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Abstract 

Pharmaceutical cocrystals are multicomponent crystalline systems in which at least one component is an active 

pharmaceutical ingredient (API), and the others are pharmaceutically acceptable coformers. Cocrystallization of 

an API with a coformer is an innovative and promising strategy for enhancing the performance of pharmaceutical 

formulations, particularly in terms of solubility, dissolution rate, pharmacokinetics, and stability. This review 

provides a comprehensive overview of pharmaceutical cocrystals, including various preparation techniques, their 

physicochemical properties, and practical applications. Additionally, it highlights several examples of drug 

cocrystals to demonstrate how crystal structures can influence key aspects of active pharmaceutical ingredients, 

such as physical and chemical stability, mechanical properties, optical characteristics, bioavailability, sustained 

release, and overall therapeutic effect. This review aims to offer valuable insights for the efficient design and 

development of pharmaceutical cocrystals with tailored physicochemical properties and applications. 
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1. Introduction 

The physicochemical properties of active pharmaceutical ingredients (APIs)—such as stability, particle size, 

powder flowability, taste, hygroscopicity, solubility, and compatibility—play a critical role in the therapeutic 

effectiveness and manufacturing cost of solid dosage forms. In oral drug delivery systems, the gastrointestinal 

absorption of drugs is significantly influenced by their solubility and dissolution rate. However, approximately 

90% of new chemical entities and 40% of currently marketed drugs fall under the Biopharmaceutical 

Classification System (BCS) Classes II and IV, which are characterized by poor water solubility and low 

bioavailability. As a result, the absorption of these drugs in the gastrointestinal tract is limited, impeding their 

clinical applications. Clearly, the physicochemical properties of pharmaceutical solids have a considerable impact 

on drug performance. 

It is well understood that the atomic packing within the unit cell and the crystal lattice structure directly influence 

the properties of crystalline materials. Therefore, modifying the physicochemical properties of solid drug forms 

can be achieved by tailoring the crystal packing arrangements. Over the years, several solid-state strategies have 

been employed to improve the properties of APIs, including salt formation, polymorphism, hydrates, solvates, 

and cocrystals. However, each approach has its limitations. For instance, salt formation is only applicable to 

molecules with suitable ionizable groups, and hydrates and solvates are often unstable due to the loss of water or 

solvent molecules over time. In contrast, any API—whether acidic, basic, or non-ionized—has the potential to 

form cocrystals with an appropriate coformer. 
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Over the past two decades, pharmaceutical cocrystals have garnered significant interest from both academia and 

the pharmaceutical industry for their ability to enhance the physicochemical properties of APIs by modifying the 

crystal structure without altering the pharmacological nature of the drug. As the field of cocrystallization has 

advanced, several pharmaceutical cocrystals have been successfully developed and approved, such as Steglatro® 

and Entresto®, with more currently in clinical trials. 

 

        Figure 1. Different solid forms of active pharmaceutical ingredients. 

Pharmaceutical cocrystals are defined as crystalline materials composed of two or more discrete neutral 

molecules in a stoichiometric ratio, bonded together through noncovalent interactions, such as hydrogen bonding, 

van der Waals forces, and π-π stacking. At least one of the components must be an active pharmaceutical 

ingredient (API), while the others are pharmaceutically acceptable excipients. Since the early 2000s, cocrystal 

engineering has been recognized as a promising approach to enhance the physicochemical properties of 

pharmaceuticals. This realization was greatly advanced by key publications between 2003 and 2004, which 

highlighted the importance of crystal engineering and supramolecular synthons in pharmaceutical cocrystal 

design, spurring the development of this strategy to improve drug performance. Several robust supramolecular 

synthons have been identified, which play crucial roles in cocrystal formation and drug development. These 

include functional groups such as carboxylic acids, amides, and alcohols, which are particularly amenable to the 

formation of supramolecular synthons. There are two main types of supramolecular synthons: supramolecular 

homosynthons, formed by self-complementary functional groups (e.g., carboxylic acid dimers or amide dimers), 

and supramolecular heterosynthons, formed by complementary functional groups (e.g., hydrogen bonding 

between carboxylic acid and pyridine, or alcohol and aromatic nitrogen). 

