
 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 05 | MAY - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47368 | Page 1

Code Craft

P.Selvaraj, M.Suresh Anand, Geetha K , Manas Singh, Anik Choudhary,

Department of Computer Technology,iCollege of Engineering andiTechnology, SRM Institute of Science and

Technology, Kattankulathur,iTamilnadu - 603203, India , selvarap@srmist.edu.in, Geethak5@srmist.edu.in,

mm8922@srmist.edu.in, aa4639@srmist.edu.in

Abstract— This paper presents CodeCraft, a

unified, cloud-based code editing platform

designed to streamline software development by

integrating code writing, execution, and real-time

collaboration. Supporting multiple languages and

customizable environments, CodeCraft enhances

productivity through features such as in-editor

commenting, profile tracking, and Visual Studio

Code integration. Developed with modern web

technologies, the platform addresses limitations in

existing tools by offering a seamless, scalable

solution for individual developers and teams alike.

Keywords: Cloud-based IDE, real-time collaboration,

code execution environment, web-based code editor,

collaborative programming, Software as a Service

(SaaS), code snippet sharing, online code editor,

developer productivity, VSCode integration, secure

sandboxing, live code commenting, remote software

development, user profile tracking, frontend and

backend integration.

I. INTRODUCTION

The software development ecosystem has evolved
rapidly, with growing emphasis on remote
collaboration, cross-platform support, and real-time
productivity. Developers today often rely on a
fragmented set of tools—including local integrated
development environments (IDEs), cloud-based
editors, testing frameworks, and communication
platforms—to complete tasks. This tool fragmentation
introduces inefficiencies, such as frequent context-
switching, inconsistent environments, and limited real-
time collaboration. Furthermore, many existing
solutions fail to provide a personalized or community-
driven experience, which is increasingly essential in
both individual and team-based development
workflows.

To overcome these challenges, this paper
introduces CodeCraft, a Software as a Service (SaaS)-
based integrated development platform that aims to
unify the development process. CodeCraft allows
users to write, execute, test, and share code within a
single, browser-based environment. It supports
multiple programming languages, real-time code
execution in a sandboxed environment, and live
collaboration through snippet sharing and in-editor
commenting. These features aim to streamline the
development cycle and enhance both the speed and
quality of code production.

Customization plays a central role in the platform,
offering theme personalization, layout adjustments
(horizontal and vertical split views), and support for
individual preferences. Additionally, CodeCraft
features user profiles to track personal progress,
achievements, and collaboration history. This helps
users manage their learning journey and contributions
in a centralized manner.

From a technical perspective, CodeCraft is built
using React and Next.js for the frontend, providing
modular, high-performance interfaces with server-side
rendering capabilities. The backend utilizes Convex, a
real-time serverless database optimized for
collaboration features. User authentication and session
management are handled securely via Clerk, which
supports OAuth and social logins. Furthermore, the
platform incorporates VSCode command palette
integration, offering users a familiar set of tools and
workflows in a cloud-native environment.

In this paper, we detail the motivation for
developing CodeCraft, its system architecture, design
methodology, and how it improves on existing
platforms. The aim is to demonstrate how a unified,
collaborative, and customizable IDE can enhance
developer productivity, learning, and community
engagement.

http://www.ijsrem.com/
mailto:selvarap@srmist.edu.in
mailto:mm8922@srmist.edu.in

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 05 | MAY - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47368 | Page 2

II. RELATED WORK

The evolution of cloud-based integrated

development environments (IDEs) has been

extensively explored in academic literature,

emphasizing the need for real-time collaboration,

accessibility, and seamless integration of

development tools.

Shukla [1] discusses the transition from traditional

desktop-based IDEs to cloud-based solutions,

highlighting the advantages of lightweight, modern

IDEs in facilitating collaborative software

development. The study underscores the importance

of cloud IDEs in enhancing productivity and

enabling real-time collaboration among developers.

The development of real-time collaborative code

editors has been a focal point in recent research. A

study presented at the International Conference on

System Sciences [2] introduces a real-time code

editor application designed to facilitate collaborative

programming. The research emphasizes the

significance of real-time collaboration in software

development and the technical challenges associated

with implementing such systems.

The Collabode project, detailed by Goldman et al.

[3], presents a web-based Java IDE that supports

synchronous collaboration between programmers.

The study addresses the complexities of

collaborative coding, particularly the challenges

posed by program compilation errors introduced by

concurrent users, and proposes an algorithm for

error-mediated integration of program code.

