
          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                        Volume: 09 Issue: 04 | April - 2025                           SJIF Rating: 8.586                                 ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                    DOI: 10.55041/IJSREM43690                                       |        Page 1 
 

Compact Metric Space and Some Fixed-Point Theorems 
 

Rama Shamrao Tarte1 , Varsha D. Borgaonkar2 

1P.G. Department of Mathematics, N.E.S. Science College, Nanded, India - 431 602 
2P.G. Department of Mathematics, N.E.S. Science College, Nanded, India - 431 602 

 

Abstract: The aim of this paper is to study some fixed point results in compact metric spaces. It discusses the 

existence and uniqueness of fixed point of a self-map on a metric space. In this paper we defined generalized 

contraction condition on the continuous self-mappings on compact metric spaces. Our result generalizes the results of 

Edelstein and Fisher.  
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INTRODUCTION 

 The Banach fixed-point theorem is a very popular and useful theorem in Mathematics as well as in other 

subjects. Fixed point theory has an enormous number of applications in various fields of Mathematics, such as 

Differential Equations and Numerical Analysis.  It has an important role in Mathematical Economics. First of all, 

Edelstein [4] has established the fixed point theorem for contractive type mapping on a compact metric space. Later, 

D. Bailey [5] has obtained the fixed point theorems for the mapping for which the sequence of iterates satisfies the 

contractive condition on a compact metric space. In 1978, Fisher [6] generalized the contractive condition and gave the 

fixed point theorem for the mapping satisfying that contractive condition.  

 In this paper, we generalized the contractive condition and the results of Edelstein and Fisher.  

 

BASIC DEFINITION & EXAMPLES 

Definition 2.1: (Metric Space): Let 𝑋 be a non-empty set. A metric on 𝑋 is a real-valued function 𝑑: 𝑋 ×→ 𝑅 which 

satisfies the following conditions: 

i. 𝑑(𝑥, 𝑦) ≥

0,                                                   ∀ 𝑥, 𝑦 ∈ 𝑋, 

ii. 𝑑(𝑥, 𝑦) = 0        if and only if 𝑥 =

𝑦        ∀ 𝑥, 𝑦 ∈ 𝑋, 

iii. 𝑑(𝑥, 𝑦) =

𝑑(𝑦, 𝑥),                                         ∀ 𝑥, 𝑦 ∈  𝑋     (Symmetry), 

iv. 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) +

𝑑(𝑧, 𝑦),                       ∀𝑥, 𝑦, 𝑧 ∈ 𝑋     (Triangle inequality) 

 

Definition 2.2: (Open Set): A subset 𝐺 of a metric space (𝑋, 𝑑) is said to be open in 𝑋, with respect to the metric 𝑑, if 

𝐺 is a neighbourhood of each of its points. In other words, if for each 𝑎 ∈ 𝐺, there is an 𝑟 > 0, such that, 𝑠𝑟(𝑎) ⊆ 𝐺. 

 

Example 2.1: On the real line with the usual metric, the singleton set is open. 

 

Definitions 2.3: (Open Cover): Let (𝑋, 𝑑) be a metric space. A family of subsets {𝐴∝}  in 𝑋 is called a cover of any 

subset 𝐴 of 𝑋 if 𝐴 ⊆ ⋃ 𝐴∝  , ∧∝∈∧  is any non-empty index set. If each 𝐴∝ , ∝∈∧, is an open set in 𝑋, then the cover 

{𝐴∝} is called an open cover of 𝐴. 
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Definition 2.4: (Open Subcover): A subfamily of the family {𝐴∝} which itself is an open cover, is called an open 

subcover of 𝐴.  

 

Definition 2.5: (Finite Subcover): If the number of members in the subfamily is finite, it is called a finite subcover 

of 𝐴. 

 

Definition 2.6: (Compact Metric Space): A subset 𝐴 of a metric space (𝑋, 𝑑) is said to be compact if every open 

cover of 𝐴 admits of a finite subcover, i.e., for each family of open subsets {𝐺∝} of 𝑋, for which 𝐴 ⊆ ⋃ 𝐺∝ ,∝∈∧  there 

exists a finite subfamily say {𝐺∝1, 𝐺∝2, … , 𝐺∝𝑛} such that 𝐴 ⊆ ⋃ 𝐺∝𝑖
𝑛
𝑖=1 .  

