
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 02 | February - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM28539 | Page 1

COMPARATIVE ANALYSIS OF MERN, MEAN AND MEVN STACKS

IN WEB DEVELOPMENT

Jayant Baid1, Sapna Gupta2

1,2Department of ITE, Maharaja Agrasen Institute of Technology

Abstract - Choosing a technology stack is a critical decision

that affects how software projects progress in the ever-

changing field of web development. Regarding web

development, a technology stack is a set of tools, frameworks,

and programming languages that are utilized in the construction

of an application's front end and back end. In addition to

making the development process easier, these stacks provide

the groundwork for the finished product's performance,

scalability, and maintainability. JavaScript-based stacks are

becoming serious contenders as businesses and developers

search for frameworks that provide efficiency, scalability, and

flexibility. Starting with a thorough examination and

comparison of three popular JavaScript stacks, this research

paper examines MEAN (MongoDB, Express, Angular and

Node.js), MERN (MongoDB, Express, React and Node.js) and

MEVN (MongoDB, Express, Vue.js and Node.js).

Keywords: Web Development, MERN Stack, MEAN Stack,

MEVN Stack, ReactJS, AngularJS, VueJS

1. INTRODUCTION

In the dynamic field of web development, the choice of a

technology stack plays a crucial role in shaping the course of

software projects. A technology stack, in the context of web

development, refers to a combination of programming

languages, frameworks, and tools used to build the front-end

and back-end of an application[1]. These stacks not only

facilitate the development process, but also lay the foundation

for the performance, scalability, and maintainability of the final

product. As companies and developers look for frameworks

that offer flexibility, scalability, and efficiency, JavaScript-

based stacks have become key contenders. This research paper

begins with a comprehensive study and comparative analysis

of three well-known JavaScript stacks: MEAN, MERN and

MEVN.

The evolution of web development frameworks has led to a

variety of technology stacks, each tailored to specific

challenges and preferences. MEAN, MERN and MEVN are

characterized by their unique combinations of frontend and

backend components and have received widespread attention

and acceptance in the developer community. To make informed

decisions in the development landscape, it is important to

understand their individual characteristics, strengths and

potential trade-offs.

The goal of this research is to provide a detailed study of the

architectural foundations, component interaction, and

development environments of each stack. By exploring the

intricacies of database integration, with a particular focus on

MongoDB paired with AngularJS, React and Vue.js, the paper

aims to uncover nuances that impact application design and

performance. In addition, an in-depth analysis of the front-end

frameworks (AngularJS, React, Vue.js) and the server-side

framework (Express.js) forms the core of our comparative

study.

As we navigate the specifics of these technology stacks,

considerations such as scalability, performance optimizations,

and community support are at the forefront. Real-world case

studies are examined to provide practical insights into the

application and success stories associated with each stack. The

culmination of this analysis is summarized in recommendations

tailored to specific use cases, providing developers and

decision makers with a guide for navigating the complex

landscape of technology stack selection.

Looking forward, the paper will also explore possible trends

and considerations that could influence the development of

these stacks. By completing this research, readers will have a

nuanced understanding of the MEAN, MERN, and MEVN

stacks, empowering them to make informed decisions tailored

to their project needs and development preferences.

2. DECODING THE MERN STACK

The MERN stack, consisting of MongoDB, Express.js, React

and Node.js, represents a powerful and cohesive set of

technologies in the field of web development. MongoDB serves

as a foundational NoSQL database and provides a flexible and

scalable solution for storing Data in JSON-like documents[2].

Its ability to handle unstructured or semi-structured data,

coupled with horizontal scaling capabilities, has contributed to

its widespread adoption, particularly in applications that

require dynamic and evolving data structures.

Express.js, the server-side framework of the MERN stack, is a

minimalist and flexible web application framework based on

Node.js. Express.js simplifies the process of developing robust

and scalable server-side applications by providing essential

functionality and middleware support for processing HTTP

requests and responses[3, 8]. The unbiased nature of Express.js

allows developers to tailor their architecture and tool selection

to the specific needs of their projects.

