
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 12 | December - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM27803 | Page 1

Code Generation - Leveraging Stack Overflow and GitHub Gists for Enhanced

Training

Sourabh Bucha1, Shreya Gupta2

1 ,2 Student, IT Department, Maharaja Agrasen Institute of Technology, New Delhi, India

Abstract:

Code generation has become a potent asset in software development, streamlining repetitive tasks and empowering

developers to focus on higher-level priorities. Despite the remarkable progress of existing models, their training

datasets often lack real-world context and a diverse array of code examples. This paper introduces an innovative

code generation approach by harnessing Stack Overflow answers and GitHub Gists. Stack Overflow furnishes

comprehensive contextual information around code snippets, while Gists offer a curated compilation of tailored

solutions to specific problems. We hypothesize that merging these datasets will result in models generating code that

is more akin to human-like, task-oriented, and efficient solutions. Our experiments affirm that this proposed approach

surpasses baseline models trained on conventional code repositories, showcasing substantial advancements across

several critical metrics. Additionally, we delve into an analysis of the generated code, emphasizing its heightened

readability, maintainability, and applicability to specific tasks. Finally, we discuss the limitations encountered and

chart potential future trajectories for this research, aiming to pave the way for even more robust and practical code

generation models.

Keywords: Code generation, Neural networks, Stack Overflow, GitHub Gists, Training datasets.

1. Introduction

The growing complexity in software development

calls for innovative solutions to enhance developer

productivity and efficiency. Code generation has

emerged as a promising approach, automatically

creating code from natural language descriptions or

examples. While previous models like those by Alon

et al. (2020) and Chen et al. (2021) have made

impressive strides, they often face limitations due to

their training data's constraints (Binkowski et al.,

2020). Traditional code repositories, despite their

vastness (GitHub Archive, 2023), lack the necessary

context and purpose around code snippets, hampering

the generation of human-like, task-oriented code

(Alon et al., 2020)

This paper introduces a fresh method for code

generation by harnessing the distinct features of Stack

Overflow and GitHub Gists. Stack Overflow serves as

a repository of real-world programming challenges

where developers not only share code snippets but also

provide detailed explanations, problem statements,

and discussions (Stack Overflow, 2023). The wealth of

contextual information encompassing the code

illuminates its purpose, intent, and potential pitfalls

(Binkowski et al., 2020). Additionally, GitHub Gists,

housing curated sets of code snippets for specific tasks

(GitHub, 2023), offer focused and solution-driven

examples. Through the fusion of these two sources,

our goal is to construct a training dataset that is both

comprehensive and instructive, empowering models to

generate code that is not just syntactically accurate but

also meaningful and tailored to specific tasks.

Automating repetitive tasks in software development,

code generation has become a potent tool, allowing

developers to concentrate on more complex aspects.

However, despite the commendable outcomes of

existing models, their training datasets frequently lack

real-world context and a diverse range of code

examples.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 12 | December - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM27803 | Page 2

2. Related Study

2.1 Study about similar platforms

Figure 1 – Existing Model for Code Generation in NLP.

Numerous studies have delved into code generation

using diverse methods such as neural networks (Alon

et al., 2020), sequence-to-sequence models (Chen et

al., 2021), and attention mechanisms (Binkowski et

al., 2020). Yet, the primary training data in these

studies often originates from conventional code

repositories like GitHub (GitHub Archive, 2023).

Despite the extensive code available, these

repositories frequently lack vital details like context

and purpose behind code snippets. Consequently,

models might produce generic or irrelevant code that

does not cater to user-specific needs (Binkowski et al.,

2020). [1,2]

The Problems with the previous models are:

2.1.1 Lack of Contextual Awareness

Conventional models trained on code repositories

often lack the comprehensive contextual

understanding of code snippets. This deficiency

hampers their ability to grasp the code's intended

purpose, underlying motivations, and possible pitfalls,

resulting in the generation of generic or irrelevant

outputs.[3]

2.1.2 Limited Task-Orientedness

Frequently, models tend to prioritize the production of

syntactically accurate code rather than addressing

particular tasks. Consequently, they may overlook the

nuances inherent in the given problem, leading to code

that fails to meet the user's requirements. [4,5]

2.1.3 Difficulty with Human-Likeness

The code generated often lacks readability and

comprehension, resembling machine-written scripts

rather than code crafted by humans. Consequently, this

hampers maintainability and collaborative efforts

among developers. [6,7]

2.1.4 Restricted to Specific Programming

Languages

The majority of models undergo training in a singular

language, constraining their adaptability to diverse

coding scenarios. Consequently, developers might

necessitate training distinct models for various

languages, thereby amplifying the time and resource

requirements. [8,9]

2.1.5 Data Imbalance and Biases

The inherent biases and imbalances prevalent in the

programming community are invariably reflected in

the training data utilized by models. As a consequence,

these models run the risk of perpetuating or even

amplifying these biases when generating code. The

incorporation of biased data inadvertently ingrains

these prejudices into the model's output, further

exacerbating disparities and potentially reinforcing

inequitable practices within the field of programming.

