
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM34651 | Page 1

CLOUD EDGE FOR TASK DEPLOYMENT AND LOAD BALANCING

Sathyanarayana S 1, Zikriya Ahmed2, Srijan A Sanicum3, Manoj P4, Samarth G5

1Professor,2Final year Student,3Final year Student, 4Final year Student,5Final year Student

Department of Computer Science and Engineering, Jawaharlal Nehru New College of Engineering,

Shimoga

 ***-

Abstract – This report outlines the JCETD (Joint Cloud-Edge Task Deployment) strategy,

aimed at optimizing task deployment and load balancing within joint cloud-edge datacenters. The

methodology involves simulating the task deployment process as a deep reinforcement learning

endeavor within the cloudedge model. Through continuous exploration and utilization of the

system environment, tasks are strategically allocated to ensure optimal performance and load

balancing. The ultimate goal is to achieve efficient computing capabilities and overall system

equilibrium within the cloud-edge infrastructure.

Key Words: Task Deployment, Cloud Scheduling, Load Balancing.

1. INTRODUCTION

 Edge computing is slowly moving cloud computing applications, data and services from centralized

nodes to edge computing is gradually shifting cloud computing applications, data, and services from

centralized nodes to the network's edge. Positioned between terminal devices and traditional cloud

computing data centers, edge computing is designed to handle low-latency and real-time tasks. This

approach brings the cloud closer to endusers, offering computing and services with minimal latency.

While edge computing significantly reduces latency, the improper assignment of tasks can lead to an

uneven load distribution among nodes. Due to the diversity and heterogeneity of edge computing nodes,

conventional load balancing algorithms are not directly applicable, making edge computing load

balancing a critical research area in academia.

 Load balancing strategies generally fall into two categories: static and dynamic. Static load

balancing algorithms do not consider the prior state of the node while distributing the load, and they

work well when nodes have minimal load variation. However, they are not suitable for the dynamic

nature of the edge environment. A dynamic load balancing technique for edge computing, based on

intermediary nodes, considers the previous state of a node when distributing the load. This report

proposes a network architecture for edge computing based on intermediary nodes to enhance the

acquisition of node state information. The intermediary node classifies and evaluates the node's status

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM34651 | Page 2

using intrinsic attribute values and real-time attribute values. It then returns the node information with

the relatively lightest load.

2. RELATED WORKS

In the study [1] proposed Efficient task deployment and load balancing are critical for the

optimization of joint "cloud-edge" datacenters. Current research has predominantly focused on unilateral

load balancing within either the cloud or edge computing centers, overlooking the broader challenge of

balancing loads across the entire system. Addressing this gap, this paper proposes a novel approach. In

[2] have In the contemporary technological landscape, the ascendancy of cloud computing has been

indisputable, offering a robust infrastructure for delivering scalable and dependable services to a diverse

array of users, spanning from individual consumers to large-scale enterprises. However, as the demands

of computing continue to evolve and diversify, the limitations inherent in traditional cloud architectures

have become increasingly apparent. It is within this context that emerging paradigms such as edge

computing have garnered considerable attention and adoption.

3. METHODOLOGY

There are mainly 6 steps:

• Requirement Analysis and System Design: Identify system requirements and design the

architecture, specifying cloud and edge roles, data flow, and communication protocols.

• Algorithm Development: Develop algorithms for task deployment and load balancing, considering

task size, resource availability, latency, and cost.

• Simulation Environment Setup: Configure a simulation environment using appropriate tools to

model the cloud-edge system and set up various testing scenarios.

• Algorithm Integration and Testing: Integrate the algorithms into the simulation environment

and conduct initial testing to verify functionality and address issues.

• Performance Evaluation: Perform extensive simulation runs to evaluate performance using

defined metrics and compare results with existing solutions.

• Real-World Implementation and Validation: Develop a prototype, implement it in a real-world

setting, conduct a case study for validation, and refine the system based on feedback.

4. PROPOSED SYSTEM

The Joint Cloud-Edge Task Dispatching (JCETD) strategy implemented in the Python script optimizes

task scheduling in a heterogeneous computing environment encompassing both cloud and edge resources.

By considering factors such as task latency requirements, service times, and resource availability across

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM34651 | Page 3

cloud and edge nodes, JCETD dynamically dispatches tasks to the most suitable computing resource.

Tasks with stringent latency requirements are prioritized for execution on edge devices closer to the point

of data generation, minimizing latency and enhancing responsiveness. Conversely, tasks with less

stringent latency constraints or higher computational demands are offloaded to the cloud for processing,

leveraging its abundant computational resources. This approach ensures efficient resource utilization

while meeting the diverse latency requirements of tasks in distributed computing environments.

First-In First-Out (FIFO) Scheduling: The First-In First-Out (FIFO) scheduling policy incorporated in

the Python script prioritizes task execution on edge computing nodes based on their arrival order. In this

strategy, tasks arriving at the edge are immediately dispatched to available edge devices for processing,

without considering their latency requirements or computational complexity.

JCETD Task Deployment: The Joint Cloud-Edge Task Deployment (JCETD) model facilitates efficient

task scheduling in a distributed computing environment comprising both cloud and edge resources.