React, a JavaScript library developed and maintained by

Facebook, takes on the role of the frontend library in the MERN

stack. React is known for its declarative and efficient approach

to building user interfaces and promotes a component-based

architecture. This design paradigm allows developers to create

modular and reusable UI components, promoting code

maintainability and scalability. The virtual DOM implemented

by React contributes to improved performance by efficiently

updating the actual DOM, ensuring a seamless user experience

in single-page applications[4].

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 02 | February - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM28539 | Page 2

Node.js, which serves as a JavaScript runtime, unifies the

language across the MERN stack and allows developers to use

JavaScript for both frontend and backend development[3].

Node.js is event-driven and designed to efficiently handle

asynchronous I/O operations and plays a central role in the

architecture of the stack[1]. This unification not only simplifies

the development process, but also makes code easier to reuse

and maintain as developers can leverage their existing skills

across the stack.

The integration of these components through the MERN stack

offers significant advantages in web development. Its

commitment to full-stack JavaScript enables seamless

collaboration between frontend and backend teams, promoting

code consistency and shortening the learning curve[9]. React's

component-based architecture improves code modularity and

maintainability, contributing to a more scalable development

process. Additionally, the stack benefits from a robust

community that ensures ongoing support, a wealth of libraries,

and readily available solutions to common development

challenges. The scalability of MERN applications is further

enhanced by MongoDB's horizontal scaling capabilities,

making it well suited to handling increased data volumes in

dynamic and evolving projects[5]. Understanding the

intricacies of each component within the MERN stack provides

developers with the knowledge necessary to make informed

decisions and effectively leverage the stack's strengths in

various web development projects.

3. DECODING THE MEAN STACK

The MEAN stack has become a popular open-source web

development stack consisting of the MongoDB database, the

Express web application framework, the AngularJS frontend

framework, and the Node.js runtime environment. MEAN has

enabled full-stack JavaScript development, allowing one

programming language to be used across the entire technology

stack.

MongoDB has been used as the default database for MEAN

stack applications due to its flexibility and scalability as a

document database. Instead of requiring predefined schemas,

MongoDB used JSON-like documents to store hierarchical data

without restricting the structures in advance. Thanks to its easy

replication features and horizontal scaling, MongoDB is well

suited to processing large amounts of real-time data[8].

The Express web framework was used in the MEAN stack to

facilitate server-side web application logic and API endpoint

processing in Node.js backend environments. Middleware

capabilities, routing, and a wide range of third-party plugins

have enabled faster development of services and business logic

required to connect the database and frontend layers in full-

stack MEAN apps[8].

AngularJS provided an MVC-based frontend JavaScript

framework for the MEAN stack, focused on dynamic views and

two-way data binding[4]. Built-in directives and dependency

injection as well as comprehensive testing tools have made

AngularJS a complete client-side framework for developing

complex, reactive user interfaces that connect seamlessly with

backend Express and MongoDB components within MEAN's

JavaScript environment.

4. DECODING THE MEVN STACK

The MEVN stack has become a popular open-source, full-stack

JavaScript framework consisting of MongoDB, Express.js,

Vue.js, and Node.js technologies. This pure JavaScript stack

provides developers with a streamlined way for end-to-end

JavaScript application development, helping them use one

language for server, database, and frontend.

The document-oriented database MongoDB serves as MEVN's

flexible and scalable database layer. JSON-like data structures,

called BSON documents, have been used by MongoDB to store

data without the need to define rigid schemas in advance. Easy

horizontal scaling, replication capabilities, and native

processing of unstructured data make MongoDB well-suited to

processing large volumes of rapidly changing, real-time data

that is commonplace in modern web and mobile apps built with

MEVN.

Express.js handles the backend application logic and web

server functions and has been used as a minimalist web

framework for Node.js server environments within the MEVN

stack. Useful features such as routing, middleware capabilities,

and a plugin ecosystem have enabled faster server-side

development with Node.js for API definition and real-time data

streaming to clients.