As the development and application of pharmaceutical cocrystals have expanded, regulatory bodies have taken 

an increasing interest in their definition and categorization. In 2011, the U.S. Food and Drug Administration 

(FDA) released a draft guidance categorizing pharmaceutical cocrystals as "drug product intermediates," 

describing them as “dissociable API-excipient molecular complexes where both API and excipients are present 

in the same crystal lattice.” However, this definition was criticized by both industry and academic researchers for 
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its simplicity and lack of clarity. In 2016, the FDA revised the guidelines, describing cocrystals as “crystalline 

materials composed of two or more different molecules within the same crystal lattice, associated by nonionic 

and noncovalent bonds.” In 2018, the FDA provided a more detailed definition, stating that pharmaceutical 

cocrystals are “crystalline materials composed of two or more different molecules, one of which is the API, in a 

defined stoichiometric ratio, within the same crystal lattice, associated by nonionic and noncovalent bonds.” 

Additionally, a coformer is defined as “a component that interacts nonionically with the API in the crystal lattice, 

is not a solvent (including water), and is typically nonvolatile.” Meanwhile, the European Medicines Agency 

(EMA) defines cocrystals as "homogeneous (single-phase) crystalline structures made up of two or more 

components in a definite stoichiometric ratio, where the arrangement in the crystal lattice is not based on ionic 

bonds (as with salts)." The EMA considers cocrystals to be a viable alternative to salts of the same API, suggesting 

that cocrystals, while distinct in pharmacokinetic properties, are equivalent to the API in terms of their basic 

molecular identity. 

This review will summarize the recent advances in pharmaceutical cocrystals, focusing on their preparation 

methods, modulation of physicochemical properties, and diverse applications. The preparation methods will 

include solution-based techniques (such as solvent evaporation, antisolvent methods, cooling crystallization, 

reaction cocrystallization, and slurry conversion) as well as solid-state methods (including neat grinding, liquid-

assisted grinding, and melting crystallization). The review will then discuss how cocrystals can modulate various 

properties and applications, such as physical and chemical stability, mechanical and optical properties, and both 

in vitro and in vivo performance. 

2. Cocrystal Preparation 

Numerous methods have been developed for the preparation of cocrystals, including solid-state grinding, solution 

reaction crystallization, solvent evaporation, slurry conversion, and hot melt extrusion. However, selecting an 

appropriate cocrystallization method remains largely empirical. Broadly speaking, cocrystal formation methods 

can be classified into two main categories: solution-based methods and solid-state methods. 

Solution-based methods generally require significant solvent consumption to dissolve the cocrystal constituents. 

The choice of solvent is crucial, as it can alter the intermolecular interactions between the API and the coformer, 

directly influencing the cocrystallization process and outcome. In contrast, solid-state methods offer the 

advantage of minimizing or eliminating solvent use, which can be beneficial in terms of cost-effectiveness and 

environmental impact. These methods typically require no or very little solvent, making them a more sustainable 

option in some cases. 
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Figure 2. Common methods for cocrystal preparation. 

 

2.1 Solution-based Methods 

In solution-based methods, the system involves three phases: the active pharmaceutical ingredient (API), the 

coformer, and the solvent. The ideal state for cocrystal formation occurs when the cocrystal is supersaturated, 

while the reactants (API and coformer) are either saturated or undersaturated under the experimental conditions. 

Therefore, the degree of supersaturation with respect to the cocrystal is a crucial parameter for successful 

cocrystallization. This can be controlled by adjusting the concentrations of the API and coformer. 

To guide the cocrystal formation process, a phase diagram must be established to define the conditions for 

thermodynamic stability. This diagram ensures that the cocrystal remains in the thermodynamically stable region, 

thereby preventing the crystallization of pure reactants. The position of the stable cocrystal phase is primarily 

determined by the solubility of the reactants. 

2.1.1 Solvent Evaporation Method 

The solvent evaporation method is one of the most widely used techniques for preparing cocrystals and is 

particularly effective for synthesizing high-quality single-crystal cocrystals suitable for structural analysis 

through single-crystal X-ray diffraction. In this method, the cocrystal constituents are first completely dissolved 

in an appropriate solvent at the desired stoichiometric ratio. The solvent is then evaporated slowly, allowing the 

cocrystals to form. 