 

Example 2.2: Any closed interval with the usual metric is compact.  

 

Definition 2.7: Let (𝑋, 𝑑) be a metric space. A mapping 𝑇: 𝑋 → 𝑋 is called 

i.Contraction:  If 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝑑(𝑥, 𝑦),            ∀ 𝑥, 𝑦 ∈ 𝑋 ,   𝛼 ∈ [0,1). 

ii.Contractive: If 𝑑(𝑇𝑥, 𝑇𝑦) < 𝑓(𝑥, 𝑦),                ∀ 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦. 

 

Theorem 2.1: (Banach Contraction Theorem): A contraction 𝑇 on a complete metric space (𝑋, 𝑑) has a unique fixed 

point. If 𝑧 is the fixed point of the mapping 𝑇, then for any 𝑥 ∈ 𝑋, the sequence {𝑇𝑛𝑥} of iterates converges to 𝑧. 

 

Definition 2.8: (Fixed point): Let (𝑋, 𝑑) be a metric space, then a point is said to be a fixed point of the self-map 𝑓 ∶

𝑋 → 𝑋 if  𝑓(𝑥) = 𝑥.  

 

Example2.3: Let 𝑓: 𝑅 → 𝑅 defined as, 𝑓(𝑥) = 𝑥3 ∀    𝑥 ∈ 𝑅,  then 𝑥 = 0, 𝑥 = 1  and               𝑥 = −1,  are the fixed 

points of the mapping 𝑓. 

 

1. MAIN RESULTS 

Theorem 3.1: Let 𝑇 be a continuous self-map of a compact metric space satisfying the conditions,  

𝑑(𝑇𝑥, 𝑇𝑦)  <  𝛼𝑑(𝑥, 𝑦)  + 𝛽[𝑑(𝑦, 𝑇𝑥) + 𝑑(𝑥, 𝑇𝑦)]  + 𝛾[𝑑(𝑦, 𝑇𝑦)  + 𝑑(𝑥, 𝑇𝑥)]         … (3.1) 

∀𝑥 ≠ 𝑦 ∈ 𝑋,  where,  0 <  𝛼 < 1,    0 < 𝛽 < 1  and 0 < 𝛾 < 1 are such that  𝛼 + 𝛽 + 𝛾 <
1

2
.  

 Then 𝑇 has a unique fixed point in 𝑋. 

 

Proof: We define   𝑓 ∶ 𝑋 → [0, ∞] as, 𝑓(𝑥)  = 𝑑(𝑥, 𝑇(𝑥))                     ∀𝑥 ∈ 𝑋. 

Case I:  If 𝑥 =  𝑇(𝑥) for some 𝑥 ∈ 𝑋 then,  𝑥 is a fixed point of 𝑋.  

Case II: Suppose 𝑥 ∈ 𝑋 is such that 𝑇(𝑥) ≠ 𝑥 . 

              ∴                     𝑓(𝑇(𝑥))  = 𝑓 (𝑇(𝑥), 𝑇2(𝑥)).  

By applying (3.1), we get,  

𝑓(𝑇(𝑥))  = 𝑓 (𝑇(𝑥), 𝑇2(𝑥)) 

< 𝛼. 𝑑(𝑥, 𝑇𝑥) + 𝛽[𝑑(𝑇(𝑥), 𝑇(𝑥)) + 𝑑(𝑥, 𝑇2(𝑥))] + 𝛾[𝑑(𝑇(𝑥), 𝑇2(𝑥)) + 𝑑(𝑥, 𝑇(𝑥))] 

<  𝛼. 𝑑(𝑥, 𝑇(𝑥))  +  𝛽 𝑑(𝑥, 𝑇(𝑥))  + 𝛽𝑑 (𝑇𝑥, 𝑇2(𝑥)) + 𝛾𝑑(𝑇(𝑥), 𝑇2(𝑥)) + 𝛾𝑑(𝑥, 𝑇(𝑥)) 

𝑓(𝑇(𝑥))  <  (𝛼 + 𝛽 + 𝛾) 𝑑(𝑥, 𝑇(𝑥))  + (𝛽 + 𝛾) 𝑑(𝑇(𝑥), 𝑇2(𝑥))  

𝑓(𝑇(𝑥)) < (∝ +𝛽 + 𝛾) 𝑓(𝑥)  + (𝛽 + 𝛾) 𝑓(𝑇(𝑥))                                                     (3.2)             

Suppose,  𝑓(𝑥)  ≤ 𝑓(𝑇(𝑥)), then, we have,𝑓(𝑇(𝑥))  < ∝ +2𝛽 + 2𝛾 𝑓(𝑇(𝑥)). 

