et A,
¢ 1ISREM 3

oo 47 International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586

ISSN: 2582-3930

w Volume: 09 Issue: 12 | Dec - 2025

Comparative Analysis of POLB Mutations Across Cancer Types Using a
Machine Learning-Driven Web Application

Roopa H L1, Nidhi R 2, Nithin S Srinivasa 3, Shreya P 4

Department of Computer Science and Engineering (IOT And CYBER SECURITY INCLUDING BLOCK
CHAIN) Sir M. Visvesvaraya Institute of Technology

Abstract

In this paper, we introduce a web application that is powered
by machine learning and is specifically designed for the
analysis of POLB gene mutations linked with different cancer
types. The POLB gene encodes a vital enzyme in the base
excision repair (BER) pathway, and any alterations in this
gene's sequence can cause genomic instability that might lead
to tumor development. The application is fed with more than
1000 carefully selected POLB mutation samples from TCGA
and COSMIC datasets, where every sample comes with various
functional mutation scores like PolyPhen-2, SIFT, PROVEAN,
and CADD, etc. To improve the predictive power of the system,
it employs sophisticated preprocessing methods such as
missing-value  handling, IQR-based outlier removal,
standardization of data using StandardScaler, class balancing
through SMOTE, and creation of new mutation descriptors as
the input data. The classifiers are evaluated in the context of a
machine learning pipeline, where XGBoost—fine-tuned
through GridSearchCV—reaches the maximum accuracy of
98%, which is the highest among all classifiers. The web
application based on Flask provides a user-friendly interface
for single and batch mutation risk prediction, interactive graph
visualization, CSV file analysis, user authentication, and
efficient error handling. The results obtained corroborate the
capability of the system to operate on dynamic genomic data
and to classify POLB mutations with great accuracy.
Keywords: POLB, machine learning, cancer genomics,
XGBoost, mutation analysis, Flask web application, TCGA,
COSMIC.

1.INTRODUCTION

Cancer is primarily acknowledged as a genetic disorder, which
is the result of mutations that change vital cellular processes.
Among the genes involved in DNA damage repair, the POLB
(DNA polymerase beta) gene is of great importance as it is
responsible for the Base Excision Repair (BER) pathway
which, in turn, repairs the single-strand DNA lesions affected
by oxidation and alkylation. Dysfunctional or mutated POLB
leads to the occurrence of errors in DNA repair that eventually
contribute to the instability of the genome and the higher risk
of cancer. Mutations in POLB have been found in a number of
different cancer types like breast, lung, liver, ovarian, and
colorectal; thus, their analysis is vital for the understanding of
cancer causation.

Despite the presence of a lot of information regarding POLB
mutations in large-scale genomic repositories like TCGA and
COSMIC, the manual interpretation of these data sets is still a
difficult task.

The variations in how mutations are represented, the non-
standardized scoring systems, the missing values, and the non-
linear interactions between scores all add to the difficulty of
traditional statistical analysis. Nonetheless, machine learning is
capable of handling intricate mutation data and revealing hidden
patterns which are of great importance for the classification of
cancer risk.

In this paper, a machine learning and web-based system is
constructed to perform an in-depth analysis of POLB mutations.
The system consists of an end-to-end pipeline that includes
dataset curation, preprocessing, feature engineering, ML model
training, visualization, and user-interactive prediction modules.
To enhance prediction accuracy, several advanced features such
as SMOTE oversampling, IQR-based outlier filtering, feature
normalization, and engineered mutation metrics were
incorporated into the model.

The complete process has been implemented in the form of a
Flask web application that offers various functionalities such as
single-value prediction, batch CSV analysis, authentication,
automated data preprocessing, and graphical result visualization.
The application is intended to be a user-friendly computer-based
tool for both researchers and doctors who want to investigate
POLB mutation patterns in different types of cancer.

2. ARCHITECTURE AND IMPLEMENTATION
2.1 System Architecture Overview

The architecture of the proposed POLB mutation analysis
system is four modular layers that are built especially for
reliability, scalability, and adaptation to constantly changing
genomic datasets. The architecture collects data from different
sources, preprocesses the data, develops machine learning
models, and a web interface based on Flask.

