
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM46740 | Page 1

Cloud Migration Made Easy: A 5-Step Automation Framework

Prof. Manisha Patil1, Supriya Kamthekar2, Shon Gaikwad3, Yash Lonkar4, Akshaya Survase5

1,2,3,4,5Computer Department, Trinity College of Engineering and Research, Pune, India

---***---

Abstract - In the evolving landscape of software systems,

the demand for seamless migration of applications from

traditional local servers to cloud environments is rapidly

increasing. However, this transition often involves a series of

complex, manual, and repetitive tasks that can hinder

scalability and productivity. This paper presents a streamlined

approach aimed at minimizing the human effort involved in

the migration of server-based applications to cloud

infrastructure. The proposed system introduces an intelligent

interface that allows users to initiate and manage the

migration process through a minimal-input design. By

leveraging automated scripting and remote execution, the

system enables local environments to communicate with

cloud-based virtual machines, facilitating the end-to-end

setup, configuration, and hosting of applications with little to

no manual intervention. The architecture focuses on reducing

the operational overhead typically associated with cloud

onboarding, offering a lightweight, user-centric model

adaptable to various application types. This approach

contributes to faster deployment cycles, improved efficiency,

and an overall reduction in the complexity of cloud adoption

processes.

Key Words: Cloud Migration, Infrastructure Automation,

Remote Scripting, Application Hosting, Virtual Machines,

User Interface Automation, Lightweight Framework,

Deployment Simplification, CI/CD Pipelines, DevOps, IaaS

(Infrastructure as a Service), Cloud-Native Architecture,

Platform Abstraction, Virtualized Environments, SSH

Automation, Script-Driven Deployment, Remote

Infrastructure Management, Server Provisioning, Cloud

Scalability, Web Application Hosting.

1. INTRODUCTION

Cloud computing has revolutionized the way applications

are built, deployed, and managed, prompting a widespread
shift from traditional server-based setups to flexible, scalable
cloud infrastructures. Organizations now seek the benefits of
reduced operational costs, greater agility, and enhanced global
reach. However, migrating legacy or on-premise systems to the
cloud continues to pose significant challenges. This difficulty
arises from the disjointed nature of current migration
workflows, the vast range of technologies involved, and the
specialized knowledge required to handle cloud architecture
and infrastructure automation effectively.

For many businesses especially small to mid-sized
enterprises lacking dedicated DevOps teams the migration
process is daunting. It typically involves multiple sequential
steps, including setting up the environment, mapping
infrastructure, packaging workloads, deployment, and rigorous
testing. Each step demands careful manual configuration and
validation, often resulting in delays, errors, or abandoned
migration efforts due to the complexity and costs involved.

This study aims to simplify this intricate process by proposing
an intelligent and user-friendly migration framework. The
objective is to ease the transition to cloud environments by
reducing technical overhead, streamlining operations, and
enabling broader access to cloud technologies through guided,
efficient solutions.

2. RELATED WORKS
Cloud migration has become increasingly vital due to the

scalability and cost-efficiency of cloud platforms, yet
traditional methods remain heavily manual, involving multiple
intricate phases like infrastructure setup and deployment
configuration. While tools such as Terraform and Ansible offer
automation, they often require significant expertise and are
tailored for DevOps professionals, making them less accessible
to general developers or small teams. Existing research,
including model-based tools like CloudMIG and template-
driven platforms like Stratus Cloud, have introduced
automation but still demand complex configurations.
Conversely, low-code and no-code platforms provide
simplicity but often limit flexibility and control. This work
proposes a middle-ground solution—a script-assisted, user-
friendly automation framework that streamlines cloud
migration by reducing manual effort while maintaining
sufficient customization, targeting developers and project
teams seeking efficient, accessible migration without deep
DevOps knowledge.

