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Abstract: 

Code generation has become a potent asset in software development, streamlining repetitive tasks and empowering 

developers to focus on higher-level priorities. Despite the remarkable progress of existing models, their training 

datasets often lack real-world context and a diverse array of code examples. This paper introduces an innovative 

code generation approach by harnessing Stack Overflow answers and GitHub Gists. Stack Overflow furnishes 

comprehensive contextual information around code snippets, while Gists offer a curated compilation of tailored 

solutions to specific problems. We hypothesize that merging these datasets will result in models generating code that 

is more akin to human-like, task-oriented, and efficient solutions. Our experiments affirm that this proposed approach 

surpasses baseline models trained on conventional code repositories, showcasing substantial advancements across 

several critical metrics. Additionally, we delve into an analysis of the generated code, emphasizing its heightened 

readability, maintainability, and applicability to specific tasks. Finally, we discuss the limitations encountered and 

chart potential future trajectories for this research, aiming to pave the way for even more robust and practical code 

generation models. 
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1. Introduction 

The growing complexity in software development 

calls for innovative solutions to enhance developer 

productivity and efficiency. Code generation has 

emerged as a promising approach, automatically 

creating code from natural language descriptions or 

examples. While previous models like those by Alon 

et al. (2020) and Chen et al. (2021) have made 

impressive strides, they often face limitations due to 

their training data's constraints (Binkowski et al., 

2020). Traditional code repositories, despite their 

vastness (GitHub Archive, 2023), lack the necessary 

context and purpose around code snippets, hampering 

the generation of human-like, task-oriented code 

(Alon et al., 2020) 

This paper introduces a fresh method for code 

generation by harnessing the distinct features of Stack 

Overflow and GitHub Gists. Stack Overflow serves as 

a repository of real-world programming challenges 

where developers not only share code snippets but also 

provide detailed explanations, problem statements, 

and discussions (Stack Overflow, 2023). The wealth of 

contextual information encompassing the code 

illuminates its purpose, intent, and potential pitfalls 

(Binkowski et al., 2020). Additionally, GitHub Gists, 

housing curated sets of code snippets for specific tasks 

(GitHub, 2023), offer focused and solution-driven 

examples. Through the fusion of these two sources, 

our goal is to construct a training dataset that is both 

comprehensive and instructive, empowering models to 

generate code that is not just syntactically accurate but 

also meaningful and tailored to specific tasks. 

Automating repetitive tasks in software development, 

code generation has become a potent tool, allowing 

developers to concentrate on more complex aspects. 

However, despite the commendable outcomes of 

existing models, their training datasets frequently lack 

real-world context and a diverse range of code 

examples. 
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2. Related Study 

2.1 Study about similar platforms  

 

Figure 1 – Existing Model for Code Generation in NLP. 

Numerous studies have delved into code generation 

using diverse methods such as neural networks (Alon 

et al., 2020), sequence-to-sequence models (Chen et 

al., 2021), and attention mechanisms (Binkowski et 

al., 2020). Yet, the primary training data in these 

studies often originates from conventional code 

repositories like GitHub (GitHub Archive, 2023). 

Despite the extensive code available, these 

repositories frequently lack vital details like context 

and purpose behind code snippets. Consequently, 

models might produce generic or irrelevant code that 

does not cater to user-specific needs (Binkowski et al., 

2020). [1,2] 

The Problems with the previous models are: 

2.1.1 Lack of Contextual Awareness 

Conventional models trained on code repositories 

often lack the comprehensive contextual 

understanding of code snippets. This deficiency 

hampers their ability to grasp the code's intended 

purpose, underlying motivations, and possible pitfalls, 

resulting in the generation of generic or irrelevant 

outputs.[3] 

2.1.2 Limited Task-Orientedness 

Frequently, models tend to prioritize the production of 

syntactically accurate code rather than addressing 

particular tasks. Consequently, they may overlook the 

nuances inherent in the given problem, leading to code 

that fails to meet the user's requirements. [4,5] 

2.1.3 Difficulty with Human-Likeness 

The code generated often lacks readability and 

comprehension, resembling machine-written scripts 

rather than code crafted by humans. Consequently, this 

hampers maintainability and collaborative efforts 

among developers. [6,7] 

2.1.4 Restricted to Specific Programming 

Languages 

The majority of models undergo training in a singular 

language, constraining their adaptability to diverse 

coding scenarios. Consequently, developers might 

necessitate training distinct models for various 

languages, thereby amplifying the time and resource 

requirements. [8,9] 

2.1.5 Data Imbalance and Biases 

The inherent biases and imbalances prevalent in the 

programming community are invariably reflected in 

the training data utilized by models. As a consequence, 

these models run the risk of perpetuating or even 

amplifying these biases when generating code. The 

incorporation of biased data inadvertently ingrains 

these prejudices into the model's output, further 

exacerbating disparities and potentially reinforcing 

inequitable practices within the field of programming. 

