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Abstract  

In this paper, we introduce a web application that is powered 

by machine learning and is specifically designed for the 

analysis of POLB gene mutations linked with different cancer 

types. The POLB gene encodes a vital enzyme in the base 

excision repair (BER) pathway, and any alterations in this 

gene's sequence can cause genomic instability that might lead 

to tumor development. The application is fed with more than 

1000 carefully selected POLB mutation samples from TCGA 

and COSMIC datasets, where every sample comes with various 

functional mutation scores like PolyPhen-2, SIFT, PROVEAN, 

and CADD, etc. To improve the predictive power of the system, 

it employs sophisticated preprocessing methods such as 

missing-value handling, IQR-based outlier removal, 

standardization of data using StandardScaler, class balancing 

through SMOTE, and creation of new mutation descriptors as 

the input data. The classifiers are evaluated in the context of a 

machine learning pipeline, where XGBoost—fine-tuned 

through GridSearchCV—reaches the maximum accuracy of 

98%, which is the highest among all classifiers. The web 

application based on Flask provides a user-friendly interface 

for single and batch mutation risk prediction, interactive graph 

visualization, CSV file analysis, user authentication, and 

efficient error handling. The results obtained corroborate the 

capability of the system to operate on dynamic genomic data 

and to classify POLB mutations with great accuracy. 

Keywords: POLB, machine learning, cancer genomics, 

XGBoost, mutation analysis, Flask web application, TCGA, 

COSMIC. 

1. INTRODUCTION 
Cancer is primarily acknowledged as a genetic disorder, which 

is the result of mutations that change vital cellular processes. 

Among the genes involved in DNA damage repair, the POLB 

(DNA polymerase beta) gene is of great importance as it is 

responsible for the Base Excision Repair (BER) pathway 

which, in turn, repairs the single-strand DNA lesions affected 

by oxidation and alkylation. Dysfunctional or mutated POLB 

leads to the occurrence of errors in DNA repair that eventually 

contribute to the instability of the genome and the higher risk 

of cancer. Mutations in POLB have been found in a number of 

different cancer types like breast, lung, liver, ovarian, and 

colorectal; thus, their analysis is vital for the understanding of 

cancer causation. 

Despite the presence of a lot of information regarding POLB 

mutations in large-scale genomic repositories like TCGA and 

COSMIC, the manual interpretation of these data sets is still a 

difficult task.  

 

The variations in how mutations are represented, the non-

standardized scoring systems, the missing values, and the non-

linear interactions between scores all add to the difficulty of 

traditional statistical analysis. Nonetheless, machine learning is 

capable of handling intricate mutation data and revealing hidden 

patterns which are of great importance for the classification of 

cancer risk. 

In this paper, a machine learning and web-based system is 

constructed to perform an in-depth analysis of POLB mutations. 

The system consists of an end-to-end pipeline that includes 

dataset curation, preprocessing, feature engineering, ML model 

training, visualization, and user-interactive prediction modules. 

To enhance prediction accuracy, several advanced features such 

as SMOTE oversampling, IQR-based outlier filtering, feature 

normalization, and engineered mutation metrics were 

incorporated into the model. 

The complete process has been implemented in the form of a 

Flask web application that offers various functionalities such as 

single-value prediction, batch CSV analysis, authentication, 

automated data preprocessing, and graphical result visualization. 

The application is intended to be a user-friendly computer-based 

tool for both researchers and doctors who want to investigate 

POLB mutation patterns in different types of cancer. 

2. ARCHITECTURE AND IMPLEMENTATION  

2.1 System Architecture Overview 

The architecture of the proposed POLB mutation analysis 

system is four modular layers that are built especially for 

reliability, scalability, and adaptation to constantly changing 

genomic datasets. The architecture collects data from different 

sources, preprocesses the data, develops machine learning 

models, and a web interface based on Flask. 

  

Figure 1: System Architecture Overview 

 

 

 

https://ijsrem.com/


      
         International Journal of Scientific Research in Engineering and Management (IJSREM) 

                         Volume: 09 Issue: 12 | Dec - 2025                               SJIF Rating: 8.586                                       ISSN: 2582-3930                                                                                                              

 

© 2025, IJSREM      | https://ijsrem.com                                 DOI: 10.55041/IJSREM54808                                             |        Page 2 
 

• Layer 1 – Data Ingestion Layer 

This layer gathers POLB mutations from TCGA, COSMIC, and 

user-uploaded CSV files. The system does a schema validation 

that checks if the required columns (PP, SIFT, PROVEAN, 

CADD, Class) are available in the data before proceeding with 

further processing. 

• Layer 2 – Preprocessing & Feature Engineering Layer 

It cleans and transforms the raw genomic scores. This process 

includes the imputation of missing values, filtering of outliers 

using the IQR method, normalization with StandardScaler, and 

creation of engineered features. 

• Layer 3 – Machine Learning Layer 

The architecture implements different classification algorithms, 

hyperparameter tuning through GridSearchCV, and retention of 

the best XGBoost model. 

• Layer 4 – Application & Visualization Layer 

The Flask web framework is in charge of user authentication, 

single and batch predictions, error handling, and output 

visualization through interactive plots and tables. 