System Architecture Flow
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Figure 1: System Architecture Overview
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e Layer 1 — Data Ingestion Layer

This layer gathers POLB mutations from TCGA, COSMIC, and
user-uploaded CSV files. The system does a schema validation
that checks if the required columns (PP, SIFT, PROVEAN,
CADD, Class) are available in the data before proceeding with
further processing.

e Layer 2 — Preprocessing & Feature Engineering Layer
It cleans and transforms the raw genomic scores. This process
includes the imputation of missing values, filtering of outliers
using the IQR method, normalization with StandardScaler, and
creation of engineered features.

e Layer 3 — Machine Learning Layer

The architecture implements different classification algorithms,
hyperparameter tuning through GridSearchCV, and retention of
the best XGBoost model.

e Layer 4 — Application & Visualization Layer

The Flask web framework is in charge of user authentication,
single and batch predictions, error handling, and output
visualization through interactive plots and tables.

The presented architecture guarantees an uninterrupted data
exchange between the system elements and facilitates the
mutation classification which is both accurate and done in real-
time.

2.2 Dataset Collection and Preprocessing

The dataset for this research consists of more than 1000 POLB
mutation samples that were obtained from the TCGA and
COSMIC repositories, curating the process. Biologically
relevant mutation effect scores are included for each sample in
the form of rows in the dataset:

e  PolyPhen-2 (PP) — Anticipate protein structure/function
impairment
e SIFT — Calculates the effect of amino acid change

e PROVEAN - Determines the biological importance of
protein variation

e CADD - Predicts harmfulness of genomic variants
e  Class label — Two-way cancer-risk sign.

Table 1: Dataset Feature Summary

Feature Description

PolyPhen-2 Prediction score on how the protein will
be affected

SIFT Mutation and its impact on the function
of the protein in question

PROVEAN Protein variation effect score

CADD Mutation is given a score indicating how
damaging it is

Class Label Cancer-risk classification (0 = low risk,
1 = high risk)

2.2.1 Data Cleaning

A major issue with genomic datasets is that they frequently
contain missing entries caused by incomplete scoring. The
uniformity is established as follows:

e Missing values for continuous variables are
substituted by the means of their respective columns.

e  Rows with important missing values are marked

e Formatting discrepancies are automatically rectified

2.2.2 Outlier Detection using IQR

There is often a large variance in mutation scores, and the
extreme scores are usually due to scoring errors. Such outliers
have a negative influence on the performance of machine
learning.
e  The IQR method (Q1-Q3) is the one that is applied to
detect outliers
e The samples lying beyond 1.5 x IQR are discarded
e Thus, stable learning is guaranteed and the decision
boundaries skewed are minimized

2.2.3 Feature Scaling

CADD scores (>30) and PP scores (0-1) have completely
different numeric ranges.
To bring them to the same scale:
e StandardScaler scales all the features with continuous
values to N(0,1)
e climinates the problem of larger-feature dominance in
ML models.

2.3 Feature Engineering

It is probable that raw genomic scores singly would not show
the biological implicitly. Hence, the creation of additional
engineered features was made in order to improve the accuracy
of predictions.

2.3.1 Ratio-Based Features

PP_CADD ratio = PP/ CADD

It indicates the relative structural impact of the mutation
concerning which this is considered.

2.3.2 Combined Score Averages

SIFT PROVEAN avg=(SIFT + PROVEAN)/2 The variance
in predictions is reduced while also offering a stronger and
more consistent signal.

2.3.3 Weighted Severity Index

A composite metric representing mutation severity:
Severity Index = (PP x 0.5) + (1 — SIFT) x 0.3 + (1 —
PROVEAN) x 0.2

2.3.4 Interaction Features
Interaction terms support the classifier in identifying intricate
relationships:
e PP xPROVEAN
e SIFT x CADD
It was discovered that the engineered features contributed to a
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significant increase in the ML pipeline's predictive power.
2.4 Class Balancing Using SMOTE

The dataset showed a great disparity in the number of data
points where cancer-risk mutations (class 1) were much less
compared to low-risk mutations (class 0). If the model is
trained using such data it will be a biased one.

The SMOTE (Synthetic Minority Oversampling Technique)
method was implemented to solve this issue.

How SMOTE Works
e Randomly chooses one sample from the minority
class

¢ Finds its nearest neighbors

e  Makes new synthetic samples in between them
This method increases the representation of the minority class
in the data set without merely duplicating, which thus improves
the sensitivity of the classifier.
Impact of SMOTE

e Recall for high-risk mutations was improved

e Bias against class 0 was reduced

e XGBoost was able to achieve 98% accuracy with

SMOTE, whereas it was only ~89% without it.

