
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 07 Issue: 06 | June - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM24196 | Page 1

CODE GENERATOR BASED ON VOICE COMMANDS

Mr.CH Vijaya Kumar1

Pathakala Rohit2, Mohammed Fayas3, Mohammed Ashraf4, Gandla Bhanu Prakash5

1Associate professor, Department of Computer Science and Engineering, ACE Engineering College,

Hyderabad, Telangana, India. e-mail:vijay.chandarapu@gmail.com

2,3,4,5 IV B. Tech Students, Department of Computer Science and Engineering, ACE Engineering College,

Hyderabad, Telangana, India.

e-mail: rohitrohit51765@gmail.com2, ashraf17042001@gmail.com3,

adilfayaz01@gmail.com4,bhgandla32@gmail.com5

ABSTRACT

 Artificial intelligence is the current focal point of the technology world. Voice assistants with this

intelligence are popular in the ai world, including Siri, Google, ChatGPT, and others. Without realising

what kind of technology, we are using, but enjoying it, programming plays a vital role in the development

of projects like these. However, these demonstrate the significance of programming today. Some

innovations take three days or three years to develop. Since the advent of programmable computing

systems, programming has been the human race's largest technological challenge.

So, our goal is to find the simplest possible technique to code the programme, which is where project comes

in. This project was given the title "Code Generator Based on Voice Commands." In this application, we

may communicate with the compiler verbally while we are programming. We may code a programme that

uses voice instructions in our project by using a few unique commands. The Python programming language

is the foundation of our entire endeavour. Our project's major goal is to provide a user-friendly platform so

that programmers may easily implement technologies using voice commands. People who are physically

unable to use a computer but are interested in software are most likely to take up this endeavour. They can

now code using voice commands thanks to them.

Keywords: Natural Language, Voice Command, Compile, Translate, Instruction

http://www.ijsrem.com/
mailto:vijay.chandarapu@gmail.com
mailto:rohitrohit51765@gmail.com2
mailto:ashraf17042001@gmail.com3
mailto:adilfayaz01@gmail.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 07 Issue: 06 | June - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM24196 | Page 2

INTRODUCTION

The two digits 0 and 1 developed into the meta world we live in today, giving rise to supercomputers,

cutting-edge VFX graphics, and other modern technologies. As we can see, programming is used to create

every technology we use today. Because programming is a difficult undertaking, humanity has suffered

since its invention. Depending on how many people are working on it to write the code, some technologies

take 3 days to build while others take 30 years. To speed up development, our team came up with a solution:

a voice-based code generator that makes the work of programmers easier.

Future technology is advancing towards hands-free capabilities, which improves usability. The leading

businesses are incorporating assistants like Amazon Echo, Google Home, Siri by Apple, etc. as these

concepts gain popularity. According to the voice assistant usage, people are more interested in voice-based

technologies. In the field of IT, it also has a great future potential.

Voice-based code generators generate codes based on user voice recognition and voice commands. This

project was broken down into four main components for development. Those are

1.user input via voice.

2.handling the input.

3. Producing Code from Input.

4. The Code is compiled.

We used the Google Voice API to capture user voice input. The compilation of our project's code, which

comes next, demands a significant storage space for libraries and data.

The Google API is used to interpret voice instructions into sentences, which are subsequently broken down

into words. Then, depending on keywords and phrases, our programme understands user commands and

generates code. To generate the code, these words and phrases are concatenated using an algorithm. It is

less complicated because we used a limited amount of syntax and functions, but the algorithm will be more

complicated. External libraries, techniques, and sophisticated sections are generally tolerated.

We used Natural Language Processing to create our project. Where NLP is a subfield of artificial

intelligence. Natural Language Processing (NLP)-based voice command code generators enable users to

speak their instructions to the system to generate code. To translate voice commands into executable code

snippets, it combines speech recognition, NLP, and code generation techniques.

Such a system typically consists of several parts, such as a speech recognition module to translate voice

commands into text, a module to extract intent and parameters from natural language, a module to generate

code based on user requirements, a module to execute the generated code, and so on.

To accurately record voice commands, the speech recognition system's accuracy is essential. The NLU

component must be able to comprehend complex requests for code generation and extract pertinent data.