Shortest Job First (SJF) Scheduling: The Shortest Job First (SJF) scheduling policy incorporated in the

Python script prioritizes task execution on edge computing nodes based on the tasks' computational

complexity. In this strategy, tasks arriving at the edge are immediately assessed, and those with the

shortest expected processing time are dispatched to available edge devices first, regardless of their arrival

order or latency requirements.

Fig. 3.1: Systems Architecture

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM34651 | Page 4

4.1 JCETD Function:

def simulate(datacenters, tasks):

 load_balance_degrees = []

 for task in tasks:

 if task.location == 'cloud':

 heapq.heappush(datacenters[0].task_queue, task)

 else:

 heapq.heappush(datacenters[random.randint(1, len(datacenters) - 1)].task_queue, task)

 load_balance_degrees.append([datacenter.calculate_load_balance_degree() for datacenter in

datacenters])

 schedule = []

 for datacenter in datacenters:

 while datacenter.task_queue:

 task = heapq.heappop(datacenter.task_queue)

 schedule.append(datacenter.schedule_task(task))

 load_balance_degrees.append([datacenter.calculate_load_balance_degree() for datacenter in

datacenters])

 return schedule, load_balance_degree

5. TECHNOLOGY USED

• Python: Python is the primary programming language used in the code snippet.

• Visual Studio Code: VS Code is the integrated development environment (IDE) used for writing,

debugging, and running the Python code.

• Python Extension for Visual Studio Code: Install the Python extension for VS Code, which provides

features like IntelliSense, linting, debugging, and code navigation specific to Python.

• Matplotlib: Matplotlib is a plotting library for Python used for creating visualizations, such as line

plots, histograms, and scatter plots. It's used in the code snippet to visualize the load balance degree

over time

6. OUTPUT

The following graph illustrates the load balance degree over time for the Job Earliest Completion Time

Deadline (JECTD) scheduling algorithm. The load balance degree is plotted against time steps,

providing insights into the dynamic nature of workload distribution within the distributed computing

network under the JECTD scheduling algorithm.

The load balance degree remains relatively stable over time under the JECTD scheduling algorithm,

indicating consistent workload distribution within the network. The prioritization of tasks based on

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM34651 | Page 5

deadlines for earliest completion time ensures efficient allocation and execution of tasks, minimizing

fluctuations in workload distribution.

Fig 6.1: JCETD Scheduling Output

7. CONCLUSION

 Hand Cloud-edge computing for task deployment and load balancing seamlessly merges cloud

computing's scalability with edge computing's low-latency advantages, positioning computing resources

nearer to data origins or end-users. This proximity significantly diminishes latency, enhancing system

performance and user experiences. Load balancing strategies intelligently distribute computing tasks

across edge nodes and cloud resources, optimizing resource utilization and bolstering system reliability.

The immediate benefits include reduced latency for critical applications, adaptable resource allocation for

varying workloads, heightened security with localized data processing, and real-time analytics capabilities

for immediate insights, collectively driving innovation and efficiency in modern computing

environments.

8. FUTURE SCOPE

• Optimized Resource Management: Developing more advanced load balancing algorithms and

resource management techniques to ensure optimal utilization of edge and cloud resources based on

dynamic workload patterns.

• Edge AI and Machine Learning: Integrating artificial intelligence (AI) and machine learning (ML)

capabilities at the edge to enable intelligent decision-making, predictive analytics, and automation in

edge computing environments.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM34651 | Page 6

• 5G Integration: Leveraging the capabilities of 5G networks to enhance connectivity, data transfer

speeds, and support for a wide range of IoT devices and edge applications .

 REFRENCES

[1] Yunmeng Dong , Gaochao Xu, Meng Zhang , and Xiangyu Meng “A HighEfficient

Joint ’Cloud Edge’ Aware Strategy for Task Deployment and Load Balancing”.

[2]

BIRJU Tanka and Dr.VAIBHAV GANDHI “A Comparative Study on Cloud

Computing, Edge Computing and Fog Computing”, 2023, IOS Press eBook

[3]

He Sun, “Resource Deployment and Task Scheduling Based on Cloud Computing”,

Publisher: IEEE, 2022 IEEE 2nd International Conference on Computer Systems (ICCS)

[4]

K. M. Aslam Uddin, “review of task scheduling in cloud computing based on nature-

inspired optimization algorithm”, June 2023Cluster Computing 26(5):1-31

[5]

Tanzila Saba1 Amjad Rehman, “Cloud-edge load balancing distributed protocol for IoE

services using swarm intelligence”, Cluster Computing (2023) 26:2921–2931June 2021

[6]

Zeinab Nezami , Kamran Zamanifar, “Decentralized Edge-to-Cloud Load Balancing:

Service Placement for the Internet of Things”, March 5, 2021

[7]

Xiaolong Xu, Qingxiang Liu, Yun Luo, Kai Peng, , “A computation offloading method

over big data for IoT-enabled cloud-edge computing”, Published - Jun 2019 Future

Generation Computer Systems

http://www.ijsrem.com/