3. EXISTING METHODOLOGY
Migrating full-stack applications to the cloud traditionally

involves a labor-intensive process encompassing application
evaluation, environment configuration, dependency
management, deployment, and post-deployment monitoring.
This approach often requires highly skilled personnel and
introduces potential for errors, inefficiencies, and delays
particularly challenging for individual developers or small
teams. A significant hurdle lies in the absence of automation
for detecting project structures, configuring runtimes, and
managing deployments across different platforms. The
conventional seven-phase cloud migration model comprising
assessment, isolation, mapping, augmentation, re-architecting,
testing, and maintenance while thorough, demands extensive
planning, technical insight, and manual execution at every
stage. These phases necessitate in-depth knowledge of
application architecture and cloud services, with each step
contributing to the growing complexity of the migration
pipeline. The fragmented and platform-dependent nature of
existing tools further complicates the process, often leading to
inconsistent deployments and prolonged release cycles. As the
pace of development accelerates and application architectures
diversify, there is an urgent need for a more streamlined,
automated, and developer-friendly migration solution that
reduces operational overhead, accelerates time-to-cloud, and
supports flexible deployment across various environments.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM46740 | Page 2

Fig -1: Cloud 7 step Classical Migration

4. PROPOSED METHODOLOGY
The traditional 7-step cloud migration model, while

comprehensive, often proves too rigid and resource-heavy for
today’s fast-paced development cycles that demand agility and
speed. To overcome these limitations, a streamlined 5-step
migration framework has been introduced, combining and
automating key phases of the classical model. This new
approach reduces complexity, enhances deployment speed, and
minimizes manual effort by integrating automation at each
stage—from initial assessment to post-deployment
management. The restructured pipeline is designed to ensure
both system accuracy and operational efficiency, making it
more accessible to small teams and individual developers.

The process begins with automated assessment and
infrastructure mapping, where the system analyzes source
repositories to identify the tech stack and match it to suitable
cloud environments. It then encapsulates dependencies,
configures runtime environments, and deploys the application
using stack-specific scripts with minimal user input. Built-in
testing mechanisms validate application health post-
deployment, while lightweight observability tools lay the
groundwork for future maintenance and updates. Each of these
five steps aligns with a clear development milestone,
embedding automation and reliability directly into the
migration workflow.

 Fig -2: Cloud 5 Step migration

5. COMPARATIVE ANALYSIS:

TRADITIONAL vs. OPTIMIZED CLOUD

MIGRATION WORKFLOW
The traditional 7-step cloud migration approach, though

comprehensive, often results in slow and complex transitions
due to its reliance on manual planning, custom strategies, and
post-deployment tuning. This can create delays, higher costs,
and a steeper barrier for teams lacking deep DevOps
knowledge. In contrast, the newly proposed 5-step optimized
model simplifies the process by merging and automating
several stages. It begins with automatic assessment and
infrastructure mapping, followed by codebase isolation with
runtime preparation, then proceeds to fully automated
deployment. Testing is built into the deployment workflow,
and the final stage introduces lightweight tools for monitoring
and future updates. This streamlined model accelerates
migration, reduces manual effort, and offers a more accessible
and efficient pathway for developers to move applications to
the cloud.

6. IMPLEMENTATION
The implementation phase of this project is driven by a

carefully orchestrated automation framework that combines
front-end input collection, backend processing, and cloud-
hosted deployment through intelligent scripting. At its core, the
system is designed to bridge the gap between manual server
deployments and modern cloud platforms by introducing a
user-guided, semi-autonomous pipeline capable of interpreting
and deploying varied web application stacks. The system
architecture is composed of multiple interlinked components,
each contributing to a layer of automation: a simple HTML
interface for user interaction, a Node.js and Express-based
backend for orchestration, and SSH-driven Bash scripts for
remote infrastructure provisioning and deployment logic
execution.

Upon initiating the deployment, the user is prompted to
enter the GitHub repository URL of the project they wish to
migrate, along with the IP address of the target virtual
machine. Once this input is received, the backend invokes a
secure SSH session to the specified VM using private key
authentication. This SSH tunnel becomes the conduit for all
subsequent commands. The deployment begins with cloning
the GitHub repository directly into the VM's file system, after
which the system automatically reads relevant project metadata
to understand the nature of the codebase.A key technical
feature of this automation lies in its dynamic tech stack
detection mechanism. This module is written as part of the
Bash script and serves to programmatically analyze the
project’s structure. By parsing files like package. json,
requirements.txt, index.html, or composer. json, the system
identifies the dominant framework used—be it React, Angular,
Node.js, Flask, Django, or PHP. This automatic stack
classification allows the script to make intelligent decisions
regarding which commands to run, which dependencies to
install, and how to configure environment-specific variables.
Based on the results of this classification, a custom installation
and build routine is triggered. For instance, React applications
are handled using npm install and npm run build, Flask with
pip install and flask run, Django through manage.py
commands, while PHP apps are deployed with built-in servers.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM46740 | Page 3

