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ABSTRACT 

 

The global demand for sustainable and efficient agricultural practices is rising due to food security challenges, 

population growth, and environmental sustainability concerns. Among the critical issues, fertilizer mismanagement 

contributes to soil degradation, water contamination, greenhouse gas emissions, and reduced crop productivity. To 

address these challenges, this research presents Cloud Farm, a cloud-based, machine learning-driven system designed 

to deliver intelligent, site-specific fertilizer recommendations. The platform analyzes soil nutrient values (N, P, K), pH, 

rainfall, and crop requirements using supervised learning models such as Random Forest and Gradient Boosting, 

achieving higher accuracy than conventional methods. Cloud Farm incorporates multilingual user interfaces to 

enhance accessibility for farmers across diverse regions and includes an integrated e-commerce module for seamless 

fertilizer procurement. 

 

1. INTRODUCTION 

 

 

Agriculture remains the backbone of the global economy, securing food supplies and sustaining livelihoods for billions 

of people worldwide. Fertilizers play a pivotal role in boosting crop yields, yet their inefficient and excessive 

application has caused severe consequences, including nutrient runoff, reduced nitrogen-use efficiency, soil 

degradation, groundwater contamination, and greenhouse gas emissions 

. Traditional fertilizer practices rely on generalized recommendations that fail to account for field-level variability, 

resulting in wasteful and environmentally harmful outcomes. To overcome these challenges, the emergence of 

precision agriculture (PA) has introduced advanced solutions such as the Internet of Things (IoT), artificial 

intelligence (AI), machine learning (ML), remote sensing, and variable-rate technology (VRT), enabling farmers to 

optimize nutrient delivery with site-specific precision 

However, barriers such as technical complexity, high implementation costs, and the lack of farmer-friendly, accessible 

interfaces have limited adoption, particularly among smallholder farmers in developing regions. This research 

addresses these gaps by presenting Cloud Farm, a multilingual, web-based fertilizer recommendation platform that 

leverages supervised ML algorithms to analyze soil nutrient levels (N, P, K), pH, rainfall, and crop-specific 

requirements. Cloud Farm provides accurate, data-driven recommendations, delivers outputs in the farmer’s preferred 

local language, and integrates an e- commerce module to directly connect farmers with fertilizer suppliers. Deployed 

on the Google Cloud Platform (GCP) with Docker containerization, the system ensures scalability, reliability, and 

accessibility, empowering farmers to adopt sustainable practices, improve yields, and reduce fertilizer misuse. 

 

LIST OF ABBREVIATIONS 

 

• CF — CloudFarm 

• GCP — Google Cloud Platform 

• ML — Machine Learning 

• NPK — Nitrogen, Phosphorus, Potassium 

• pH — Potential of Hydrogen (soil acidity/alkalinity measure) 

• RF — Random Forest 

https://ijsrem.com/
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• GB — Gradient Boosting 

• LR — Logistic Regression 

• UI — User Interface 

 

II. METHODOLOGY 

 

The proposed CloudFarm system follows a structured methodology consisting of dataset collection, preprocessing, 

machine learning model training, and modular system architecture deployment. The overall workflow is illustrated in 

Fig. 3. 

A. Dataset Collection 

Source: Soil and crop datasets were obtained from Kaggle and Practically. 

Parameters: Nitrogen (N), Phosphorus (P), Potassium (K), pH value, rainfall, and crop type. Size: Approximately 5,000 

records covering diverse crop–soil conditions. 

Objective: Ensure dataset diversity to improve model generalization across multiple regions. 

 

Fig. 1a. Distribution of dataset records across major crops, ensuring balanced representation for model training. 

 

B. Data Preprocessing 

 

To prepare the dataset for model training, several preprocessing steps were performed: 

• Removal of duplicate and inconsistent entries. 

• Handling missing values using mean/median imputation. 

• Normalization of soil parameter values for consistent scaling. 

• Label encoding of categorical crop and fertilizer classes. 

These steps ensure that the input dataset is clean, standardized, and model-ready, thereby improving algorithm 

performance. 

C. Machine Learning Models 

 

To achieve high accuracy in fertilizer recommendation, three supervised learning algorithms were implemented and 

evaluated: 

• Random Forest (RF): An ensemble of decision trees, robust against noise and suitable for nonlinear relationships. 

