetric keys and must be deliv-

ered to authorized recipients securely. For key wrapping, we

recommend RSA-OAEP for backward compatibility in enter-

prise environments, and ECIES-like schemes with X25519

or Curve25519 for modern clients where lower latency and

smaller keys are desirable. RSA-OAEP provides IND-CCA

security under standard assumptions; ECIES (hybrid ECDH +

KDF + AEAD) offers efficient key exchange and is preferable

for mobile clients. The basic wrapping uses:

CDEK ← Encpk(DEK)

and the recipient uses their private key to recover DEK.

C. Key Derivation Functions

User passwords are processed with memory-hard KDFs to

derive the master key Kmaster:

Kmaster = scrypt(P, salt, N, r, p)

or

Kmaster = Argon2id(P, salt, t, m, p)

Fig. 3: Key hierarchy: User to KDF branching into keypair

and MEK.

recovery variants, auditability and explicit user consent are

emphasized to avoid silent escrow attacks.

IV. ENCRYPTION ALGORITHMS AND MATHEMATICAL

FOUNDATIONS

This section justifies and details the cryptographic primitives

chosen for the proposed system. Our design emphasizes the

use of standard, well-vetted building blocks and demonstrates

how they combine to provide confidentiality, integrity, and

authenticated metadata.

where parameters (work factor, memory, and parallelism)

should be tuned to balance security (resistance to GPU/brute-

force) and usability (unlock latency on user devices). Use

conservative defaults and allow clients to calibrate based on

device class (desktop, mobile).

D. Merkle Trees for Chunk Integrity

To secure chunked files, each chunk i produces a ciphertext

ci and authentication tag ti via AEAD. Chunks are arranged

into a Merkle tree internal nodes are hash digests (SHA-

256) of their children. The root R is stored in the manifest

(encrypted under MEK). If the server reorders or drops chunks,

the root verification fails, enabling detection of tampering.

E. HMACs and Signed Manifests

While AEAD provides per-chunk integrity, manifests and

key blobs use HMAC-SHA256 or digital signatures to guaran-

tee authenticity. For example, a manifest M may be protected

as:

A. Authenticated Symmetric Encryption (AES-GCM)

For file content encryption we recommend AES in Ga-

lois/Counter Mode (GCM). AES-GCM offers authenticated

τ = HMACKmanifest (M)

where Kmanifest is derived from MEK or Kmaster. Alternatively,

manifests may be signed with the user’s asymmetric key and

verified by clients.

3. Wrap DEK using
public keys

4. Compute Merkle root
Create manifest

1. User selects file

2. Generate DEK
encrypt file (AES-GCM)

User

KDF

Device Enclave

(optional)

Keypair

MEK

per-folder

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com | Page 4

E
n

cr
y

p
ti

o
n

 T
im

e
(s

)

F. Zero-Knowledge and Optional Advanced Primitives

Zero-knowledge proofs (ZKPs) can be used in privacy-

preserving components (e.g., to prove possession of a secret 10

without revealing it during recovery protocols) and for token- based

deduplication protocols. While not required for the

baseline design, we note ZKPs as future extensions to improve 5
privacy-preserving features.

V. RESULTS AND DISCUSSION

We present a qualitative and simulated quantitative evalu-

ation of the proposed design. The evaluation focuses on (1)

security improvements relative to common field vulnerabili-

0

0 200 400 600 800 1,000

File size (MB)

ties, (2) client-side performance overheads for encryption and

key wrapping, and (3) practical usability trade-offs concerning

key management, sharing, and recovery.

A. Security Improvements

Compared to the failure modes documented in empirical

audits, the proposed architecture provides robust mitigations:

• Key substitution: By recording key digests in a tamper-

evident log and enforcing HMAC/signed manifests, a

malicious server cannot silently swap a user’s public key

or encrypted private key blob without detection by the

client.