To enrich the technical depth of the project and align it
with academic rigor, two classical algorithms have been
theoretically embedded into the deployment logic. The Knuth-
Morris-Pratt (KMP) algorithm is used for efficient string
pattern matching within configuration files. This is particularly
useful when detecting keywords like "react", "vite", or "flask"
within large files, as KMP avoids redundant comparisons and
improves the parsing speed. Although the algorithm is not
actively executed during runtime, it is coded into the system as
a modular unit and can be activated for future iterations.
Similarly, Topological Sort has been applied in simulating the
order of dependency installation. When dealing with modern
JavaScript frameworks, dependency graphs often have strict
hierarchical relationships. For example, installing vite without
react-dom may cause errors. The Topological Sort algorithm
models this dependency tree and ensures a simulated execution
order that can be formalized into real install sequences.To
address common failures in low-resource VMs, the script
includes a memory swapping subsystem. This module
evaluates the current memory availability on the virtual
machine and dynamically provisions a swap file if necessary.
When the available RAM drops below a predefined threshold
(such as 1GB), the script allocates additional virtual memory
by creating and activating a swap partition using fallocate,
mkswap, and swapon commands. This not only ensures
smoother builds for memory-intensive frameworks but also
prevents the system from crashing due to out-of-memory errors
during dependency installations.

Further extending the functionality, the system integrates
an OpenAI API layer to offer contextual assistance during
deployment. This integration remains optional but
demonstrates the project’s forward-thinking capabilities.
Through this feature, deployment logs or error traces can be
sent to the API, which then responds with suggested
resolutions or interpretations. While this is currently an
experimental enhancement, it opens pathways for future
capabilities such as conversational deployment assistants, AI-
driven debugging, or code explanation features for non-
technical users.Post deployment, the final output of the system
is a fully accessible live application hosted on the cloud VM.
The public URL is programmatically constructed using the
machine’s IP and the service port, and this is immediately
rendered on the user’s interface. In some cases, where
necessary, the application is reverse-proxied via Nginx to
standardize ports and provide HTTPS access. The entire
sequence of operations is also logged and made available to the
user in near-real-time through the frontend—offering
transparency and confidence in the automation process.

This implementation, although heavily script-driven,
achieves a modular abstraction where new stacks and hosting
patterns can be added with minimal disruption. Technologies
like React, Angular, Node.js, Flask, Django, PHP, and Python
are fully supported with complete end-to-end automation,
while others like MySQL and PostgreSQL are partially
supported through scripted provisioning routines. Java-based
applications are currently not within scope, primarily due to
complexities in standardizing Java builds across VMs.
However, the project’s modular design allows easy scalability
to include such stacks in future iterations.

 Fig -3: Architecture diagram

7. EVALUATION: MATHEMATICAL

COMPLEXITY ANALYSIS
To understand the theoretical performance boundaries of

the system, we evaluate time and space complexities using
algorithmic functions and practical deployment assumptions.
Let the size of the input repository be denoted by R, the
number of dependencies by D, the number of edges
(dependencies between libraries) by E, and the size of swap
memory allocated be S. We also denote the length of the
configuration file as n and the pattern length for technology
detection as m.

1. Stack Detection Using KMP Algorithm
The KMP algorithm is used for identifying the technology

stack through pattern matching in configuration files.
Time Complexity:
The KMP algorithm runs in linear time relative to the input

and pattern size:
 𝑇𝐾𝑀𝑃 = 𝑂(𝑛 + 𝑚)

Space Complexity:
 𝑆𝐾𝑀𝑃 = 𝑂(𝑚)
2. Dependency Resolution via Topological Sort
Let the dependency graph G have D nodes (dependencies)

and E directed edges (relations). The topological sort of this
DAG determines the build/install order.

