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ABSTRACT

The global demand for sustainable and efficient agricultural practices is rising due to food security challenges,
population growth, and environmental sustainability concerns. Among the critical issues, fertilizer mismanagement
contributes to soil degradation, water contamination, greenhouse gas emissions, and reduced crop productivity. To
address these challenges, this research presents Cloud Farm, a cloud-based, machine learning-driven system designed
to deliver intelligent, site-specific fertilizer recommendations. The platform analyzes soil nutrient values (N, P, K), pH,
rainfall, and crop requirements using supervised learning models such as Random Forest and Gradient Boosting,
achieving higher accuracy than conventional methods. Cloud Farm incorporates multilingual user interfaces to
enhance accessibility for farmers across diverse regions and includes an integrated e-commerce module for seamless
fertilizer procurement.

1. INTRODUCTION

Agriculture remains the backbone of the global economy, securing food supplies and sustaining livelihoods for billions
of people worldwide. Fertilizers play a pivotal role in boosting crop yields, yet their inefficient and excessive
application has caused severe consequences, including nutrient runoff, reduced nitrogen-use efficiency, soil
degradation, groundwater contamination, and greenhouse gas emissions

. Traditional fertilizer practices rely on generalized recommendations that fail to account for field-level variability,
resulting in wasteful and environmentally harmful outcomes. To overcome these challenges, the emergence of
precision agriculture (PA) has introduced advanced solutions such as the Internet of Things (IoT), artificial
intelligence (Al), machine learning (ML), remote sensing, and variable-rate technology (VRT), enabling farmers to
optimize nutrient delivery with site-specific precision

However, barriers such as technical complexity, high implementation costs, and the lack of farmer-friendly, accessible
interfaces have limited adoption, particularly among smallholder farmers in developing regions. This research
addresses these gaps by presenting Cloud Farm, a multilingual, web-based fertilizer recommendation platform that
leverages supervised ML algorithms to analyze soil nutrient levels (N, P, K), pH, rainfall, and crop-specific
requirements. Cloud Farm provides accurate, data-driven recommendations, delivers outputs in the farmer’s preferred
local language, and integrates an e- commerce module to directly connect farmers with fertilizer suppliers. Deployed
on the Google Cloud Platform (GCP) with Docker containerization, the system ensures scalability, reliability, and
accessibility, empowering farmers to adopt sustainable practices, improve yields, and reduce fertilizer misuse.

LIST OF ABBREVIATIONS

. CF — CloudFarm

. GCP — Google Cloud Platform

. ML — Machine Learning

. NPK — Nitrogen, Phosphorus, Potassium

. pH — Potential of Hydrogen (soil acidity/alkalinity measure)
. RF — Random Forest
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. GB — Gradient Boosting

. LR — Logistic Regression
. UI — User Interface

II. METHODOLOGY

The proposed CloudFarm system follows a structured methodology consisting of dataset collection, preprocessing,
machine learning model training, and modular system architecture deployment. The overall workflow is illustrated in
Fig. 3.

A. Dataset Collection

Source: Soil and crop datasets were obtained from Kaggle and Practically.

Parameters: Nitrogen (N), Phosphorus (P), Potassium (K), pH value, rainfall, and crop type. Size: Approximately 5,000
records covering diverse crop—soil conditions.

Objective: Ensure dataset diversity to improve model generalization across multiple regions.
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Fig. 1a. Distribution of dataset records across major crops, ensuring balanced representation for model training.

B. Data Preprocessing

To prepare the dataset for model training, several preprocessing steps were performed:

. Removal of duplicate and inconsistent entries.

. Handling missing values using mean/median imputation.

. Normalization of soil parameter values for consistent scaling.
. Label encoding of categorical crop and fertilizer classes.

These steps ensure that the input dataset is clean, standardized, and model-ready, thereby improving algorithm
performance.