• Tampering of chunks: AEAD (AES-GCM) removes

the unauthenticated encryption issue. Merkle trees ensure

chunk integrity; any reordering or deletion becomes de-

tectable by comparing root digests.

• Protocol downgrade: Clients enforce minimum protocol

versions and validate manifests cryptographically, pre-

venting server-induced downgrades to weak KDF iter-

ations.

• Metadata leakage: Per-folder MEKs protect filenames

and directory manifests; metadata exposure is minimised

to only necessary indices and can be further obfuscated.

B. Simulated Performance Evaluation

We conducted microbenchmarks simulated for illustrative

purposes to measure encryption time for files of varying sizes

(10 MB to 1 GB). The objective is to compare per-file AES-

GCM encryption, naive AES-CBC encryption, and AES-GCM

with chunking and Merkle overhead. The results (illustrative)

indicate:

• AES-GCM and AES-CBC have similar throughput for

bulk encryption on modern CPUs when AES hardware

acceleration is available, with AES-GCM incurring mod-

est tag-generation cost.

• Chunking and Merkle construction add CPU and mem-

ory overhead proportional to number of chunks; how-

ever, chunking enables parallel encryption and network-

friendly uploads, balancing the cost.

• Key wrapping (RSA-OAEP) introduces fixed cost per file

for wrapping DEKs for recipients; ECIES with X25519

can reduce the latency and message size for mobile

clients.

Fig. 4: Illustrative encryption time vs file size (simulated

microbenchmarks).

6

4

2

0

Sync pCloud Icedrive Seafile Tresorit

Fig. 5: Number of vulnerability classes observed per provider.

C. Usability Considerations

Security often incurs usability burdens. Key stretching de-

lays (memory-hard KDFs) increase unlock latency; manifest

verification and key-transparency checks add network round

trips. We recommend progressive approaches: an initial fast

unlock based on a locally cached, encrypted key (short-term

cache), with background re-stretching that updates key blobs

to stronger parameters. For sharing, the wrapping cost can be

reduced by group key files (GKF) where per-folder DEKs are

wrapped once per recipient rather than for each file. Recovery

options (social recovery, printable backup tokens, enterprise

escrow) need clear UX that makes consequences explicit to

users.

D. Limitations

This evaluation is largely conceptual and simulated: real-

world performance and UX need empirical measurement

across diverse devices and networks. Also, certain features

(search over encrypted data, server-side processing) require

advanced cryptographic tools (searchable encryption or homo-

morphic techniques) which are currently costly and are left as

future work.

VI. CHALLENGES AND SOLUTIONS

Adopting robust client-side encryption in cloud products

raises several engineering, usability, and policy challenges.

AES-GCM (per-file)

AES-CBC (naive)

AES-GCM + Chunk

5 5

3 3

1

V
u
ln

er
ab

il
it

y
 c

la
ss

es

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com | Page 5

Unauthenticated

chunking

Protocol

downgrade

Below we describe key challenges and practical solutions that

maintain security without making the system unusable.

A. Key Management and Recovery

Challenge: Users forget passwords; devices are lost; enter-

prise policies demand recoverability. Naive solutions (server-

side key escrow) reintroduce a central point of compromise.

Solution: adopt layered recovery mechanisms. For consumers,

social recovery schemes split a recovery secret using Shamir

Secret Sharing among trusted contacts reconstruction requires

a threshold of shares, preventing unilateral recovery by a mali-

cious server. For enterprise deployments, escrowed admin keys

can be used but must be strictly auditable and require explicit

consent; mechanisms like certificate-pinned admin keys and

admin action logs provide accountability. Additionally, provide

printable or device-bound recovery tokens that users can store

offline.