Coding conventions and best practises should be followed by the logic used to generate accurate and

effective code. A voice command-based code generator should offer a safe environment for operations and

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 07 Issue: 06 | June - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM24196 | Page 3

gracefully handle errors. With a user-friendly interface and clear instructions, usability and user experience

are crucial. Users can add or alter code generation templates thanks to flexibility and extensibility.

Performance is essential for handling complex requests quickly, and the system should evolve over time

and consider user feedback to continuously improve.

It is crucial to keep in mind that creating a comprehensive and precise code generator based on voice

commands is a challenging task that necessitates a thorough understanding of natural language processing,

code generation methods, and execution environments. To aid in the language understanding and code

generation tasks, take into consideration utilising already-existing NLP frameworks like Hugging Face's

Transformers or OpenAI's GPT-3.

SO, we have created this project as a result of how our project affected the outside world. It makes no sense

without affecting our project in any way. Making tech programming a quicker and simpler entry point for

new interns to programming is one of the key effects that motivated us to work on this project.

PROPOSED SYSTEM

Developers may find it useful and effective to use a voice-activated code generator that produces code

snippets or templates. Here is a suggested system architecture for a voice command-based code generator:

Voice Input: The system ought to have a voice recognition feature that can translate verbal instructions into

text. For this purpose, a few speech recognition libraries and APIs are available, including Google Cloud

Speech-to-Text, CMU Sphinx, and Mozilla Deep Speech.

Command processing: After converting the voice input to text, a command processing module will analyse

and draw out the pertinent details from the command. The developer's intent should be understood by this

module, which should also determine the desired code snippet or template to be generated. Here, Natural

Language Processing (NLP) techniques can be used to improve the precision of command interpretation.

Code Generation: The code generation component creates the corresponding code snippet or template from

the processed command. This step might entail integrating with code generation libraries or parsers for

programming languages. The code generator ought to be flexible and support a variety of frameworks and

programming languages.

Code Output: The user should be shown the generated code snippet or template in an appropriate format. It

may be made available as a downloadable file or displayed on a graphical user interface (GUI). The system

might also provide customization options, such as for variable names, method signatures, or configuration

parameters.

Code Execution: Depending on how complex the generated code is, the system might offer a choice to run

the code directly from the integrated development environment (IDE) or might offer guidance on how to

add the code to an already-existing project.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 07 Issue: 06 | June - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM24196 | Page 4

Error Handling: It is critical to gracefully address any mistakes or ambiguities that may occur when using

voice commands. The system must have mechanisms for detecting errors and giving the user the proper

feedback, such as by requesting clarification or recommending different commands.

Integration with IDEs: Integrating the code generator system with popular integrated development

environments (IDEs) like Visual Studio Code, IntelliJ IDEA, or Eclipse will improve the developer's

workflow. This integration might include add-ons or extensions that enable easy access to the IDE's built-

in code generator.

User Feedback and Improvement: It would be advantageous to gather user feedback on the generated code

samples and continuously enhance the precision and performance of the system. Users could give feedback

on the effectiveness, appropriateness, and quality of the generated code, enabling the system to develop and

change over time.

It is important to keep in mind that creating a voice-based code generator requires the development of

several different parts, including voice recognition, natural language understanding, and code generation.

Both software development and speech processing expertise are needed.

PERFORMANCE EVALUTION

A code generator's performance based on voice commands is evaluated by looking at a variety of factors,

including accuracy, speed, usability, and overall efficiency. When assessing the effectiveness of a code

generator that responds to voice commands, keep the following points in mind:

Evaluate the code generator's accuracy in translating voice commands into executable code. Assess the

system's performance using a variety of inputs and the generated code's accuracy. Check the generated code

for any syntax mistakes, logical inconsistencies, or inaccuracies.

Word error rate (WER): This is the most common metric used to evaluate S2C systems. It is calculated as

the percentage of words in a test set that are incorrectly recognized.

Fig 1: Speaking Error

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 07 Issue: 06 | June - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM24196 | Page 5

Speed: Time the code generator needs to translate voice commands into code. Contrast the processing speed

with other code generation techniques. Consider elements like code compilation time, voice recognition

latency, and overall system responsiveness.