Yan et al. [4] explore cloud-based collaborative

development environments tailored for research

software tools and applications. The paper discusses

the integration of cloud IDEs with DevOps practices,

offering a seamless environment for coding, testing,

and deployment, thereby accelerating the software

delivery process.

These studies collectively underscore the growing

importance of cloud-based, collaborative

development environments in modern software

engineering. They provide a foundational

understanding of the challenges and solutions

associated with real-time collaboration, code

execution, and the integration of development tools

in cloud-based IDEs.

III. PROPOSED METHODOLOGY

The development of CodeCraft follows a modular,

agile, and user-centric methodology aimed at

delivering a robust and scalable cloud-based

development environment. The methodology is

structured into five key phases: requirement analysis,

technology stack selection, system architecture

design, feature implementation, and testing &

validation. Each phase is informed by industry best

practices and guided by continuous user feedback to

ensure the platform addresses real-world developer

needs.

1. Requirement Analysis

The initial phase involved a comprehensive analysis

of existing cloud IDEs and developer pain points

through surveys, user interviews, and literature

review. Key requirements identified include:

• Multi-language support

• Real-time code execution

• In-editor commenting and collaboration

• Theme and layout customization

• User profile management

• Integration with familiar tools like Visual

Studio Code

These requirements formed the foundation for system

design and feature prioritization.

2. Technology Stack Selection

A technology stack was chosen to support scalability,

responsiveness, and real-time interactions:

• Frontend: Developed using React and

Next.js (v15) for component-based

development, server-side rendering, and

routing performance.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 05 | MAY - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47368 | Page 3

• Editor: Integrated the Monaco Editor, the

same engine used in Visual Studio Code, to

provide language-specific syntax

highlighting, autocompletion, and error

detection.

• Backend: Utilized Convex, a real-time

backend-as-a-service, to manage data

syncing, session state, and comment

synchronization.

• Authentication: Implemented using Clerk,

which supports OAuth (GitHub, Google) and

session management, ensuring secure access

control and user tracking.

• Execution Environment: Built a sandboxed

code execution engine supporting multiple

programming languages (e.g., Python,

JavaScript, Java), ensuring safe execution

within browser constraints.

3. System Architecture Design

The architecture of CodeCraft follows a decoupled,

event-driven model to support real-time interactivity

and performance at scale:

• Frontend-Backend Communication is

handled through APIs and WebSockets to

maintain low-latency collaboration.

• State Management is centralized using

Convex’s real-time database syncing,

allowing multiple users to view and comment

on the same snippet simultaneously.

• Execution Service operates in an isolated

containerized environment, ensuring secure,

on-demand code compilation and execution.

4. Feature Development

Key features were developed in iterative sprints,

including:

• Code Snippet Sharing with comment

threads using live subscriptions

• Workspace Customization (dark/light

themes, horizontal/vertical splits)

• User Profiles, tracking activity logs, snippet

history, and collaboration frequency

• VSCode Integration, providing familiar

command palette functions inside the

CodeCraft interface

Each feature was validated with test users to refine

usability and performance.

5. Testing and Validation

Testing included unit tests, integration tests, and user

acceptance tests (UAT). Real-time collaboration and

execution accuracy were tested under simulated high-

traffic environments. Feedback from early adopters

was incorporated into feature refinements,

particularly in UI/UX flow and responsiveness.

Conclusion

This structured methodology ensured that CodeCraft

was not only functionally robust but also deeply

aligned with developer expectations and workflows.

By integrating user feedback at every stage and

choosing modern, scalable technologies, the platform

was able to achieve its goal of creating a seamless,

collaborative, and efficient coding environment. The

result is a cloud-based IDE that bridges the gap

between coding, collaboration, and customization—

effectively redefining the modern development

experience.

IV. EXPERIMENT RESULT

To evaluate the effectiveness of CodeCraft,

experiments were conducted in three key areas: real-

time collaboration, code execution, and user

experience. Fifty participants—including students,

software developers, and educators—used the

platform over a two-week period in real-world

coding tasks.

1. Real-Time Collaboration Performance

Objective: Evaluate how effectively CodeCraft

supports multiple users working together in real

time.

• Code and comment synchronization

averaged under 200 milliseconds, enabling

nearly instantaneous updates.

• Participants encountered no critical merge

conflicts during collaborative sessions.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 05 | MAY - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47368 | Page 4

• Inline commenting allowed users to provide

contextual feedback without using external

tools.

• Over 90% of participants preferred this

integrated approach over separate chat or

review platforms.

• Real-time collaboration enhanced

productivity, particularly in pair

programming and review sessions.