B. Deduplication vs Privacy

Challenge: Deduplication saves storage but deterministic

encryption (convergent encryption) leaks file equality and

enables brute-force attacks on predictable files. Solution: pre-

fer privacy-preserving deduplication techniques: blind dedupe

tokens (clients compute a token using a blinded value and

server assists in matching without learning plaintext), or per-

user encryption plus server-assisted indexing with proof-of-

possession protocols. When deduplication is enabled, clearly

inform users about privacy trade-offs and limit dedupe to

non-sensitive classes or enterprise-only contexts with explicit

policy.

C. Performance and Device Diversity

Challenge: Memory-hard KDFs and AEAD operations are

CPU- and memory-intensive on low-end devices. Solution:

calibrate KDF parameters automatically based on device class,

maintain a short-term encrypted key cache guarded by local

OS protections, and use hardware-backed cryptography (TPM,

Secure Enclave) to accelerate operations where available.

Allow users to opt-in to security-performance trade-offs with

clear guidance.

D. Malicious Server and Javascript Delivery

Challenge: Web clients are vulnerable if the server can

serve malicious JavaScript that exfiltrates keys. Solution:

provide browser extension options that pin code locally,

use Subresource Integrity (SRI) where possible, and push

for reproducible build and signed client bundles. For high-

assurance use-cases, native clients and browser extensions re-

duce attack surface compared to web-served JS. Additionally,

strong operational defenses multi-party hosting of client code,

reproducible signed artifacts raise the bar for attackers.

Fig. 6: Attack classes mapped to defensive measures.

E. Auditability and Transparency

Challenge: Users cannot easily verify that providers are not

substituting keys or manipulating manifests. Solution: adopt

key transparency logs (append-only, Merkle-tree based) that

publish public key digests. Clients can fetch and verify log

roots and detect unauthorized registrations or replacements.

Public transparency combined with notification and out-of-

band fingerprints reduces risk of silent substitution.

VII. COMPARATIVE ANALYSIS

We compare the proposed system against the classes of vul-

nerabilities found in the surveyed E2EE providers and discuss

how practical mitigations match observed failure modes. The

objective is not to produce a full empirical benchmarking of

vendors, but to map failure modes to mitigations and outline

the trade-offs.

A. Mappings from Observed Failures to Defenses

The base audit revealed common issues: unauthenticated

public keys (allowing key substitution), unauthenticated ci-

phertexts and chunk lists (allowing tampering), protocol down-

grade (weakening KDFs), and metadata leakage. For each

class:

• Unauthenticated public keys: Implement key-

transparency logs and require clients to validate

public-key digests or certificates before using them.

This prevents a malicious server from injecting attacker-

controlled public keys.

• Unauthenticated ciphertexts: Replace unauthenticated

modes with AEAD (AES-GCM) and reject legacy unau-

thenticated modes. Ensure clients detect and refuse to

decrypt messages with missing or invalid tags.

• Unauthenticated chunking: Use per-chunk AEAD and

Merkle-root binding in the manifest. Clients verify the

Merkle root before accepting chunk lists.

Unauthenticated

encryption

Version enforce

+ Manifests

Merkle tree

over chunks

Use AEAD

(AES-GCM)

Key transparency

+ Certs

Unauthenticated

public keys

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com | Page 6

• Protocol downgrade: Include version tags in manifests

and require clients to refuse minimum versions; use

signed manifests to prevent a server from downgrading

silently.

• Metadata leakage: Encrypt filenames, sizes, and direc-

tory manifests under MEKs when possible. When servers

need indices for functionality, minimize exposed fields

and consider padding or obfuscation for sizes and counts.

B. Practical Trade-offs

Applying these mitigations increases complexity: more

cryptographic operations, larger manifests, possible re-

encryption costs during rotation, and UX challenges for re-

covery. Nevertheless, the security benefits are significant. For

enterprise contexts where auditability and confidentiality are

paramount, the trade-offs favor the secure configuration. For

consumer applications, default configurations should prioritize

safe options but allow optional convenience features that are

clearly marked.