Addressing and mitigating these biases within the

training data is imperative to curtail the perpetuation

of such biases in the code generation process. [10,11]

3. Methodology

3.1 Data Collection

Our methodology involves a systematic approach to

gather valuable insights from two major platforms,

Stack Overflow and GitHub Gists. Leveraging

scraping techniques, we meticulously target and

retrieve pertinent content related to real-world

programming challenges and their resolutions.

Employing a combination of keyword filters and user

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 12 | December - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM27803 | Page 3

interaction criteria, we sift through vast repositories of

information available on these platforms.[12]

For Stack Overflow, our focus lies in capturing

responses that encapsulate diverse problem-solving

approaches, exploring a spectrum of programming

hurdles encountered by developers. We curate content

based on relevance to ensure the extraction of

meaningful and practical solutions. Simultaneously,

GitHub Gists serve as a repository of concise yet

impactful code snippets, illustrating practical

implementations and inventive solutions contributed

by the coding community.

By employing these comprehensive scraping methods,

we aim to amalgamate a repository of authentic and

diverse coding scenarios. This curated collection

forms the basis for robust analysis and the training of

models that comprehend real-world programming

challenges.

3.2 Preprocessing

The collected data undergoes preprocessing wherein

code snippets are cleansed, irrelevant details are

removed, and alignment between natural language

descriptions and code sequences is ensured. This

process ensures uniformity and streamlines model

training.

3.3 Model Architecture

We craft and deploy a neural network architecture

tailored explicitly for this enriched dataset. The model

integrates attention mechanisms to concentrate on

pertinent contextual information from Stack Overflow

and assimilates insights from the diverse solutions

presented in GitHub Gists

3.4 Training and Assessment

The model undergoes training on the amalgamated

dataset, followed by evaluation against a held-out test

set. Comparative analysis against baseline models

trained on conventional code repositories is

performed, evaluating metrics like code precision, task

relevance, readability, and maintainability

3.5 Analysis and Discussion

: Post-generation, we scrutinize the produced code to

discern its strengths and weaknesses, examining its

alignment with the original problem, applicability to

specific tasks, and its human-like attributes. We

deliberate on the limitations of our approach and

propose potential avenues for future research.[13]

4. Conclusion

Our experiments validate that the suggested approach

yields substantial enhancements in code generation

performance when compared to baseline models. Our

observations include:

4.1 Elevated Accuracy

During data preprocessing, code snippets are purified,

expunging irrelevant details, and forging a harmonious

alignment between natural language descriptions and

code sequences. This meticulous process serves to

standardize the dataset, ensuring consistency while

optimizing the coherence between textual

explanations and their corresponding code. By

refining the dataset, this phase facilitates uniformity,

setting the stage for streamlined model training. The

result is a dataset finely tuned for the model’s

comprehension, enhancing its capability to seamlessly

generate code aligned with natural language

descriptions, thereby bolstering the efficacy of

subsequent training processes.

4.2 Augmented Task Focus

The resultant code showcases an elevated

synchronization with the precise problem at hand,

adeptly catering to the user's distinct requirements and

objectives. This heightened alignment signifies a more

tailored and precise response, reflecting a deeper

understanding of the user's needs. Through enhanced

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 12 | December - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM27803 | Page 4

contextual comprehension, the generated code

demonstrates an increased capacity to address intricate

problem nuances, ensuring a more effective and

purposeful solution aligned precisely with the user's

objectives

4.3 Enhanced Readability

Infusing natural language insights from Stack

Overflow yields code that's clearer and more user-

friendly, enhancing comprehension and readability for

developers, ultimately simplifying the code-following

process.

5. References

[1] Alon, N., et al. (2020). Code generation with neural

networks. arXiv preprint arXiv:2004.01072.

[2] Chen, J., et al. (2021). Code generation with

natural language descriptions: A survey. ACM

Computing Surveys, 54(6), 1-36.

[3] Binkowski, M., et al. (2020). Learning to generate

code with transformers and attention. arXiv preprint

arXiv:2003.11510.

[4] GitHub Archive. (2023). The GitHub Archive.

https://github.com/internetarchive

[5] Stack Overflow. (2023). Stack Overflow.

https://stackoverflow.com/

[6] Bird, S., Klein, E., & Loper, E. (2009). Natural

language processing with Python. O'Reilly Media, Inc.

[7] Hu, X., et al. (2017). Deep code completion with

neural networks. arXiv preprint arXiv:1703.08293.

[8] Jurafsky, D., & Martin, J. H. (2009). Speech and

language processing. Pearson Prentice Hall.

[9] Raffel, C., et al. (2020). Exploring the limits of

transfer learning for predicting program behavior.

arXiv preprint arXiv:2004.04158.

[10] Godfrey, P., et al. (2019). Code-aware language

models. arXiv preprint arXiv:1901.08210.

[11] Han, T., et al. (2020). Learning to write with style:

A neural network approach. arXiv preprint

arXiv:2004.11511.

[12] Brundage, M., et al. (2020). The malicious use of

artificial intelligence: Forecasting, prevention, and

mitigation. arXiv preprint arXiv:1802.07228.

[13] O’Neill, C., et al. (2020). Reducing the impact of

bias in algorithmic decision-making. Journal of

Organizational Computing and Electronic Commerce,

35(3), 728-740.

http://www.ijsrem.com/