• Gradient Boosting (GB): A sequential ensemble method optimized for generalization. 

https://ijsrem.com/
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• Logistic Regression (LR): A baseline classifier for comparison. Evaluation Metrics: Accuracy, Precision, Recall, 

F1-Score. Results: 

RF achieved the highest performance (~92% accuracy). GB achieved ~89% accuracy. 

LR achieved ~85% accuracy. 

 

Fig. 2. Performance comparison of Random Forest, Gradient Boosting, and Logistic Regression models, showing 

Random Forest as the best-performing algorithm. 

 

 

D. System Architecture 

 

CloudFarm follows a modular, cloud-based architecture that enables scalability and farmer accessibility: 

• User Interface (UI): Farmers input soil and crop details. 

• Backend (API Layer): Processes user input and sends it to the ML engine. 

• ML Engine: Predicts the optimal fertilizer based on trained models. 

• Database: Stores soil, crop, and fertilizer records. 

• E-Commerce Module: Provides optional purchase of recommended fertilizers. 

Deployment: Hosted on Google Cloud Platform (GCP) with Docker containers for scalability, modularity, and ease of 

maintenance. 

 

https://ijsrem.com/
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Fig. 3. CloudFarm system architecture and workflow, from farmer input to fertilizer recommendation and e-commerce 

integration, deployed on GCP with Docker.However, barriers such as technical complexity, high implementation 

costs, and the lack of farmer-friendly, accessible interfaces have limited adoption, particularly among smallholder 

farmers in developing regions. This research addresses these gaps by presenting Cloud Farm, a multilingual, web-

based fertilizer recommendation platform that leverages supervised ML algorithms to analyze soil nutrient levels (N, 

P, K), pH, rainfall, and crop-specific requirements. Cloud Farm provides accurate, data-driven 

recommendations, delivers outputs in the farmer’s preferred local language, and integrates an e- commerce module to 

directly connect farmers with fertilizer suppliers. Deployed on the Google Cloud Platform (GCP) with Docker 

containerization, the system ensures scalability, reliability, and accessibility, empowering farmers to adopt sustainable 

practices, improve yields, and reduce fertilizer misuse. 

4 Implementation and Experimental Setup 

 

4.1 Overview 

The CloudFarm system was implemented as a complete data-driven fertilizer and crop recommendation platform. 

The workflow followed three main stages: (1) data acquisition and preprocessing, (2) machine-learning model training 

and validation, and (3) deployment on a scalable cloud infrastructure. 

This design reflects the best-practice framework for smart-fertilizer management discussed by Liu et al. (2025), which 

highlights cloud computing, machine learning, and IoT integration as key enablers of precision agriculture. 

4.2 Data Collection 

• Sources: 

o Kaggle Fertilizer Recommendation Dataset – approximately ►  records. 

o Practically soil–weather dataset – approximately ►  records. 

• Key Features: Nitrogen (N), Phosphorus (P), Potassium (K), soil pH, average rainfall, temperature, and 

humidity. 

• Quality Control: Missing values < ►  %, outliers removed using an inter-quartile filter. 

• Rationale: These nutrient and climatic features correspond to the core soil indicators emphasized for smart 

fertilizer management (Liu et al., 2025). 

 

Table 4.1 Dataset Summary 

Feature Unit Rang

e 

Mean ± 

SD 

Sourc

e 

Nitrogen kg 

ha⁻¹ 

► – ►    Kaggl

e 

Phosphoru

s 

kg 

ha⁻¹ 

► – ►    Kaggl

e 

… … … … … 

 

4.3 Pre-processing 

 

• Cleaning: Removal of nulls and outliers. 

• Normalization: Min–max scaling of numeric variables to [0, 1]. 

• Encoding: One-hot encoding for categorical crop types. 

https://ijsrem.com/
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• Feature Engineering: Added N/P/K ratio and soil-moisture index derived from rainfall and humidity. 

• Split: 80 % training, 20 % testing, with 10-fold cross-validation. 

 

 

4.4 Model Training 

 

Three supervised algorithms were evaluated: Random Forest, Gradient Boosting, and Logistic Regression. 

Random Forest achieved the highest mean accuracy of ►  % (± ►  %). 