VIII. CONCLUSION AND FUTURE WORK

This paper presented a threat-aware design for client-

side encrypted cloud file storage that mitigates major real-

world failure modes previously observed in deployed E2EE

solutions. By combining authenticated symmetric encryp-

tion (AES-GCM), robust key encapsulation (RSA-OAEP or

ECIES), memory-hard KDFs (scrypt or Argon2id), Merkle-

based integrity for chunking, and tamper-evident key trans-

parency logs, implementers can prevent common attacks such

as key substitution, chunk tampering, and protocol down-

grades. The architecture balances security and practicality:

per-file DEKs and per-folder MEKs give fine-grained control;

Merkle roots and signed manifests enforce integrity; and

carefully designed recovery options avoid silent server escrow.

Despite these improvements, practical deployment chal-

lenges remain. Recovery workflows must be usable while

preserving security. Deduplication and server-side processing

require privacy-aware protocols to avoid information leakage.

Web clients face the unique challenge of secure code delivery

(the server could deliver malicious JavaScript); mitigations

include reproducible signed bundles and native clients for

high-assurance users. Integrating searchable encryption or

homomorphic methods may enable richer server-side features

while preserving confidentiality, but current solutions involve

significant performance and complexity trade-offs.

Future work includes formalizing the protocol in a provable

security model under a malicious-server adversary and imple-

menting a reference client (web plus native) to measure real-

world performance and usability across device classes. Fur-

ther research into privacy-preserving deduplication, efficient

proxy re-encryption for low-cost revocation, and practical key-

transparency infrastructures (scalable, privacy-friendly logs)

will make CSE more deployable. Finally, user studies on

recovery UX and acceptable latencies will help determine

practical parameter choices for KDFs and caching strategies.

The paper’s diagrams and simulated plots give implementers

a foundation for continued experimentation and prototyping.

ACKNOWLEDGEMENTS

The authors thank the seminar guide and the researchers

whose empirical audits informed the threat model used in this

work. The uploaded base audit and seminar synopsis were used

to build the comparative analysis and threat-aware mitigations.

REFERENCES

[1] J. Hofmann and K. T. Truong, “End-to-End Encrypted Cloud Storage
in the Wild: A Broken Ecosystem,” in Proc. ACM SIGSAC Conf. on
Computer and Communications Security (CCS), Salt Lake City, UT,
USA, Oct. 2024, pp. 3988–4001.

[2] M. Backendal, M. Haller, and K. Paterson, “A Formal Treatment of End-
to-End Encrypted Cloud Storage,” in Advances in Cryptology – CRYPTO
2024, Lecture Notes in Computer Science, vol. 14921. Springer, Cham,
2024, pp. 3–35.

[3] M. Backendal, M. Haller, and K. Paterson, “End-to-End Encrypted
Cloud Storage,” IEEE Security & Privacy, vol. 22, no. 2, pp. 42–51,
Mar.–Apr. 2024.

[4] M. Y. Shakor, M. Mmodulakunta, and S. B. Nidoni, “Dynamic AES
Encryption and Blockchain Key Management for Secure Cloud Storage,”
IEEE Access, vol. 12, pp. 6124–6137, 2024.

[5] M. Song, X. Liu, S. Fu, and Y. Zhang, “LSDedup: Layered Secure
Deduplication for Cloud Storage,” IEEE Transactions on Computers,
vol. 73, no. 2, pp. 586–599, Feb. 2024.

[6] S. P. Maurya, V. S. Makwana, and R. Tated, “Neural Secret Key Enabled
Secure Cloud Storage with Client-Side Encryption,” e-Prime - Advances
in Electrical Engineering, Electronics and Energy (Elsevier), vol. 7, Art.
no. 100477, Mar. 2025.

[7] S. Ali, A. N. Khan, M. Anwar, and R. J. Mstafa, “Advancing Cloud
Security: Unveiling the Protective Potential of Homomorphic Encryption
and Covert Sharing Techniques,” Egyptian Informatics Journal (Else-
vier), vol. 26, Art. no. 100459, Sep. 2024.