Vue.js has emerged as a front-end framework for MEVN over

React/Angular due to its phased adoption style. The Virtual

DOM architecture and reactive components have made it

significantly easier to perform partial upgrades or integrate Vue

into existing projects compared to other frontend options. The

result is powerful front-end development that easily connects

to back-end services.

5. COMPREHENSIVE ANALYSIS

The database layers for the stacks have some similarities, but

also important performance differences. The document-based

storage model used by MongoDB has given all three stacks

flexible schemas and high scalability as unstructured data

grows over time. Additionally, native processing of JSON-like

data enables seamless integration with Node and JavaScript

frameworks. While older MEAN stack deployments

experienced network delays when scaling databases, updated

connection processing in the latest MERN and MEVN stacks

using MongoDB has resulted in higher query and indexing

throughput capabilities.

In terms of backend implementation, the Express web

application framework for Node.js has usage across all three

stacks, enabling clean model/view/controller-based

organization and rapid API endpoint development. While

Express itself has changed little across stacks and performs

equally well, there are some differences in the way it has been

integrated. For the MERN stack, the bindings for connecting

the React frontend to Node/Express have been optimized

through custom libraries. This has enabled greater efficiency in

linking user interactions with server functions. The tighter

coupling enables better performance for frequent frontend-to-

backend requests that are common in modern web apps.

The approaches to render and update views taken by React,

Vue, and AngularJS have fundamental differences in the use of

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 02 | February - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM28539 | Page 3

virtual and real DOMs. React and Vue, used by the MERN and

MEVN stacks, implemented a virtual DOM in which views

were first rendered to an in-memory representation before

efficiently propagating batches of changes to the real DOM.

This different process has led to immense performance

improvements, but also to upfront coding effort. Meanwhile,

the MEAN stack using AngularJS relied solely on the real

DOM[6], which was easier to code but suffered from

performance degradation in highly dynamic UIs. Benchmarks

between Vue and React have shown that Vue maintains 60fps

animations better, while react can stall with larger state

mutations due to its recursive diffing approach.

In summary, the MERN, MEAN and MEVN stacks offer

unique combinations of technologies that reflect the diversity

of choices available to developers. MongoDB provides end-to-

end data storage flexibility across stacks, while Express.js and

Node.js contribute server-side functionality and unify the

development environment. The choice of frontend frameworks

React in MERN, AngularJS in MEAN and Vue.js in MEVN

introduces different approaches that meet the evolving needs of

web development in different scenarios. Each stack has found

its niche: MERN emphasizes versatility, MEAN focuses on

bidirectional data binding, and MEVN stands out for its

simplicity and adaptability.

 Table-1: Comparison of Mean, Mern, and Mevn Stacks

Features MERN MEAN MEVN

Frontend Framework React Angular Vue

Server-Side Rendering Yes Yes No

Learning Curve Easy Moderate Easy

Ecosystem Large Large Small

Development Speed Fast Fast Slow

Flexibility High Limited High

6. SCALABILITY AND PERFORMANCE

The scaling of the MEAN stack is inherently limited by
AngularJS's client-side rendering approach for single-page
applications. As more users access the application, client-side
processing introduces bottlenecks that cannot be mitigated as
easily as server-side rendering. In addition, the AngularJS
change detection mechanism must traverse the entire
component tree every time data changes, which quickly slows
down as complexity increases.

In contrast, both MERN and MEVN enable much better
scalability using a virtual DOM localized to patches of
components required by React and Vue updates[4]. This
prevents unnecessary calculations in unaffected sections.
Additionally, react was designed from the ground up to handle
large amounts of data through normalized, flattened data
requirements, leaving far fewer scalability limits. Finally, the
advanced server-side rendering capabilities available in Next.js
for React also improve MERN's ability to intelligently distribute
processing across the server and client.