The choice of solvent plays a crucial role in the cocrystallization process, as it can significantly affect the 

solubility of the reactants. For successful cocrystallization, the cocrystal components must be congruently soluble 

in the chosen solvent. If the components have incongruent solubility, the less soluble component may precipitate 

preferentially, resulting in a mixture of cocrystal and cocrystal components, or in failure to form the cocrystal 

altogether. 
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This method has been successfully applied to synthesize numerous cocrystals. For example, a block-shaped single 

crystal of a 1:1 febuxostat‒piroxicam cocrystal, formed through hydrogen bonding between carboxylic acid and 

azole functional groups, was synthesized by the slow evaporation of acetonitrile at room temperature over 3–5 

days. The resulting cocrystal exhibited improved solubility and better tabletability compared to the individual 

components. Similarly, cocrystals of nebivolol hydrochloride‒nicotinamide, which demonstrated an enhanced 

dissolution rate, were also prepared using the solvent evaporation method. 

3. Physicochemical Properties and Applications of Cocrystals 

3.1 Physical Stability 

A physical change refers to a transformation in the state of a substance without altering its chemical composition. 

The physical properties of solid-state materials, including melting point, hygroscopicity, solubility, hardness, 

plasticity, and elasticity, are critical to the stability and performance of drug substances. Cocrystallization is an 

effective approach for improving the physical properties and maintaining the physical stability of drug substances, 

which may otherwise undergo undesired physical transformations during manufacturing and storage. In this 

section, we will focus on two key aspects—melting point and hygroscopicity—and discuss others in subsequent 

sections. 

3.1.1 Melting Points 

For manufacturers, solid drug forms provide convenience in purifying, identifying, transporting, and storing 

drugs. For patients, solid forms are generally more convenient to carry and administer than liquid forms. 

However, some drugs with low melting points may remain in a liquid state at room temperature, posing challenges 

for formulation. Cocrystallization can alter the melting point of these liquid drugs by incorporating a suitable 

coformer into the crystalline lattice. 

One such example is propofol, which is used to induce and maintain general anesthesia and sedation. Propofol 

has a low melting point (18°C), which results in instability, pain upon injection, and hyperlipidemia when 

administered. McKellar et al. demonstrated that a cocrystal of propofol with isonicotinamide could be formed, 

raising the melting point by approximately 50°C (Fig. 10). This increase in melting point allowed the propofol-

isonicotinamide cocrystal to be stable at room temperature. Similarly, other cocrystals such as propofol–

bipyridine and propofol–phenazine were shown to convert liquid propofol into a stable crystalline form. 

3.1.2 Hygroscopicity 

The hygroscopicity of a drug is a critical property that can significantly affect its physicochemical stability, 

influencing solubility, dissolution rate, stability, bioavailability, and mechanical properties. For instance, 

dasatinib anhydrate demonstrated higher solubility than its monohydrate form. Thus, maintaining the 

hygroscopic stability of the anhydrate form is essential in drug development. Several strategies, including the use 

of excipients, packaging to reduce moisture uptake, and coating with enteric polymers, have been employed to 

address this challenge. Notably, cocrystal formation has been shown to enhance the hygroscopic stability of 

certain drugs. 

In cocrystals, hydrogen bonds formed between the API and coformer can block the water molecules from 

interacting with the API, thus improving the compound's resistance to moisture. For example, flavonoid-

theophylline cocrystals exhibited greater resistance to hydration compared to theophylline alone. Caffeine, a 
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natural alkaloid found in coffee and tea, typically forms a nonstoichiometric hydrate under humid conditions. 

However, when cocrystals of caffeine with various acids (such as oxalic acid, malonic acid, maleic acid, and 

glutaric acid) were prepared, the caffeine–oxalic acid cocrystal showed significantly better hygroscopicity 

stability, remaining stable under humidity stress for several weeks. 

Another case is zileuton (ZIL), an asthma medication prone to forming a stable hydrate under moisture 

conditions. When ZIL was cocrystallized with nicotinamide and isonicotinamide, the resulting cocrystals 

exhibited better hygroscopic stability when stored at 40°C and 75% relative humidity (RH) for 4 weeks compared 

to the drug alone. 