All models were implemented in Python 3.11 using scikit-learn and TensorFlow. 

Performance was assessed with Accuracy, Precision, Recall, F1-score, and ROC-AUC metrics. 

4.5 Deployment Architecture 

 

• Backend: Flask REST API containerised with Docker. 

• Cloud Hosting: Google Cloud Platform (GCP) Compute Engine with auto-scaling. 

• Database: Cloud SQL (PostgreSQL) for user data and prediction storage. 

• Front-End: Responsive web interface with multilingual support (English, Hindi, Marathi). 

• CI/CD: GitHub Actions for automated testing and rolling updates. 

 

 

 

4.6 Experimental Environment 

• Hardware: Local training on Intel i7 (12-core), 32 GB RAM, NVIDIA RTX 3060 GPU. 

• Cloud Inference: 2 vCPU, 4 GB RAM GCP VM instance. 

• Software: Ubuntu 22.04, Python 3.11, Docker 24.x. 

 

4.7 Validation and Field Relevance 

 

• Conducted sensitivity analysis by varying each nutrient input (± 20 %) to assess prediction stability. 

• Simulated different rainfall and pH conditions to mimic regional agro-climatic variability. 

• These tests follow the recommendation of Liu et al. (2025) to stress-test models for diverse field scenarios. 

Characteristics of Monitoring and Control Strategies in Agriculture 

 

 

Ref / Author & 

Year 

Crop/Orc 

hard 

Model / 

Technique / 

Software 

Technologies / 

Sensors 

Estimated Variables / 

Research Approaches 

Achievements 

[10] T. Islam et 

al., 2018 

Rice Image 

classificatio n 

RGB Disease classify 1. Efficient technology 

2. Faster & minimum computation time 

3. Stress identified by NDVI 

[101] Z. P. D. 

Marison et al., 

2020 

Soybean Linear 

regression 

model 

Multispectral Pest Stress identified by NDVI 
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[102] X. Zheng et 

al., 2019 

— Regression 

model 

ASD Field Spec® 3 

Spectroradiometer 

Locust calculate VIs 

(NDVI, RVI, SAVI, 

GNDVI) 

Designed loss estimation model 

[103] A. A. 

Saragih et al., 

2017 

Cotton SVM 

(Support 

Vector 

Machine) 

Sensors RGB 

images 

Leaf disease Detected 5 diseases successfully 

[104] T. Hiomi et 

al., 2016 

— SVM 

(Support 

Vector 

Machine) 

Sensors Early detection of fault 

in plants 

Proposed new fault detection method 

[105] V. Patel et 

al., 2016 

Weed CNN + 

Deep 

Learning 

GPU, RTK GPS Weed sprayer and detect 

plants 

Cost-efficient system 

[106] J. 

Priyadarshini et 

al., 2019 

— Sound 

frequency 

analysis 

Ultrasonic sounds 

(32k–48kHz), pH 

sensor 

Pest control Usage of pesticides decreased 

[107] A. 

Srivastava et al., 

2019 

Brinjal View Spec 

Pro software 

Hyperspectral 

remote sensing 

Monitor crop stress 

growth and disease 

Bandwidths show strong positive 

correlation 

[108] R. H. Al 

Shehri et al., 

2019 

Date Supervised 

learning 

Multispectral O. lybicus infestations Detect early infestation levels and 

location 

[109] — Corn CNN Hyperspectral 

camera 

Plant cold damage Detected cold damage in crops 

 

 

Purpose – to provide a compact evidence map of how imaging, machine-learning and IoT methods detect plant stress, 

pests, and disease while optimising inputs such as water, fertiliser and pesticides. 

Core Monitoring Technologies 

• Spectral imaging – RGB, multispectral, hyperspectral and thermal cameras capture crop reflectance or 

temperature to reveal stress or disease. 

• Remote sensing & drones – deliver large-area, repeatable observations. 

• IoT sensors – soil-moisture, pH, humidity, and sound sensors give continuous ground data. 

 

Analytical & Control Models 

• Statistical regression to relate spectral indices (e.g., NDVI, SAVI) to crop condition or yield. 

• Machine learning such as Support Vector Machines (SVM), Convolutional Neural Networks (CNN) and other 

supervised/unsupervised models to classify diseases, weeds or stress levels. 