The performance of the MEAN stack depends heavily on the
code quality and architecture of the AngularJS application,
which is entirely based on the frontend[4]. Any non-optimized
data processing, tracking, or UI updates result in direct
performance delays for users. ANGULARJS's dirty checking
digest cycle is also resource intensive because each cycle
requires expressions to be evaluated across all components.

Alternatively, the virtual DOM implementations used by React
and Vue allow them to minimize expensive DOM
manipulations by comparing component trees and applying only
differential updates. This enables excellent performance when
building complex high-frequency user interfaces in MERN and
MEVN. Additionally, React Fiber introduced incremental
matching and priority-based rendering, achieving up to five
times throughput for optimal use of CPU capacity. Next.js
provides MERN server-side rendering capabilities that enable
first-time page loading without JavaScript and improve time-to-
first. While MEAN itself has performance limitations, the
MERN and MEVN stacks have significant improvements at the
frontend and backend levels.

In summary, MERN, MEAN and MEVN are three viable
options for web application development, but they have
different strengths and weaknesses in terms of scalability and
performance. Choosing the best stack depends on the needs and
preferences of developers and users[1].

7. OPTIMIZATION TECHNIQUES

The scalability and performance of each stack depends on how

well the front-end framework is integrated with the back-end

components and how well the application is optimized. Some

of the optimization techniques that can be applied to any stack

are:

MERN: Using Next.js, a framework that enables server-side

rendering and client-side rendering for React.js applications,

providing features such as code splitting, prefetching, and

caching. Code splitting is a technique that breaks code into

smaller pieces that are loaded on demand, reducing initial load

time, and improving performance. Prefetching is a technique

that fetches the data and resources for the next page in advance,

reducing latency and improving the user experience. Caching

is a technique that stores data and resources in the browser or

server, reducing network requirements and increasing speed[7].

Using Redux, a library that manages application state and

reduces the number of API calls. Redux is a technique that

centralizes the application's data and logic in a single storage,

making development and debugging easier. Redux also reduces

the number of API calls by eliminating unnecessary data

retrieval and updates. Using Webpack, a module bundler that

optimizes code size and quality. Webpack is a technique that

bundles the code and its dependencies into a single file,

minimizing HTTP requests and improving performance.

Webpack also optimizes code quality by applying plugins and

loaders such as minification, compression and transpilation.

MEAN: Use of Angular Universal, a platform that enables

server-side rendering and client-side rendering for Angular.js

applications, providing features such as pre-rendering, lazy

loading, and caching. Pre-rendering is a technique that

generates static HTML pages for the application's routes at

build time, reducing server load and improving SEO[10]. Lazy

loading is a technique that loads the application's modules and

components only when they are needed, reducing initial

loading time, and improving performance. Caching is a

technique that stores data and resources in the browser or

server, reducing network requirements and increasing speed.

Using RxJS, a library that handles asynchronous data streams

and reduces network latency. RxJS is a technique that uses

observables, operators, and schedulers to manipulate and

manage the data streams, simplifying development and testing.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 02 | February - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM28539 | Page 4

RxJS also reduces network latency by using techniques such as

debounce, throttling, and retries. Using Gulp, a task runner that

automates development workflow and optimizes code

performance. Gulp is a technique that uses plugins and tasks to

perform various operations on code such as: concatenation,

minimization, compression and transpilation.

MEVN: Using Nuxt.js, a framework that enables server-side

rendering and client-side rendering for Vue.js applications,

providing features such as automatic routing, meta tags, and

transitions. Automatic routing is a technique that generates the

application's routes based on the file structure, reducing

configuration, and improving development. Meta tags are a

technique that adds metadata and SEO information to HTML

pages, improving the visibility and ranking of the application.

Transitions are a technique that adds animations and effects to

page changes, improving user experience and engagement.