Time Complexity:
Using Kahn’s algorithm:

𝑇𝑇𝑂𝑃𝑂 = 𝑂(𝐷 + 𝐸)
Space Complexity:

Status Monitor

Status Monitor

Status

Renderer

Api Utils

Input Parser

Tech stack Identifier

Script Builder

Script

script Database

Open Ai api

SSH Executer

Input Module
Deployment Trigger

NGINX/

LoadBalancer

Pipe Line 1

Pipe Line 2

Pippeline N

Worker 1

worker 2

Worker N

Project Builder

Prometheus

Tools

Project Build Package Log

Status / URL live link

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM46740 | Page 4

𝑆𝑇𝑂𝑃𝑂 = 𝑂(𝐷 + 𝐸)
3. Repository Cloning and File Parsing
Cloning and parsing the repository files scale linearly with

the repository size.
Time Complexity:

𝑇𝑐𝑙𝑜𝑛𝑒 = 𝑂(𝑅)
Space Complexity:

𝑆𝑐𝑙𝑜𝑛𝑒 = 𝑂(𝑅)

4. Swap Memory Allocation Algorithm
Dynamic swap memory allocation checks system memory

and creates swap space if necessary.
Time Complexity:
 𝑇𝑠𝑤𝑎𝑝 = 𝑂(1) + 𝑂(𝑆)
Space Complexity:

𝑆𝑠𝑤𝑎𝑝 = 𝑂(𝑆)

5. OpenAI API Integration (Error Handling and Analysis)
Let L be the length of log file sent to the OpenAI API.
Time Complexity:

𝑇𝐴𝑃𝐼 = 𝑂(𝐿)
Space Complexity:

𝑆𝐴𝑃𝐼 = 𝑂(𝐿)

6. Overall Pipeline Complexity
The system comprises several linear and quasi-linear

components. We derive a composite time complexity function
to estimate the upper bound for a single execution cycle:

Total Time Complexity:
 𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑂(𝑛 + 𝑚 + 𝐷 + 𝐸 + 𝑅 + 𝑆 + 𝐿)
Total Space Complexity:

𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑂(𝑚 + 𝐷 + 𝐸 + 𝑅 + 𝑆 + 𝐿)

This suggests that the system scales well in real-world
scenarios, as none of the individual components exhibits
exponential or factorial growth. The linearity ensures practical
deployment time even for medium to large-scale repositories
with moderate dependencies.

8. ALGORITHMS USED
To enhance the technical depth and academic rigor of our

project, we incorporated two well-known algorithms within the
deployment script—Knuth-Morris-Pratt (KMP) and
Topological Sort. While these algorithms are currently
embedded for theoretical demonstration and future scalability,
they establish a strong foundation for intelligent automation in
deployment systems.

1) Knuth-Morris-Pratt (KMP) Algorithm:

The KMP algorithm is a linear-time string matching
algorithm that improves upon the brute-force search method by
avoiding redundant comparisons. In our project, we utilize the
KMP algorithm to parse the package.json file of the fetched
GitHub repository. This enables efficient detection of specific
keywords (e.g., "react", "vite") to identify the underlying
frontend framework. Unlike naive pattern matching
approaches, KMP leverages previously matched information
using a partial match table (also known as the LPS array) to
reduce the overall time complexity. This mechanism ensures
faster parsing, especially beneficial in large configuration or
manifest files.

2) Topological Sort:

Topological Sort is a graph-based algorithm typically used
to determine a linear ordering of vertices based on their

dependencies. In our context, this algorithm is applied to
simulate the dependency resolution sequence within the
project’s build process. For instance, if the vite module is
dependent on react, which in turn depends on react-dom, then
the installation must follow a topological order to prevent
runtime conflicts or installation errors. By modeling project
dependencies as a Directed Acyclic Graph (DAG), Topological
Sort aids in determining a valid build sequence, laying the
groundwork for intelligent, dependency-aware automation in
future implementations.