2. Code Execution Speed and Stability

Objective: Assess the speed, reliability, and

accuracy of code execution across supported

languages.

• Code written in Python, JavaScript, and

Java executed quickly, with minimal startup

time.

• The sandboxed execution engine ensured

secure, isolated execution without affecting

system integrity.

• No runtime crashes or system-level errors

occurred, even under concurrent user

activity.

• Participants noted that in-browser execution

significantly reduced context-switching

compared to using external compilers or

IDEs.

3. Customization and Interface Usability

Objective: Gauge user satisfaction with UI

flexibility and overall usability.

• Users praised the clean design and responsive

interface.

• High satisfaction was reported for:

o Theme customization (dark/light

modes, editor themes)

o Layout switching

(horizontal/vertical split views)

o Minimalist UI that reduces

distraction during long sessions

• The VSCode-style command palette made

navigation and workflow familiar for

experienced developers.

4. User Profile and Progress Tracking

Objective: Examine how users engage with personal

profiles and history features.

• Participants tracked their past code snippets,

collaborations, and comments.

• Users appreciated the gamified feel of

progress tracking, especially for learning and

academic environments.

• Profile-based history made it easier to revisit

shared code and resume unfinished work.

5. Scalability and System Load Performance

Objective: Test platform responsiveness under

increased user and code execution load.

• The system remained stable and responsive

even when 20+ users collaborated

simultaneously.

• Convex’s real-time syncing proved efficient

under load, without dropping updates.

• Backend and frontend services scaled well

without noticeable lag, confirming

architectural robustness.

6. Security and Isolation

Objective: Ensure code execution does not

compromise system security.

• The sandboxed engine effectively isolated

each code run, preventing access to other

users' data or system files.

• Clerk-based authentication ensured secure

session handling, with no unauthorized

access reported during testing.

7. Integration and Workflow Continuity

Objective: Evaluate how CodeCraft supports

continuity in common developer workflows.

• VSCode command palette integration

allowed users to access familiar commands

quickly.

• Participants appreciated the lack of friction

in moving from coding to testing to sharing

within the same interface.

• Code sharing was effortless, and recipients

could view, edit, and comment immediately

without requiring additional tools.

8. Educational Use and Feedback Utility

Objective: Determine suitability for teaching, code

review, and peer-to-peer learning.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 05 | MAY - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47368 | Page 5

• Educators used the platform for live code

demonstrations and inline feedback on

student submissions.

• Students found real-time comments helpful

during practice sessions.

• CodeCraft was seen as an effective tool for

virtual programming labs and collaborative

learning environments.

V. CONCLUSION

The emergence of cloud-based development

platforms has transformed how developers

collaborate, especially in remote and distributed

team settings. This paper presented the design,

architecture, and evaluation of CodeCraft, a real-

time collaborative code editor developed to address

the inefficiencies in fragmented development

workflows. CodeCraft integrates multi-language

code editing, real-time execution, customizable

layouts, and collaborative features into a single

browser-based interface, providing a seamless and

modern development experience.

Impact on Distributed Software Development

CodeCraft significantly improves team productivity

by enabling multiple developers to work on shared

code snippets in real time, accompanied by inline

commenting and live feedback. Unlike traditional

development environments that rely on third-party

tools for collaboration, CodeCraft offers an all-in-

one solution where development and communication

coexist within a unified platform. This reduces

delays caused by switching between tools and fosters

faster debugging, code review, and knowledge

sharing.

With the growing reliance on remote and hybrid

work models, the need for synchronized and

collaborative coding tools is more important than

ever. CodeCraft’s emphasis on accessibility, real-

time interaction, and user personalization aligns

perfectly with the current and future demands of

software development teams.

Technical Achievements

The platform leverages modern web technologies

such as React, Next.js, Convex, and Clerk to deliver

a scalable and responsive user experience. Features

like horizontal/vertical split views, theme

customization, and support for multiple

programming languages make CodeCraft versatile

across various use cases—from education to

enterprise-level development.

The integration of the Monaco Editor (used by Visual

Studio Code) enhances the developer experience

through syntax highlighting, autocompletion, and

linting. Real-time backend synchronization using

Convex enables seamless collaboration, while Clerk

ensures secure authentication and user session

management.

Scalability and Performance

CodeCraft was tested under a variety of loads and

usage scenarios and demonstrated reliable

performance even when accessed by multiple users

simultaneously. The platform maintained low-

latency communication and fast execution across

supported languages, including Python, JavaScript,

and Java. Its modular architecture and use of

serverless infrastructure allow it to scale horizontally

as user demand increases, supporting large

codebases and team workflows efficiently.