Using Vuex, a library that manages application state and

reduces data redundancy. Vuex is a technique that centralizes

the application's data and logic in a single storage, making

development and debugging easier. Vuex also reduces data

redundancy by using techniques such as mutations, actions, and

getters. Using Parcel, a module bundler that optimizes code size

and speed. Parcel is a technique that bundles the code and its

dependencies into a single file, minimizing HTTP requests and

improving performance. Parcel also optimizes code speed by

using techniques such as zero configuration, hot module

replacement, and code splitting.

8. CONCLUSIONS

The paradigm of using JavaScript in full-stack web applications

was made possible by the MEAN stack, but analysis suggests

that MERN or MEVN might be a better option for most

contemporary use cases. MERN has a market share and

facilitates the development of complex, high-performance user

interfaces. MEVN is becoming more well-known as a

lightweight but powerful alternative.

All stacks benefit from the versatility and large community of

JavaScript while providing access to the React, Vue and

Angular ecosystems. However, react outperforms the

frameworks in terms of rendering efficiency and native

compilation. These aspects make MERN ideal for demanding

web and mobile applications. Vue within MEVN promotes

code reusability across projects and retains many React

features.

With increased dynamism in individual technologies reflected

in current industry employment trends, MERN is receiving

more attention as it gets closer to MEAN installations. MERN

oversees new initiatives that call for hybrid features, real-time

dashboards, and SPA interfaces. However, MEVN provides

more straightforward yet comparable features to satisfy the

demands of quicker prototyping.

In conclusion, all three choices are feasible, but MERN offers

the best combination of performance, scalability, and

community support for enterprises. Developers looking for

employment opportunities or who do not need advanced

frameworks might make better use of MEVN or MEAN

depending on their use case. However, the analysis clearly

shows that mastering the MERN stack is an advantageous web

development skill in the industry's competitive hiring

environment.

ACKNOWLEDGEMENT

A. Ethical Approval

The manuscript is not be submitted to any other journal for

simultaneous consideration. The submitted work is original and

is not published elsewhere in any form or language. No slicing

is practiced. No data, text, or theories by others are presented

as if they were ours. Proper acknowledgments to other works is

given and no copyrighted material is used in the study. No

animals or humans were harmed.

B. Funding Details

Not applicable.

C. Conflict of Interest

The authors declared that they have no conflict of interest.

REFERENCES

[1] Sagar Patel. (2023): MEAN vs MERN vs MEVN Stacks: What's

the Difference. Groovy Web.

[2] Bhavyaa; Suhani, Gupta; Vaishali. (2021): Comprehensive Study

of MERN Stack - Architecture, Popularity and Future Scope.

International Journal of Scientific Research in Computer Science,

Engineering and Information Technology.

[3] Sumangla A. Bafna; Pratiksha D. Dutonde; Shivani S.

Mamidwar; Monali S. Korvate; Prof. Dhiraj Shirbhare. (2022):

Review on Study and Usage of MERN Stack for Web

Development. International Journal for Research in Applied

Science and Engineering Technology.

[4] Prati Jain; Manjunath C R. (2021): Comparative analysis of

MEAN stack and MERN stack. International Journal of

Emerging Technologies and Innovative Research.

[5] Mianji Johnsson (2020): The building of the webpages: The

comparison study of MERN and MEVN. Jonkoping University,

School of Engineering.

[6] Maitray Gadhavi (2023): Full-Stack vs MEAN Stack vs MERN

Stack: Decide Your Best Stack. Radixweb.

[7] Ah Zau Marang (2018): Analysis of web performance

optimization and its impact on user experience. KTH Royal

Institute of Technology.

[8] Rimal A. (2019): Developing a Web Application on NodeJS and

MongoDB using ES6 and Beyond. Metropolia University of

Applied Sciences.

[9] Monika Mehra; Manish Kumar; Anjali Maurya; Charu Sharma;

Shanu. (2021): MERN Stack Web Development. Annals of the

Romanian Society for Cell Biology.

[10] Bakwa Dunka Edim Emmanuel Yinka Oyerinde. (2018):

Simplifying Web Application Development Using-Mean Stack

Technologies. ResearchGate.

http://www.ijsrem.com/