C. Machine Learning Models

To achieve high accuracy in fertilizer recommendation, three supervised learning algorithms were implemented and
evaluated:

. Random Forest (RF): An ensemble of decision trees, robust against noise and suitable for nonlinear relationships.
. Gradient Boosting (GB): A sequential ensemble method optimized for generalization.
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. Logistic Regression (LR): A baseline classifier for comparison. Evaluation Metrics: Accuracy, Precision, Recall,

F1-Score. Results:
RF achieved the highest performance (~92% accuracy). GB achieved ~89% accuracy.
LR achieved ~85% accuracy.
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Fig. 2. Performance comparison of Random Forest, Gradient Boosting, and Logistic Regression models, showing
Random Forest as the best-performing algorithm.

D. System Architecture

CloudFarm follows a modular, cloud-based architecture that enables scalability and farmer accessibility:

. User Interface (UI): Farmers input soil and crop details.
. Backend (API Layer): Processes user input and sends it to the ML engine.
. ML Engine: Predicts the optimal fertilizer based on trained models.
. Database: Stores soil, crop, and fertilizer records.
. E-Commerce Module: Provides optional purchase of recommended fertilizers.
Deployment: Hosted on Google Cloud Platform (GCP) with Docker containers for scalability, modularity, and ease of
maintenance.
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Fig. 3. CloudFarm system architecture and workflow, from farmer input to fertilizer recommendation and e-commerce
integration, deployed on GCP with Docker.However, barriers such as technical complexity, high implementation
costs, and the lack of farmer-friendly, accessible interfaces have limited adoption, particularly among smallholder
farmers in developing regions. This research addresses these gaps by presenting Cloud Farm, a multilingual, web-
based fertilizer recommendation platform that leverages supervised ML algorithms to analyze soil nutrient levels (N,
P, K), pH, rainfall, and crop-specific requirements. Cloud Farm provides accurate, data-driven

recommendations, delivers outputs in the farmer’s preferred local language, and integrates an e- commerce module to
directly connect farmers with fertilizer suppliers. Deployed on the Google Cloud Platform (GCP) with Docker
containerization, the system ensures scalability, reliability, and accessibility, empowering farmers to adopt sustainable
practices, improve yields, and reduce fertilizer misuse.

4 Implementation and Experimental Setup

4.1 Overview

The CloudFarm system was implemented as a complete data-driven fertilizer and crop recommendation platform.
The workflow followed three main stages: (1) data acquisition and preprocessing, (2) machine-learning model training
and validation, and (3) deployment on a scalable cloud infrastructure.

This design reflects the best-practice framework for smart-fertilizer management discussed by Liu et al. (2025), which
highlights cloud computing, machine learning, and loT integration as key enablers of precision agriculture.

4.2 Data Collection

o Sources:
o Kaggle Fertilizer Recommendation Dataset — approximately » records.
o Practically soil-weather dataset — approximately » records.

o Key Features: Nitrogen (N), Phosphorus (P), Potassium (K), soil pH, average rainfall, temperature, and

humidity.
o Quality Control: Missing values < P %, outliers removed using an inter-quartile filter.
o Rationale: These nutrient and climatic features correspond to the core soil indicators emphasized for smart

fertilizer management (Liu et al., 2025).

Table 4.1 Dataset Summary

Feature  Unit Rang Mean <+ Sourc

e SD e
Nitrogen kg - - Kaggl
ha™ e
Phosphoru kg - Kaggl
S ha™! e
4.3 Pre-processing
o Cleaning: Removal of nulls and outliers.
. Normalization: Min—max scaling of numeric variables to [0, 1].
o Encoding: One-hot encoding for categorical crop types.
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. Feature Engineering: Added N/P/K ratio and soil-moisture index derived from rainfall and humidity.

o Split: 80 % training, 20 % testing, with 10-fold cross-validation.

4.4  Model Training

Three supervised algorithms were evaluated: Random Forest, Gradient Boosting, and Logistic Regression.
Random Forest achieved the highest mean accuracy of b % (£ > %).

All models were implemented in Python 3.11 using scikit-learn and TensorFlow.
Performance was assessed with Accuracy, Precision, Recall, F1-score, and ROC-AUC metrics.