• Deep learning for real-time detection and automated actuation (e.g., weed-sprayer guidance). 

 

Key Outcomes Highlighted 

• Early stress detection – rapid identification of nutrient deficiency, disease, pest infestation or water stress. 

• Operational efficiency – faster computation and minimal field time compared to manual scouting. 

https://ijsrem.com/
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• Resource optimisation – targeted pesticide or fertiliser use, reducing cost and environmental impact. 

 

Representative Examples from the Box 

 

Rice disease classified with RGB imagery and image-classification algorithms, achieving fast processing. 

Cotton leaf disease detected by SVM on RGB sensor data. 

Weed mapping with CNN and RTK-GPS enabling cost-effective precision spraying. Hyperspectral analysis of brinjal 

and corn for growth stress and cold-damage assessment. 

Arrey types of soil: 

 

Box Plot – Nitrogen by Soil Type 

 

What it shows: 

• Each soil type (Black, Clayey, Loamy, Red, Sandy) is on the x-axis; the y-axis is nitrogen concentration. 

• The box shows the interquartile range (middle 50 % of data), the line inside is the median, and the “whiskers” 

show the overall spread, including possible outliers. 

 

Connection to the review: 

• The paper highlights nutrient monitoring as a key factor in smart agriculture (Section II.A, “Factors Affecting 

Agriculture”)—especially nitrogen, potassium and phosphorus as essential macronutrients. 

• Sensors such as soil-nutrient probes or multispectral imaging (e.g., NDVI) can track nitrogen levels to adjust 

fertilizer use precisely. 

• Example: Studies in Table 4 of the review used multispectral cameras to estimate nitrogen stress and guide 

targeted fertilizer application. 

https://ijsrem.com/
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Count Plot – Soil Type 

 

What it shows: 

• Simply counts the number of samples for each soil type. 

• Here, the dataset is balanced: roughly the same number of records for all five soils. 

Connection to the review: 

• When applying AI or machine-learning models (e.g., Support Vector Machines, CNNs), 

balanced training data across soil categories improves prediction accuracy. 

• The review notes that IoT and imaging approaches require well-distributed sampling for reliable decision layers 

in smart agriculture systems. 

 

 

Pie Chart – Soil Type Distribution 

 

What it shows: 

• Percentage share of each soil type; here, all five soils are close to 20 %. 

• Confirms the count plot: the dataset is evenly split. 

https://ijsrem.com/
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Connection to the review: 

• Figure 2 (“Things plants need”) and Table 3 emphasize soil as a primary factor influencing crop growth. 

• A balanced soil-type dataset helps AI-based decision layers (Section B, Smart Agriculture Architecture) 

recommend fertilizer, irrigation, and crop choice without bias. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Temperature and humidity: 

 

KDE Plot – Temperature Distribution 

 

• What it shows: 

KDE (Kernel Density Estimation) is like a smooth version of a histogram. It shows how temperature values are 

distributed in your dataset. 

• Project context example: 

If you are monitoring farm conditions, this tells you the most common temperature range. 

Example: The peak is around 30°C, meaning most of your observations happened at this temperature. This can guide 

crop selection (choose crops that thrive near 30°C). 

 
 

 

 

https://ijsrem.com/
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Scatter Plot – Temperature vs Humidity (by Soil Type) 

• What it shows: 

Each point represents a reading of temperature vs humidity, and the colors represent different soil types (Black, 

Clayey, Loamy, Red, Sandy). 

• Project context example: 

Suppose you are studying how soil types affect crop growth. This scatter plot helps you see if certain soils tend to 

occur at specific ranges of temperature and humidity. 

Example: If Loamy soil points are clustered in the middle (moderate temperature and humidity), it indicates loamy soil 

retains moisture better and is suitable for crops in those conditions. 

 

Histogram – Temperature 

• What it shows: 

A frequency count of how many times each temperature range occurred. 

• Project context example: 

For irrigation planning, knowing how often the temperature crosses a certain threshold (say 

>35°C) is useful. 

• Example: The histogram shows most readings are between 28–32°C, and fewer readings are above 37°C. That 

means extreme heat is rare, so water stress events will be less frequent. 
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