Addressing and mitigating these biases within the 

training data is imperative to curtail the perpetuation 

of such biases in the code generation process. [10,11] 

 

3. Methodology 

3.1 Data Collection 

Our methodology involves a systematic approach to 

gather valuable insights from two major platforms, 

Stack Overflow and GitHub Gists. Leveraging 

scraping techniques, we meticulously target and 

retrieve pertinent content related to real-world 

programming challenges and their resolutions. 

Employing a combination of keyword filters and user 
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interaction criteria, we sift through vast repositories of 

information available on these platforms.[12] 

For Stack Overflow, our focus lies in capturing 

responses that encapsulate diverse problem-solving 

approaches, exploring a spectrum of programming 

hurdles encountered by developers. We curate content 

based on relevance to ensure the extraction of 

meaningful and practical solutions. Simultaneously, 

GitHub Gists serve as a repository of concise yet 

impactful code snippets, illustrating practical 

implementations and inventive solutions contributed 

by the coding community. 

By employing these comprehensive scraping methods, 

we aim to amalgamate a repository of authentic and 

diverse coding scenarios. This curated collection 

forms the basis for robust analysis and the training of 

models that comprehend real-world programming 

challenges. 

3.2 Preprocessing 

The collected data undergoes preprocessing wherein 

code snippets are cleansed, irrelevant details are 

removed, and alignment between natural language 

descriptions and code sequences is ensured. This 

process ensures uniformity and streamlines model 

training. 

3.3 Model Architecture 

We craft and deploy a neural network architecture 

tailored explicitly for this enriched dataset. The model 

integrates attention mechanisms to concentrate on 

pertinent contextual information from Stack Overflow 

and assimilates insights from the diverse solutions 

presented in GitHub Gists 

 

 

3.4 Training and Assessment 

The model undergoes training on the amalgamated 

dataset, followed by evaluation against a held-out test 

set. Comparative analysis against baseline models 

trained on conventional code repositories is 

performed, evaluating metrics like code precision, task 

relevance, readability, and maintainability 

3.5 Analysis and Discussion 

: Post-generation, we scrutinize the produced code to 

discern its strengths and weaknesses, examining its 

alignment with the original problem, applicability to 

specific tasks, and its human-like attributes. We 

deliberate on the limitations of our approach and 

propose potential avenues for future research.[13] 

 

4. Conclusion 

Our experiments validate that the suggested approach 

yields substantial enhancements in code generation 

performance when compared to baseline models. Our 

observations include: 

4.1 Elevated Accuracy 

During data preprocessing, code snippets are purified, 

expunging irrelevant details, and forging a harmonious 

alignment between natural language descriptions and 

code sequences. This meticulous process serves to 

standardize the dataset, ensuring consistency while 

optimizing the coherence between textual 

explanations and their corresponding code. By 

refining the dataset, this phase facilitates uniformity, 

setting the stage for streamlined model training. The 

result is a dataset finely tuned for the model’s 

comprehension, enhancing its capability to seamlessly 

generate code aligned with natural language 

descriptions, thereby bolstering the efficacy of 

subsequent training processes. 

 

4.2 Augmented Task Focus 

The resultant code showcases an elevated 

synchronization with the precise problem at hand, 

adeptly catering to the user's distinct requirements and 

objectives. This heightened alignment signifies a more 

tailored and precise response, reflecting a deeper 

understanding of the user's needs. Through enhanced 
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contextual comprehension, the generated code 

demonstrates an increased capacity to address intricate 

problem nuances, ensuring a more effective and 

purposeful solution aligned precisely with the user's 

objectives  

4.3 Enhanced Readability 

Infusing natural language insights from Stack 

Overflow yields code that's clearer and more user-

friendly, enhancing comprehension and readability for 

developers, ultimately simplifying the code-following 

process. 
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