Fig 2: Speed Test in voice recognition

Error Handling: Evaluate the code generator's ability to handle errors or unclear voice commands. When

presented with ambiguous voice inputs, check to see if the system prompts for clarification or displays clear

error messages. Evaluate how well the code generator handles mistakes or unclear voice commands. When

presented with ambiguous voice inputs, check to see if the system prompts for clarification or displays clear

error messages.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 07 Issue: 06 | June - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM24196 | Page 6

We can see that most of the mistakes occur in the classroom. Since everyone is aware of how noisy

classrooms can be. The voice is essential to our application. For the application to function properly, we

need crystal-clear voice input. Because of this, there are more mistakes made in classrooms. On the other

hand, we can observe that the home appears to have fewer errors. The cause of this is that homes are

generally quieter than classrooms.

CONCLUSION

In conclusion, a code generator based on voice commands has the potential to enhance the programming

experience by providing a hands-free and intuitive way to generate code. It can be a valuable tool for

developers, especially those who may have physical limitations or prefer a more natural interaction with

their programming environment. The advantages of a code generator based on voice commands include

Increased productivity: Voice commands can potentially speed up the code generation process by

eliminating the need for manual typing. Developers can dictate their code and see it generated

automatically, reducing the time and effort required.

Accessibility and inclusivity: Voice-based interfaces can make programming more accessible to individuals

with disabilities or physical limitations that make typing difficult. It allows them to participate in software

development on an equal footing with others. Intuitive and natural interaction: Voice commands provide a

more natural way of interacting with the programming environment. Developers can express their thoughts

and ideas verbally, making the process feel more fluid and intuitive. Multitasking capabilities: With a voice-

based code generator, developers can generate code while performing other tasks simultaneously. They can

dictate code snippets or instructions while focusing on other aspects of their work, such as problem-solving

or design.

Contextual understanding: Programming often involves complex syntax, context, and structure. It may be

challenging for a voice-based code generator to understand and interpret the nuances of programming

languages accurately. It needs to be able to differentiate between code instructions and normal speech to

generate correct and valid code.

Limited control and precision: Voice commands may not provide the same level of control and precision

as manual typing. Fine-grained adjustments and precise formatting can be more challenging to achieve with

voice-based inputs.

ACKNOWLEDGEMENT

We would like to thank our guide, Mr. CH Vijaya Kumar, for his continuous support and guidance. Also,

we are thankful to our project coordinator, Mrs. Soppari Kavitha, and we are extremely grateful to Dr.

M. V. Vijaya Sardhi, Head of the Department of Computer Science and Engineering at Ace Engineering

College, for his support and invaluable time.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 07 Issue: 06 | June - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM24196 | Page 7

References:

1. Goldthwaite, John, Mark, and Stephen Arnold. Vocal programming, or voice programming. In the ACM

2000 Conference on Assistive Technologies Proceedings, November 2000.

2. Lindsey Snell. Development of a Toolkit for Writing Voice-Controlled Applications and Research into

Voice Programming. Engineer's Report. June 2000, Imperial College of Science, Technology, and

Medicine in London

3. Peter Bednr, "Vocabulary matching for information extraction language, EEE 15th International

Symposium on Applied Machine Intelligence and Informatics," Herlany, Slovakia, January 26–28, 2017.

4. "Keyboard less visual programming using voice, handwriting, and gesture" by Jennifer L. Leopold and

Allen L. Ambler.

Unified parsing and information extraction language, 5.P. Bednr. January 21–23, 2016, pp. 131–135 in

SAMI 2016 – IEEE 14th International Symposium on Applied Machine Intelligence and Informatics.

6. Mr. Ing. Marilena Anghelu and Mr. Ing. Alexandru Trifan.Rodica Constantinescu, L. Dr. "Compiling a

Natural Language Processing Model. into Byte Code from Natural Language.

7. Jeff Grey and Amber Wagner. An Empirical Assessment of a Vocal User Interface for Voice-Activated

Programming.

8. G. S. (2016, May 24). According to Google, voice searches account for 20% of mobile queries. February

15, 2018, retrieved.

http://www.ijsrem.com/