Lithium chloride (LIC), used for treating neuropsychiatric disorders, is extremely hygroscopic and deliquescent 

even at very low humidity levels (11.30% RH), which limits its use in formulations. However, cocrystallization 

of LIC with glucose improved its hygroscopic stability under 40% RH, while also maintaining similar in vivo 

pharmacokinetics to the pure form. Similarly, the cocrystal of metoclopramide (MCP) with oxalic acid showed 

improved resistance to hydration, preventing the ion-exchange reactions and Maillard reactions that occur in the 

monohydrate form. 

Finally, oxiracetam (OX), a nootropic drug, is more hygroscopic in its S-OX form than in its racemic form R,S-

OX. The S-OX–gallic acid cocrystal demonstrated significantly reduced hygroscopicity compared to the pure 

S-OX or the racemic parent drug, attributed to the formation of a robust hydrogen-bonded network through 

cocrystallization. 

3.2 Chemical Stability 

Chemical degradation of drug substances is a significant challenge during the manufacturing and storage stages, 

often leading to the formation of undesirable degradants. Developing effective strategies to minimize or eliminate 

drug degradation is critical for ensuring the stability and efficacy of pharmaceutical formulations. Recently, 

pharmaceutical cocrystals have been explored as a promising solution to enhance the chemical stability of APIs 

in the solid state. 

By modifying the crystal packing of an API, cocrystallization can help protect the API from degradation caused 

by factors such as light exposure, moisture, and temperature. This section will focus on the mechanisms by which 

cocrystallization improves chemical stability by altering the physical interactions and crystal structure of the 

drug..  

3.3 Mechanical Properties 

The mechanical properties of crystalline materials are crucial in the manufacturing processes of solid dosage 

forms, including blending, milling, granulation, tableting, and coating. For solid materials, the mechanisms of 

mechanical deformation include elastic, plastic, viscoelastic, and fragmentation behaviors. Materials with better 

plasticity tend to exhibit superior compressibility, meaning they can undergo permanent and irreversible 

deformation once the stress is removed. However, many organic compounds have poor mechanical properties, 

which can present challenges in developing tablet formulations. Cocrystallization has been shown to effectively 

improve the mechanical properties of drugs by altering their crystal packing. 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                           Volume: 09 Issue: 02 | Feb - 2025                              SJIF Rating: 8.448                                            ISSN: 2582-3930                                                                                                  

  

© 2025, IJSREM      | www.ijsrem.com                                                                                                                            |        Page 7 
 

Good tableting behavior is typically characterized by increased plastic deformation and minimal elastic recovery. 

Crystal structures with well-defined slip planes facilitate plastic deformation, which can improve bulk 

compaction behavior. Several studies have demonstrated how cocrystallization can modify the mechanical 

properties of drug substances, enhancing their tableting performance. 

For instance, Singaraju et al. evaluated the compaction performance and mechanical properties of caffeine 

cocrystal polymorphs. Their findings indicated that caffeine–3-nitrobenzoic acid cocrystal form I exhibited 

superior plastic deformation compared to form II due to its 2D-layered crystal structure. Powder Brillouin light 

scattering spectra of form I revealed the presence of low-velocity shear modes, while energy framework 

calculations suggested a favorable slip system for form I. These properties contributed to its enhanced 

compressibility and improved tableting behavior. 

Mishra et al. further investigated the mechanical properties of caffeine–glutaric acid cocrystals on different 

crystalline faces using nanoindentation (Fig. 15). They observed anisotropic mechanical responses, meaning the 

mechanical behavior varied depending on the direction of indentation. The polymorphs with a greater number of 

slip planes and stronger intermolecular interactions were harder, while those with fewer slip planes and weaker 

intermolecular forces were softer. Form I, with more facile slip planes and weaker intermolecular interactions, 

was identified as a potential candidate for superior tabletability compared to form II. 

Another example involves the mechanical properties of chlorzoxazone, a first-line therapy for muscle spasms. 