This is not possible, since , ∝  +𝛽 + 𝛾 <
1

2
 . Thus, we have only one possibility, that is 

𝑓(𝑥) > 𝑓(𝑇(𝑥))          𝑖. 𝑒 𝑓(𝑇(𝑥)) < 𝑓(𝑥)                          ∀𝑥 ≠ 𝑇(𝑥).                    (3.3) 
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As, 𝑇 and 𝑑  are continuous mappings,  𝑓 is also a continuous mapping on 𝑋. 

As 𝑋 is compact, 𝑓 attains its minimum in 𝑋. Suppose, 𝑓 attains its minimum at 𝑧 ∈ 𝑋. 

     ∴ 𝑓(𝑧) =  min {𝑓(𝑥) ∶ 𝑥 ∈ 𝑋}                                (3.4)                                                               

Now, we will claim that, 𝑧 is fixed point of 𝑇  i.e 𝑇(𝑧) = 𝑧. If it is not so, we have by (3.3) 

         𝑓 (𝑇(𝑧)) < 𝑓(𝑧)                                                           

This contradicts (3.4),  therefore, we have, 𝑧 = 𝑇(𝑧). Hence,  𝑧 is a fixed point of 𝑇 in 𝑋. 

 

Uniqueness: Suppose 𝑇 has two fixed points, say 𝑧0  and 𝑧  in 𝑋. 

Therefore   we have  𝑇(𝑧0) =  𝑧0  and 𝑇(𝑧)  = 𝑧 . 

Consider,   

𝑑(𝑧, 𝑧0)  = 𝑑(𝑇(𝑧), 𝑇(𝑧0)) 

𝑑(𝑧, 𝑧0)  < 𝛼 𝑑(𝑧, 𝑧0)  + 𝛽 [𝑑 (𝑧0, 𝑇(𝑧))   + 𝑑(𝑧, 𝑇(𝑧0))] + 𝛾[𝑑(𝑧0, 𝑧0) + 𝑑(𝑧, 𝑇(𝑧))] 

𝑑(𝑧, 𝑧0)  < 𝛼. 𝑑(𝑧, 𝑧0)  + 𝛽[𝑑(𝑧0, 𝑧)  + 𝑑(𝑧, 𝑧0)]  + 𝛾[𝑑(𝑧0, 𝑧0)  + 𝑑(𝑧, 𝑧)]          

𝑑(𝑧, 𝑧0) < (𝛼 + 2𝛽) 𝑑(𝑧, 𝑧0)                                                                                     

This is not possible since, 𝛼 + 2𝛽 < 1.   Hence, 𝑇 has only one fixed point 𝑧 in 𝑋. 

 

Remark 3.1:  If we put 𝛼 = 1  𝛽 = 𝛾 = 0, we obtain Edelstein’s Theorem.  

Remark 3.2:  If we put   𝛼 = 𝛾 = 0 &  𝛽 =
1

2
, we obtain Fisher’s Theorem. 

 

Theorem 3.2:   Let 𝑇 be a self-map on a compact metric space (𝑋, 𝑑), satisfying (3.1). Then the Sequence  {𝑇𝑛(𝑥)}  of 

iterates converges to the unique fixed point   

Proof: By theorem (3.1), 𝑇 has a unique fixed point, say, 𝑧 in 𝑋. We define, 

𝑑𝑛  = 𝑑(𝑇𝑛(𝑥), 𝑧)                  ∀   𝑥 ≠ 𝑧 ∈ 𝑋, for each   𝑛 = 0,1,2 ⋯ 

Case I:  If 𝑑𝑛 = 0   for some 𝑛, 𝑇𝑛(𝑥) = 0  ∀ 𝑚 ≥ 𝑛.  Hence, the sequence  {𝑇𝑛(𝑥)}   converges to z. 