[8] S. Rana and D. Sharma, “A Comprehensive Survey of Cryptography Key
Management Systems for Cloud Computing,” Journal of Information
Security and Applications (Elsevier), vol. 78, Art. no. 103595, Nov.
2023.

[9] J. Yu, R. Shu, Y. Mu, and W. Susilo, “Cloud Storage Auditing and Data
Sharing with Data Deduplication and Private Information Protection,”
Computers & Security (Elsevier), vol. 143, Art. no. 103910, Aug. 2024.

[10] J. Dave, M. S. Obaidat, and R. Tated, “Secure and Efficient Key
Management for Deduplicated Cloud Storage Systems,” in Proc. IEEE
Int. Conf. on Communications (ICC), Rome, Italy, May 2023, pp. 5547–
5552.

[11] M. Song, X. Liu, S. Fu, and C. Xie, “Enabling Transparent Dedupli-
cation and Auditing for Encrypted Data in Cloud,” IEEE Transactions
on Dependable and Secure Computing, vol. 20, no. 6, pp. 5252–5267,
Nov.–Dec. 2023.

[12] L. Li, Y. Zhang, M. Xu, and R. H. Deng, “Secure and Efficient Cloud
Ciphertext Deduplication Based on Intel SGX,” IEEE Transactions on
Services Computing, vol. 16, no. 4, pp. 2877–2890, Jul.–Aug. 2023.

[13] S. Ahmad, S. Mehfuz, S. Urooj, and N. Alsubaie, “Machine Learning-
Based Intelligent Security Framework for Secure Cloud Key Manage-
ment,” Cluster Computing (Springer), vol. 27, no. 4, pp. 4975–4991,
Jun. 2024.

[14] H. Dahshan, A. Elkaseer, and A. Kamel, “An Efficient Cryptographic-
Based Access Control Mechanism for Cloud Storage,” Journal of
Information Hiding and Multimedia Signal Processing, vol. 15, no. 3,
pp. 146–158, Jul. 2024.

[15] Y. Zhang, X. Chen, J. Li, and D. S. Wong, “Privacy-Preserving Cloud
Storage with Secure Deduplication and Efficient Revocation,” IEEE
Transactions on Cloud Computing, vol. 11, no. 2, pp. 1876–1889, Apr.–
Jun. 2023.

[16] H. Wang, D. He, J. Shen, and Z. Zheng, “Verifiable Searchable Encryp-
tion with Secure Deduplication for Cloud Storage,” IEEE Transactions
on Services Computing, vol. 16, no. 1, pp. 680–693, Jan.–Feb. 2023.

[17] Y. Liu, Y. Jiang, J. Zhang, and K. Liang, “Secure Cloud Storage Scheme
with Key-Exposure Resilience and Efficient User Revocation,” Computer
Networks (Elsevier), vol. 236, Art. no. 110013, Dec. 2024.

[18] P. Kumar, R. Kumar, G. Srivastava, and G. P. Gupta, “Blockchain-
Based Cloud Storage with Client-Side Encryption and Secure Key
Management,” in Proc. IEEE Int. Conf. on Advanced Networks and
Telecommunications Systems (ANTS), Goa, India, Dec. 2023, pp. 1–6.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com | Page 7

[19] X. Chen, J. Li, X. Huang, J. Ma, and W. Lou, “Secure Data Sharing with
Efficient Revocation and Deduplication for Cloud Storage,” ACM
Transactions on Storage, vol. 20, no. 1, Art. no. 3, pp. 1–28, Feb. 2024.

[20] Y. Yang, X. Liu, and R. H. Deng, “Lightweight Secure Deduplication in
Cloud Storage for Mobile Devices,” in Proc. Annual Computer Security
Applications Conf. (ACSAC), Austin, TX, USA, Dec. 2023, pp. 278–290.

https://ijsrem.com/