9. CONCLUSION & FUTURE WORK
 The current implementation provides a robust foundation for

automating server-based application deployment to virtual

cloud platforms. However, there are several promising

directions for future enhancements that can significantly

broaden the system’s functional scope and operational

intelligence. One such improvement is the incorporation of

Java stack compatibility, particularly for widely adopted

frameworks like Spring Boot, to ensure comprehensive

support for enterprise-grade applications. Additionally,

extending the system to facilitate seamless VM-to-VM

migration will enable smoother cloud-to-cloud transitions and

bolster disaster recovery strategies. To achieve full

automation, dynamic VM provisioning through cloud provider

APIs can be introduced, allowing automatic virtual machine

creation tailored to specific application requirements such as

RAM, CPU, and storage. Further performance optimization is

also envisioned, including adaptive memory management,

smarter dependency caching, and the adoption of parallel

processing to reduce setup times and resource consumption.

Enhancing the three-way handshake mechanism between the

frontend, backend, and remote VM will reinforce security and

ensure a more reliable deployment workflow through

systematic validation and acknowledgment steps. Moreover,

enabling VM-to-VM project transformation will support

greater code portability and environment consistency across

different virtual environments. Finally, integrating machine

learning models that analyze historical deployment data can

bring intelligent, learning-based improvements—offering

optimal configuration suggestions, predicting common errors,

and providing real-time auto-corrections to streamline the

deployment process.

The growing reliance on cloud infrastructure in modern

software systems calls for a migration process that is not only

efficient but also minimizes human intervention and potential

for error. This paper presented a user-guided automation

framework that significantly streamlines the traditionally

manual seven-step migration model into a simplified five-

stage automated workflow. By integrating SSH-based

scripting, intelligent stack detection, and deployment

orchestration through infrastructure-aware scripts, the system

facilitates rapid and accurate migration of web applications to

cloud environments such as AWS.

The proposed system supports a wide array of modern

technology stacks including React, Angular, Node.js, Flask,

Django, and database systems like MySQL and PostgreSQL.

Its extensible design ensures adaptability for future

enhancements, while its use of theoretical constructs such as

the Knuth-Morris-Pratt (KMP) algorithm and Topological

Sort adds an academic depth to its architectural backbone. The

inclusion of memory optimization techniques like auto-swap

space creation, as well as OpenAI integration for intelligent

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM46740 | Page 5

decision support, highlights the innovative edge of the

solution. In essence, this automation framework bridges the

gap between manual server deployment and scalable cloud

migration by reducing complexity, enhancing deployment

speed, and improving overall reliability. It not only serves as a

practical deployment engine but also sets the groundwork for

advanced cloud-native migration systems with VM-to-VM

transformation, dynamic provisioning, and intelligent

orchestration.

RESULTS

 Fig -4: Entire AWS Cost

 Fig -5: CPU Utilization

 Fig -6: Response Time

REFERENCES

1. Dong, Bo, et al. "Impact analysis about response time considering

deployment change of SaaS software." International Journal of

Software Engineering and Knowledge Engineering 30.07 (2020):

977-1004.

2. Fard, Mostafa Vakili, et al. "Resource allocation mechanisms in

cloud computing: a systematic literature review." IET Software

14.6 (2020): 638-653.

3. Belgaum, Mohammad Riyaz, et al. "Integration challenges of

artificial intelligence in cloud computing, Internet of Things and

software-defined networking." 2019 13th International

Conference on Mathematics, Actuarial Science, Computer

Science and Statistics (MACS). IEEE, 2019.

4. Tsai, WeiTek, XiaoYing Bai, and Yu Huang. "Software-as-a-

service (SaaS): perspectives and challenges." Science China

Information Sciences 57 (2014): 1-15.

5. Parikh, Swapnil M. "A survey on cloud computing resource

allocation techniques." 2013 Nirma University International

Conference on Engineering (NUiCONE). IEEE, 2013.

6. Pahl, Claus, Huanhuan Xiong, and Ray Walshe. "A comparison of

on-premise to cloud migration approaches." Service-Oriented and

Cloud Computing: Second European Conference, ESOCC 2013,

Málaga, Spain, September 11-13, 2013. Proceedings 2. Springer

Berlin Heidelberg, 2013.

7. Kavis, Michael. Architecting the cloud: design decisions for cloud

computing service models (SaaS, PaaS, and IaaS). John Wiley &

Sons, Inc., Hoboken, New Jersey, 2014.

http://www.ijsrem.com/