Case II:  If 𝑑𝑛 ≠ 0            ∀ 𝑛  then,  

𝑑𝑛+1 = 𝑑(𝑇𝑛+1(𝑥), 𝑇𝑛+1(𝑧))                                                                                                 

𝑑𝑛+1 = 𝑑(𝑇(𝑇𝑛𝑥), 𝑇(𝑇𝑛𝑧))                   

𝑑𝑛+1 < 𝛼. 𝑑(𝑇𝑛(𝑥), 𝑇𝑛(𝑧)) + 𝛽[𝑑(𝑇𝑛(𝑧), 𝑇𝑛+1(𝑥)) + 𝑑(𝑇𝑛(𝑥), 𝑇𝑛+1(𝑧))] + 

     𝛾[𝑑(𝑇𝑛(𝑧), 𝑇𝑛+1(𝑧)) + 𝑑(𝑇𝑛(𝑥), 𝑇𝑛+1(𝑥))] 

𝑑𝑛+1 < 𝛼. 𝑑 (𝑇𝑛(𝑥), 𝑧)  + 𝛽[𝑑(𝑧, 𝑇𝑛+1(𝑥)) + 𝑑(𝑇𝑛(𝑥), 𝑧)] + 

    𝛾[𝑑(𝑧, 𝑧) + 𝑑(𝑇𝑛(𝑥), 𝑧) + 𝑑(𝑧, 𝑇𝑛+1(𝑥))]   

𝑑𝑛+1 < 𝛼. 𝑑𝑛 + 𝛽. 𝑑𝑛+1  + 𝛽𝑑𝑛  + 𝛾𝑑𝑛 + 𝛾𝑑𝑛+1 

𝑑𝑛+1 < (𝛼 + 𝛽 + 𝛾)𝑑𝑛 + (𝛽 + 𝛾)𝑑𝑛+1 

  [1 − (𝛽 + 𝛾)]  𝑑𝑛+1 < (𝛼 + 𝛽 + 𝛾)𝑑𝑛 

𝑑𝑛+1 < [
𝛼 + 𝛽 + 𝛾

1 − (𝛽 + 𝛾)
] . 𝑑𝑛 

 𝑑𝑛+1 < 𝑑𝑛                                                               ∵  𝛼 + 𝛽 + 𝛾 <
1

2
 

Hence, {𝑑𝑛} is a strictly decreasing sequence of possible real numbers. Thu, it converges to a real number 𝑟 ≥ 0 (say), 

where, 𝑟 = inf  {𝑑𝑛| 𝑛 ∈ 𝑁}. As, 𝑋 is compact, the sequence {𝑇𝑛(𝑥)} has a subsequence {𝑇𝑛𝑘(𝑥)} which converges to 

𝑧0 ∈ 𝑋.          

As,T is continuous mapping, 𝑇𝑛𝑘+1  (𝑥)  = 𝑇(𝑇𝑛𝑘(𝑥)) → 𝑇(𝑧0). 

By using the continuity of metric 𝑑, as  𝑘 → ∞,  we yield   

lim
𝑘→∞

𝑑𝑛𝑘
= lim

𝑘→∞
𝑑(𝑇𝑛𝑘 (𝑥), 𝑧) = 𝑑(𝑧0,𝑧)                                                          (3.4) 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                        Volume: 09 Issue: 04 | April - 2025                           SJIF Rating: 8.586                                 ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                    DOI: 10.55041/IJSREM43690                                       |        Page 4 
 

By (3.3) and (3.4), we have,  

lim
𝑘→∞

𝑑𝑛𝑘
 = 𝑑(𝑧0,𝑧)    = 𝑟                                                                                     (3.5) 

Moreover, lim
𝑘→∞

𝑑𝑛𝑘+1 = lim
𝑘→∞

𝑑(𝑇𝑛𝑘+1𝑥, 𝑧) = 𝑑(𝑇(𝑧0), 𝑧)                                       (3.6)    

Hence, ( 3.5) and (3.6) gives    lim
𝑘→∞

𝑑𝑛𝑘  =  lim
𝑘→∞

𝑑𝑛𝑘+1  = 𝑟 

∴ 𝑑(𝑧0,𝑧)  = 𝑑(𝑇(𝑧0), 𝑧)  = 𝑟                                                           (3.7) 

Now, we claim that,  𝑟 = 0. Suppose,  𝑟 ≠ 0. We have, 

𝑑(𝑧0, 𝑧) = 𝑑(𝑇(𝑧0), 𝑧) 

𝑑(𝑧0, 𝑧) = 𝑑(𝑇(𝑧0), 𝑇(𝑧))                                                            