Chlorzoxazone alone has poor compressibility, which requires wet granulation for tablet manufacture. Roy et al. 

reported that tablets made from chlorzoxazone–picolinic acid cocrystals exhibited significantly improved 

compressibility, with a tensile strength of approximately 1.6 MPa at 250 MPa compression, compared to less 

than 0.8 MPa for pure chlorzoxazone at 50 MPa compression. The enhanced bonding strength in the cocrystals 

is attributed to their denser packing compared to pure chlorzoxazone, while the slip planes in the cocrystal 

structure allow for better plastic deformation, further improving compressibility. 

3.4 Optical Properties 

The optical properties of drugs are increasingly relevant in biomedical applications. For instance, drugs exhibiting 

strong fluorescence can serve as biocompatible probes for bioimaging, including lipid droplet imaging in cells 

and tissue slices. The molecular stacking, crystal packing arrangement, and intermolecular interactions play 

critical roles in determining the optical properties of solid materials. Recently, cocrystal engineering has shown 

significant potential in modifying the optical properties of pharmaceuticals. 

One example of this is the modification of the optical behavior of drugs through the introduction of coformers 

into the crystal lattice. Furosemide (FS), a BCS IV drug used to treat edema and hypertension, is colorless in its 

pure form. However, when cocrystallized with 4,4′-bipyridine (4BPY) (also colorless), the resulting 

polymorphic cocrystals display distinct colors. The form I cocrystal is pale yellow, while form II appears orange 

(Fig. 18A and B). Despite these color differences, both polymorphs share a similar sandwich centrosymmetric 

structure, which is formed by aromatic π···π stacking interactions in an "FS-4BPY-FS" arrangement (Fig. 18C). 

In form I, the sandwich motif is stabilized by C–H···π interactions between the hydrogen atom of 4BPY and the 

π electrons of the furan, as well as π···π interactions between FS and 4BPY. In contrast, form II involves π···π 

interactions and C=O···π interactions that participate in the sandwich assembly. The authors suggested that the 

differences in π-stacking patterns and hydrogen bonding interactions between the polymorphs result in their 
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distinct colors. Further calculations of the HOMO (highest occupied molecular orbital) and LUMO (lowest 

unoccupied molecular orbital) gaps via Density Functional Theory (DFT) simulations revealed that the band 

gap of form II was lower than that of form I, which accounts for the observed color differences between the two 

polymorphs. 

4. Concluding Remarks and Future Perspectives 

Over the past decade, cocrystal engineering has emerged as a promising strategy for enhancing the performance 

of drug substances by modifying their physicochemical properties. A large number of pharmaceutical cocrystals 

have been reported, with several already approved by the FDA or currently in clinical trials. However, there are 

still significant challenges to overcome in developing cocrystals into commercially viable drug products. 

One of the most critical aspects of cocrystal design is selecting a suitable coformer. Currently, this process largely 

relies on trial and error, which is both time-consuming and labor-intensive. However, recent advances in 

computer-assisted approaches have shown promise as tools to streamline the screening process for potential 

cocrystals. For example, artificial neural network models have been developed to predict cocrystal formation by 

analyzing a network of coformers from the Cambridge Structural Database (CSD). 

An enhanced understanding of the structure-property relationships is crucial for the rational design of cocrystals 

with targeted functions and performance characteristics. In addition, the compatibility of cocrystals with other 

excipients, their pharmacokinetic profiles, therapeutic efficacy, and potential toxicity must all be carefully 

considered when developing cocrystal formulations. Another significant challenge in commercializing cocrystals 

is scaling up the production of high-purity pharmaceutical cocrystals. To address this, continuous processing has 

emerged as a promising approach for the high-throughput manufacturing of pharmaceutical materials. Techniques 

like twin-screw extrusion, integrated with process analytical tools for real-time process control, have been 

explored to produce high-quality cocrystals. 

In conclusion, this review provides a comprehensive overview of the preparation methods, physicochemical 

properties, and diverse applications of pharmaceutical cocrystals. As innovative technologies and more detailed 

regulatory guidance continue to evolve, they will play a key role in advancing the translational development of 

pharmaceutical cocrystals for healthcare applications. With these developments, it is anticipated that more 

cocrystal-based drug products will become commercially available, offering improved treatments for patients in 

the future. 
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