2.5 Machine Learning Model Development

To pinpoint the most vigorous classifier, numerous models
were scrutinized:

2.5.1 Logistic Regression

e Acts as a reference point
e  Only linear separation
e Accuracy: 82%
2.5.2 Random Forest
e Nonlinear feature relationships are captured
e Noise is handled with moderate success
e Accuracy: 91%
2.5.3 XGBoost
XGBoost was touted to be the most powerful model due to:
e  Gradient-boosted trees
e Capacity to manage missing values
e Preventing overfitting through regularization
e  Operational across giant datasets

Hyperparameter Tuning Using GridSearchCV

The following parameters were fine-tuned:
e n_estimators
e learning rate
e max_depth
e subsample
e colsample bytree
As a result of this tuning, the model achieved a 98% accuracy

level.

2.6 Block Diagram of ML Workflow

Figure 2. Machine Learning Workflow Block Diagram
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Workflow Steps:

Step 1 — Data Acquisition
The TCGA/COSMIC databases and user uploads are the source
of the datasets.

Step 2 — Preprocessing
Missing data, outliers, scaling, and SMOTE balancing are taken
care of.

Step 3 — Feature Engineering
The ratio features, averages, severity index, and interaction
terms are computed.

Step 4 — Model Training
XGBoost, which has been fine-tuned with GridSearchCV, gets
trained on 80% of the preprocessed data.

Step 5 — Model Evaluation
The following metrics are used:
e Accuracy
Fl1-score
Confusion matrix
ROC-AUC
Step 6 — Flask Deployment
The model is serialized and incorporated into a Flask server that
offers:
e Real-time predictions
e Batch CSV classification
e  Graphical output

2.7 Flask Web Application Module

The final step of the entire process includes the ML pipeline
embedded within a completely live web application with Flask,
which permits user interaction, visualization, and prediction in
real time. This module is the system's visible part for the user
and is liable to present the facilities of the machine learning
model to the end users in an easy and straightforward way. It
links the XGBoost model that has been trained in advance with
the front-end elements and takes care of managing the user
sessions, data uploads, input validation and the whole
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prediction process.

The Flask module provides three main functions:
e  User Authentication
e Single and Batch Prediction
e Interactive Graphical Visualization

2.7.1 User Authentication and Session Management
The system makes use of the Flask-Login library to provide a
secure authentication mechanism and, thus, controlling who
has access to the prediction tools. Users must first register and
then log in to be able to use the prediction tools. The passwords
of the users are kept safe and secure through salted hashing
which is a technique offered by the security library of
Werkzeug.
The authentication functions provide the following:

e Secure login/logout

e  Authorization based on session

e Predictions only for specific users

e Tracking of user sessions
Through the implementation of authentication, not only user
data integrity and privacy are preserved but also unauthorized
access to the sensitive ML functionalities prevented.

2.7.2 Single PP Score Prediction Module

The rapid estimation of mutation-risk basing mostly on a single
PolyPhen-2 (PP) score is the capability of this module. The
cancer-risk potential of a mutation can be quickly tested by
researchers without the need for uploading a file.
The features of this module are as follows:
e Validation of numeric PP score
e Other features' automatic imputation using dataset
mean values
e  Preprocessing using the same scaler used for training
the model
e Prediction in real-time with the XGBoost model
e Distribution of probabilities visualization by means of
bar graphs
The output consists of:
e Predicted class label
e  Mutation's probability of being high-risk cancer one
e Confidence visualization

2.7.3 Batch Prediction Using CSV Upload

The large-scale genomic analysis is the main purpose of this
module. The users are allowed to upload CSV files with many
POLB mutation entries in it.

The system does:
e Validation of columns (PP, SIFT, PROVEAN,
CADD)
Handling of missing data
Removal of outliers
Feature engineering
StandardScaler transformation
Prediction of the model on a batch-level basis
Results file that can be automatically downloaded
In addition, the output includes graphical summaries, such as:
e (lass distribution bar chart
e Risk heat map
e  Feature-level trend visualization

2.7.4 Dynamic Visualization

Through Flask App dynamic Matplotlib plots are rendered to
the users by the prediction interpreter. Probability bar charts,
class comparison graphs, mutation-risk trend lines, and high-
risk mutations' summary visualizations are the types of these
visualizations.

The graphical components like these make the interpretations
easier for non-technical users.

2.7.5 Error Handling and Validation

This web application possesses extensive error-handling
features:

e  Wrong file formats are not allowed.

e  Missing columns or invalid values are detected.

e  Errors from the server side are handled.

e Flash messages are displayed in a user-friendly
manner.

Such a practice guarantees the application's reliability even in
the case of wrong input formats.

2.7.6 Model Integration Backend

The XGBoost model that has been trained is kept as a joblib
serialized file. At the start of the application, the model is
loaded into memory once and then it is reused for all requests
to reduce latency.
The backend consists of:

e A preprocessing pipeline that is the same as the

training pipeline

e  Feature extraction logic

e  Prediction engine

e Debugging logs

2.7.7 User Interface Design

The front-end technology stack consists of:

e HTMLS

e CSS

e Bootstrap

e Jinja2 templating
The interface design (UI) is kept simple, responsive, and very
user-friendly.