𝑑(𝑧0, 𝑧)  < 𝛼. 𝑑(𝑧0, 𝑧)  + 𝛽[𝑑(𝑧, 𝑇(𝑧0)) + 𝑑(𝑧0, 𝑇(𝑧))] +  𝛾[𝑑(𝑧, 𝑇(𝑧)) + 𝑑(𝑧0, 𝑇(𝑧0))] 

𝑑(𝑧0, 𝑧) < 𝛼. 𝑑 (𝑧0,𝑧) + 𝛽𝑑(𝑧, 𝑇(𝑧0)) + 𝛽𝑑(𝑧0,𝑧) + 𝛾𝑑 (𝑧0,𝑇(𝑧0))     

𝑑(𝑧, 𝑇𝑧0) < 𝛼. 𝑑 (𝑧0,𝑧) + 𝛽𝑑(𝑧, 𝑇(𝑧0))  + 𝛽𝑑(𝑧0, 𝑧)  + 𝛾𝑑(𝑧0, 𝑧)  + 𝛾𝑑(𝑧, 𝑇𝑧0)          

[1 − (𝛽 + 𝛾))𝑑(𝑧, 𝑇(𝑧0)) < (𝛼 + 𝛽 + 𝛾) 𝑑(𝑧1, 𝑧0) 

𝑑(𝑧, 𝑇(𝑧0)) <  [
𝛼 + 𝛽 + 𝛾

1 − (𝛽 + 𝛾)
]  𝑑(𝑧, 𝑧0)  

This is a contradiction to (3.7), since, 𝛼 + 𝛽 + 𝛾 <
1

2
. Hence, by (3.3), we have, 𝑟 = 0. 

∴ lim
𝑛→∞

𝑑𝑛  = 𝑟 = 0 ⇒  lim
𝑛→∞

 𝑑(𝑇𝑛(𝑥), 𝑧) = 0. 

The sequence  {𝑇𝑛(𝑥)} converges to the unique fixed point 𝑧 of mapping 𝑇. 

 

2. APPLICATIONS   

Example 4.1: Let  𝑋 = [0,1]   be a compact metric space with respect to the usual metric 𝑑, defined as,  𝑑(𝑥, 𝑦)  =

 |𝑥 − 𝑦|  ∀ 𝑥, 𝑦 ∈ 𝑋. Define, 𝑇: 𝑋 → 𝑋  as, 𝑇(𝑥)  =  
𝑥+1

4
   ∀ 𝑥 ∈ 𝑋. 

Clearly, T is continuous mapping on 𝑋.  

Choose,  𝛼 =  
1

4
, 𝛽 =

1

8
 & 𝛾 =

1

16
 , such that,  𝛼 + 𝛽 + 𝛾 =  

1

4
+

1

8
+

1

16
<

1

2
. Moreover,   

           𝑑(𝑇𝑥, 𝑇𝑦)    = |
𝑥+1

4
−

𝑦+1

4
|         

                                =
1

4
 |(𝑥 + 1) − (𝑦 + 1)|  

                                =  
1

4
|(𝑥 − 𝑦)| 

                                = 𝛼. 𝑑(𝑥, 𝑦) 

∴   𝑑(𝑇𝑥, 𝑇𝑦) <   𝛼. 𝑑 (𝑥, 𝑦)  + 𝛽[𝑑(𝑦, 𝑇𝑥) + 𝑑(𝑥, 𝑇𝑦)] + 𝛾[𝑑(𝑦, 𝑇𝑦) + 𝑑(𝑥, 𝑇𝑦)] 

Hence, all the conditions of Theorem 3.1 are satisfied. Therefore, by Theorem (3.1),  𝑇 has a unique fixed point in 

𝑋 =  [0, 1].  The unique fixed points  𝑥 =
1

3
.  

 

3. CONCLUSIONS 

In this paper, we introduce a contraction-type condition for continuous mappings on compact metric spaces. We 

establish the existence of a unique fixed point for mappings that satisfy this contraction condition, thereby 

generalizing certain well-known fixed point theorems applicable to compact metric spaces. Our findings 

demonstrate that the conclusions of the contraction mapping principle remain valid when considering compact 

spaces instead of complete spaces. However, replacing contraction mappings with merely contractive mappings 

does not uphold the principle's conclusions. Throughout this study, we focus exclusively on continuous mappings.  
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