Real-Time Code Execution and Developer

Feedback

One of CodeCraft’s core contributions is its ability to

compile and execute code in real time within a

secure, sandboxed environment. This reduces the

need for external compilers or local IDEs,

streamlining the testing and debugging process.

Developers receive immediate feedback on their

code, which accelerates the development lifecycle

and improves overall code quality.

VI. Security and Data Management

Given the collaborative and cloud-based nature of

CodeCraft, data security and privacy are

foundational elements of its design. The platform

adopts industry-standard practices to ensure safe,

secure, and reliable handling of user data, code

content, and communications.

Authentication and Access Control

User identity and session management are handled

through Clerk, which supports multi-provider

authentication (Google, GitHub, etc.) and enforces

strict access control policies. Role-based permissions

ensure that users can only view or edit projects they

are authorized to access. This is especially vital for

teams working on sensitive or proprietary codebases.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 05 | MAY - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47368 | Page 6

Encrypted Communication

All data transmitted between the client and server is

encrypted using TLS/SSL, ensuring that code

snippets, profile information, and collaboration data

remain confidential and protected from interception

or tampering. Session tokens are securely stored and

managed to prevent unauthorized access.

Secure Code Execution Environment

CodeCraft's execution environment is sandboxed to

isolate each user’s code. This prevents malicious

scripts from accessing the host system or other users’

data. Each execution instance is time-limited and

memory-bound, with input/output restrictions to

mitigate risk from infinite loops or denial-of-service

attacks.

Real-Time Data Handling

For collaborative features such as live commenting

and shared editing, CodeCraft uses Convex, a real-

time serverless database that syncs changes instantly

across all connected users. This architecture ensures

data consistency and fault tolerance while

minimizing synchronization delays.

Data Storage and Privacy

User profiles, project metadata, code history, and

comments are securely stored and indexed for

efficient access. While CodeCraft primarily uses

serverless and cloud-based infrastructure, backup

policies and redundancy mechanisms are in place to

prevent data loss. Additionally, user data can be

anonymized or deleted upon request, complying with

standard data protection regulations.

REFERENCES

[1] A. Shukla, "Cloud-Based Lightweight Modern

Integrated Development Environments (IDEs) and

their Future," Journal of Artificial Intelligence &

Cloud Computing, vol. 3, no. 1, pp. 2-3, 2024.

[Online]. Available:

https://www.researchgate.net/publication/37856786

5

[2] A. M. Al-Zoubi, "Real-time Code Editor

Application for Collaborative Programming,"

Procedia Computer Science, vol. 72, pp. 34-41,

2015. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S

1877050915020608

[3] M. Goldman, G. Little, and R. C. Miller, "Real-

time collaborative coding in a web IDE," in

Proceedings of the 24th Annual ACM Symposium on

User Interface Software and Technology, 2011, pp.

155-164. [Online]. Available:

https://dl.acm.org/doi/10.1145/2047196.2047215

[4] Y. Yan, C. Liao, and B. R. de Supinski, "Cloud-

based Collaborative Development Environments for

Research Software Tools and Applications," in

Workshop on Best Practices and Tools for

Computational and Data-Intensive Research, 2019.

[Online]. Available: https://bpb-us-

w2.wpmucdn.com/sites.udel.edu/dist/6/8980/files/2

019/03/Cloud-based-Collaborative-Development-

Environments-for.pdf

http://www.ijsrem.com/
https://www.researchgate.net/publication/378567865
https://www.researchgate.net/publication/378567865
https://www.sciencedirect.com/science/article/pii/S1877050915020608
https://www.sciencedirect.com/science/article/pii/S1877050915020608
https://dl.acm.org/doi/10.1145/2047196.2047215
https://bpb-us-w2.wpmucdn.com/sites.udel.edu/dist/6/8980/files/2019/03/Cloud-based-Collaborative-Development-Environments-for.pdf
https://bpb-us-w2.wpmucdn.com/sites.udel.edu/dist/6/8980/files/2019/03/Cloud-based-Collaborative-Development-Environments-for.pdf
https://bpb-us-w2.wpmucdn.com/sites.udel.edu/dist/6/8980/files/2019/03/Cloud-based-Collaborative-Development-Environments-for.pdf
https://bpb-us-w2.wpmucdn.com/sites.udel.edu/dist/6/8980/files/2019/03/Cloud-based-Collaborative-Development-Environments-for.pdf