3. RESULTS AND DISCUSSION

The system's performance was assessed using a carefully
selected dataset containing more than 1000 POLB mutations
from TCGA and COSMIC. Several machine learning models
were employed, their performance evaluated and compared.

3.1 Model Performance Evaluation
The three principal ML models under consideration were:
Logistic Regression, Random Forest, and XGBoost.
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Table 2: ML. Model Comparison

Model Accuracy | Remarks

Logistic 82% Baseline linear classifier
Regression

Random Forest 91% Good with nonlinearities
XGBoost 98% Tuning made it the best

choice

The XGBoost model was the most accurate due to this reason:
e  Gradient boosting,
e A very good way to handle the noisy and sparse
mutation data.
e Possibility to work together with engineered features.

3.2. Effect of Preprocessing Techniques

The models were very much impacted by the preprocessing:

1. Outlier Removal: Steady learning was achieved thanks to
the removal of extremely high and low cases. Out of the picture
were the biologically impossible scores.

2. Scaling: Use of the StandardScaler equalized the various
scoring ranges. CADD score was not allowed in the dominating
position

.3. SMOTE: The class imbalance issue was solved. The recall
of high-risk mutations was raised from approximately 70% to
95%. Fl-score and ROC-AUC metrics experienced a
significant increase.

3.3. Visualization Results

Several graphical outputs were generated by the Flask web
application:

e C(lass distribution graphs indicated a clear division
between anticipated high-risk and low-risk
individuals.

e Confidence levels for predictions were shown in
probability plots as calibrated.

e Severe POLB mutation areas were indicated on batch-
level heat maps.

These visuals helped scientists identify the types of mutations
that were common in cancer.

3.4. Web Application Performance

Flask interface worked effectively on a variety of devices.
e Single predictions were done in less than 0.5 seconds.
e Batch predictions with (100+ entries) were done in
less than 2 seconds.
e Lightweight deployment resulted in a very small
memory footprint.

4. CONCLUSION

The findings of this study introduce a detailed machine
learning-based system for the detection of POLB gene
mutations in different types of cancer. The integration of
sophisticated pre-processing, feature engineering, SMOTE
balancing, and a very well-tuned XGBoost classifier makes the
system capable of reaching 98% accuracy in mutation-risk
prediction.

The system has a web interface based on Flask that is user-
friendly and enables the analysis of single and multiple
mutation samples at the same time. The application is also
equipped with dynamic charts, automated preprocessing, and
strong error handling which makes it suitable for use by
researchers and clinicians working with genomic data.

The combination of machine learning and real-time web
deployment for precision oncology has proven to be a very
effective approach in this work.

5. FUTURE WORK

There are numerous improvements that can be done to the
current system that will not only expand its capabilities but also
make it a more powerful tool:

5.1 Integration of Deep Learning Models

The use of deep learning models such as CNNs or Transformers
would enable raw DNA sequences or 3D protein structures to
be analyzed for insights at a whole new level.

5.2 Inclusion of Multiple BER Pathway Genes

Going beyond POLB and including MSH2, XRCCl1, and
OGG1 will allow analysis of mutation risk at the entire pathway
level.

5.3 Real-Time Genomic API Integration
The integration of APIs like Ensembl or NCBI Variant services
will provide instantaneous scoring of mutations.

5.4 Cloud Deployment
Cloud deployment on AWS, Azure, or Google Cloud will make
it possible to support many users concurrently on a large scale.

5.5 SHAP Explainability Dashboard
The addition of visual tools for interpreting SHAP
contributions will enable clinical trust to be increased.

6. LIMITATIONS
On the other hand, the system has some limitations that cannot
be overlooked:

6.1 Dataset Constraints

The dataset is constructed from the TCGA and COSMIC
databases, which consist of curated samples. The inclusion of
more clinical data from the real world rewould validate the
performance of the system even more.

6.2 Limited to Numerical Mutation Scores

The current version of the system accepts only numerical
mutation scores and does not include nucleotide sequences,
protein structure data, or metrics of evolutionary conservation,
for example.
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6.3 Model Interpretability
XGBoost is an accurate model, but it is also a “black box”
without explainability features; hence, it is not interpretable.

6.4 Performance on Very Large CSV Files
Working with huge datasets (over 10,000 records) will
probably affect the performance of the website.

6.5 No 3D Structural Analysis
Protein folding and structural functional impact models are not
part of the system.
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