4.5 Deployment Architecture

. Backend: Flask REST API containerised with Docker.

o Cloud Hosting: Google Cloud Platform (GCP) Compute Engine with auto-scaling.

. Database: Cloud SQL (PostgreSQL) for user data and prediction storage.

o Front-End: Responsive web interface with multilingual support (English, Hindi, Marathi).

o CI/CD: GitHub Actions for automated testing and rolling updates.

4.6 Experimental Environment
. Hardware: Local training on Intel i7 (12-core), 32 GB RAM, NVIDIA RTX 3060 GPU.
. Cloud Inference: 2 vCPU, 4 GB RAM GCP VM instance.

o Software: Ubuntu 22.04, Python 3.11, Docker 24.x.

4.7 Validation and Field Relevance

o Conducted sensitivity analysis by varying each nutrient input (& 20 %) to assess prediction stability.
. Simulated different rainfall and pH conditions to mimic regional agro-climatic variability.
. These tests follow the recommendation of Liu et al. (2025) to stress-test models for diverse field scenarios.

Characteristics of Monitoring and Control Strategies in Agriculture

Ref / Author & |Crop/Orc |Model /" |Technologies / |Estimated Variables / |Achievements
Year hard Technique/  [Sensors Research Approaches
Software
[10] T. Islam et |Rice Image RGB Disease classify 1. Efficient technology
al., 2018 classificatio n 2. Faster & minimum comp
3. Stress identified by NDV]
[101] Z. P. D. Soybean |Linear Multispectral Pest Stress identified by NDVI
Marison et al., regression
2020 model
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[102] X. Zheng et |— Regression ASD Field Spec® 3 |Locust calculate VIs |Designed loss estimation mo
al., 2019 model Spectroradiometer (NDVI, RVI, SAVI,
GNDVI)

[103] A. A. Cotton SVM Sensors RGB |Leaf disease Detected 5 diseases successfi
Saragih et al., (Support images
2017 Vector

Machine)
[104] T. Hiomi et |— SVM Sensors Early detection of fault |Proposed new fault detection
al., 2016 (Support in plants

'Vector

Machine)
[105] V. Patel et |Weed CNN + GPU, RTK GPS Weed sprayer and detect |Cost-efficient system
al., 2016 Deep plants

Learning
[106] J. — Sound Ultrasonic  sounds |Pest control Usage of pesticides decreasec
Priyadarshini et frequency (32k—48kHz), pH
al., 2019 analysis sensor
[107] A. Brinjal View Spec |Hyperspectral Monitor crop stress |Bandwidths show stron
Srivastava et al., Pro software |remote sensing growth and disease correlation
2019
[108] R. H. Al Date Supervised Multispectral O. lybicus infestations Detect early infestation
Shehri et al., learning location
2019
[109] — Corn CNN Hyperspectral Plant cold damage Detected cold damage in croy

camera

Purpose — to provide a compact evidence map of how imaging, machine-learning and IoT methods detect plant stress,

pests, and disease while optimising inputs such as water, fertiliser and pesticides.

Core Monitoring Technologies

o Spectral imaging — RGB, multispectral, hyperspectral and thermal cameras capture crop reflectance or

temperature to reveal stress or disease.

o Remote sensing & drones — deliver large-area, repeatable observations.

o IoT sensors — soil-moisture, pH, humidity, and sound sensors give continuous ground data.

Analytical & Control Models

o Statistical regression to relate spectral indices (e.g., NDVI, SAVI) to crop condition or yield.

o Machine learning such as Support Vector Machines (SVM), Convolutional Neural Networks (CNN) and other
supervised/unsupervised models to classify diseases, weeds or stress levels.

o Deep learning for real-time detection and automated actuation (e.g., weed-sprayer guidance).

Key Outcomes Highlighted

o Early stress detection — rapid identification of nutrient deficiency, disease, pest infestation or water stress.

. Operational efficiency — faster computation and minimal field time compared to manual scouting.

© 2025, [JSREM

| https:

ijsrem.com

| Page 6


https://ijsrem.com/

-
s seurna International Journal of Scientific Research in Engineering and Management (IJSREM)
W Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

. Resource optimisation — targeted pesticide or fertiliser use, reducing cost and environmental impact.

Representative Examples from the Box

Rice disease classified with RGB imagery and image-classification algorithms, achieving fast processing.

Cotton leaf disease detected by SVM on RGB sensor data.

Weed mapping with CNN and RTK-GPS enabling cost-effective precision spraying. Hyperspectral analysis of brinjal
and corn for growth stress and cold-damage assessment.

Arrey types of soil:

Box Plot - Nitrogen by Sail Type

kou

Nitrogen
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o

Soil Type

Box Plot — Nitrogen by Soil Type

What it shows:
o Each soil type (Black, Clayey, Loamy, Red, Sandy) is on the x-axis; the y-axis is nitrogen concentration.

o The box shows the interquartile range (middle 50 % of data), the line inside is the median, and the “whiskers”

show the overall spread, including possible outliers.

Connection to the review:
o The paper highlights nutrient monitoring as a key factor in smart agriculture (Section IL.A, “Factors Affecting
Agriculture”)—especially nitrogen, potassium and phosphorus as essential macronutrients.

o Sensors such as soil-nutrient probes or multispectral imaging (e.g., NDVI) can track nitrogen levels to adjust

fertilizer use precisely.

o Example: Studies in Table 4 of the review used multispectral cameras to estimate nitrogen stress and guide
targeted fertilizer application.
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Count Plot - Soil Type
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Count Plot — Soil Type
What it shows:
o Simply counts the number of samples for each soil type.
o Here, the dataset is balanced: roughly the same number of records for all five soils.

Connection to the review:
o When applying Al or machine-learning models (e.g., Support Vector Machines, CNNs),
balanced training data across soil categories improves prediction accuracy.

o The review notes that IoT and imaging approaches require well-distributed sampling for reliable decision layers
in smart agriculture systems.

Pie Chart - Soil Type Distribution

Black
, . Clayey
20.2%
20.3%
Red 19.9%
19.8%
19.9% Saniy
Loamy
Pie Chart — Soil Type Distribution
What it shows:
o Percentage share of each soil type; here, all five soils are close to 20 %.
o Confirms the count plot: the dataset is evenly split.
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Connection to the review:
o Figure 2 (“Things plants need”’) and Table 3 emphasize soil as a primary factor influencing crop growth.

o A balanced soil-type dataset helps Al-based decision layers (Section B, Smart Agriculture Architecture)
recommend fertilizer, irrigation, and crop choice without bias.

KDE Plet - Temparature Destribution

Dunsity
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Tganture

Temperature and humidity:
KDE Plot — Temperature Distribution

o What it shows:
KDE (Kernel Density Estimation) is like a smooth version of a histogram. It shows how temperature values are
distributed in your dataset.

o Project context example:
If you are monitoring farm conditions, this tells you the most common temperature range.

Example: The peak is around 30°C, meaning most of your observations happened at this temperature. This can guide

crop selection (choose crops that thrive near 30°C).
Scatter Plot - Temperature vs Humidity

80 Soil Type
s Black
75 Clayey
Loamy

200 225 250 275 30.0 325 35.0 375 40.0
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Scatter Plot — Temperature vs Humidity (by Soil Type)

. What it shows:
Each point represents a reading of temperature vs humidity, and the colors represent different soil types (Black,
Clayey, Loamy, Red, Sandy).

. Project context example:

Suppose you are studying how soil types affect crop growth. This scatter plot helps you see if certain soils tend to
occur at specific ranges of temperature and humidity.

Example: If Loamy soil points are clustered in the middle (moderate temperature and humidity), it indicates loamy soil
retains moisture better and is suitable for crops in those conditions.

Histogram - Temperature

Histogram — Temperature

o What it shows:
A frequency count of how many times each temperature range occurred.

. Project context example:
For irrigation planning, knowing how often the temperature crosses a certain threshold (say
>35°C) is useful.

o Example: The histogram shows most readings are between 28-32°C, and fewer readings are above 37°C. That
means extreme heat is rare, so water stress events will be less frequent.
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