The presented architecture guarantees an uninterrupted data 

exchange between the system elements and facilitates the 

mutation classification which is both accurate and done in real-

time. 

 

2.2 Dataset Collection and Preprocessing 

The dataset for this research consists of more than 1000 POLB 

mutation samples that were obtained from the TCGA and 

COSMIC repositories, curating the process. Biologically 

relevant mutation effect scores are included for each sample in 

the form of rows in the dataset: 

• PolyPhen-2 (PP) – Anticipate protein structure/function 

impairment 

• SIFT – Calculates the effect of amino acid change 

• PROVEAN – Determines the biological importance of 

protein variation 

• CADD – Predicts harmfulness of genomic variants 

• Class label – Two-way cancer-risk sign. 

 

Table 1: Dataset Feature Summary 

Feature Description 

PolyPhen-2 Prediction score on how the protein will 

be affected 

SIFT Mutation and its impact on the function 

of the protein in question 

PROVEAN Protein variation effect score 

CADD Mutation is given a score indicating how 

damaging it is 

Class Label Cancer-risk classification (0 = low risk, 

1 = high risk) 

 

2.2.1 Data Cleaning 

A major issue with genomic datasets is that they frequently 

contain missing entries caused by incomplete scoring. The 

uniformity is established as follows: 

• Missing values for continuous variables are 

substituted by the means of their respective columns. 

• Rows with important missing values are marked 

• Formatting discrepancies are automatically rectified 

 

2.2.2 Outlier Detection using IQR 

 

There is often a large variance in mutation scores, and the 

extreme scores are usually due to scoring errors. Such outliers 

have a negative influence on the performance of machine 

learning. 

• The IQR method (Q1–Q3) is the one that is applied to 

detect outliers 

• The samples lying beyond 1.5 × IQR are discarded 

• Thus, stable learning is guaranteed and the decision 

boundaries skewed are minimized 

 

2.2.3 Feature Scaling 

 

CADD scores (>30) and PP scores (0-1) have completely 

different numeric ranges. 

To bring them to the same scale: 

• StandardScaler scales all the features with continuous 

values to N(0,1) 

• eliminates the problem of larger-feature dominance in 

ML models. 

 

2.3 Feature Engineering  

It is probable that raw genomic scores singly would not show 

the biological implicitly. Hence, the creation of additional 

engineered features was made in order to improve the accuracy 

of predictions. 

 

2.3.1 Ratio-Based Features 

 PP_CADD_ratio = PP / CADD  

It indicates the relative structural impact of the mutation 

concerning which this is considered.  

 

2.3.2 Combined Score Averages  

SIFT_PROVEAN_avg = (SIFT + PROVEAN) / 2 The variance 

in predictions is reduced while also offering a stronger and 

more consistent signal. 

 

2.3.3 Weighted Severity Index  

A composite metric representing mutation severity: 

Severity_Index = (PP × 0.5) + (1 − SIFT) × 0.3 + (1 − 

PROVEAN) × 0.2 

 

 

 2.3.4 Interaction Features  

Interaction terms support the classifier in identifying intricate 

relationships:  

• PP × PROVEAN  

• SIFT × CADD  

It was discovered that the engineered features contributed to a 
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significant increase in the ML pipeline's predictive power. 

 

2.4 Class Balancing Using SMOTE 

 

The dataset showed a great disparity in the number of data 

points where cancer-risk mutations (class 1) were much less 

compared to low-risk mutations (class 0). If the model is 

trained using such data it will be a biased one.  

The SMOTE (Synthetic Minority Oversampling Technique) 

method was implemented to solve this issue.  

How SMOTE Works 

• Randomly chooses one sample from the minority 

class  

• Finds its nearest neighbors  

• Makes new synthetic samples in between them 

This method increases the representation of the minority class 

in the data set without merely duplicating, which thus improves 

the sensitivity of the classifier.  

Impact of SMOTE 

• Recall for high-risk mutations was improved  

• Bias against class 0 was reduced  

• XGBoost was able to achieve 98% accuracy with 

SMOTE, whereas it was only ~89% without it. 

 

2.5 Machine Learning Model Development 

 

To pinpoint the most vigorous classifier, numerous models 

were scrutinized: 

 

2.5.1 Logistic Regression 

 

• Acts as a reference point 

• Only linear separation 

• Accuracy: 82% 

2.5.2 Random Forest  

• Nonlinear feature relationships are captured  

• Noise is handled with moderate success  

• Accuracy: 91% 

2.5.3 XGBoost  

XGBoost was touted to be the most powerful model due to:  

• Gradient-boosted trees 

• Capacity to manage missing values  

• Preventing overfitting through regularization 

• Operational across giant datasets  

 

Hyperparameter Tuning Using GridSearchCV 

 

 

The following parameters were fine-tuned: 

• n_estimators 

• learning_rate 

• max_depth 

• subsample 

• colsample_bytree 

As a result of this tuning, the model achieved a 98% accuracy 

level. 

 

2.6 Block Diagram of ML Workflow 

 

 
Workflow Steps: 

 

Step 1 — Data Acquisition 

The TCGA/COSMIC databases and user uploads are the source 

of the datasets. 

 

Step 2 — Preprocessing 

Missing data, outliers, scaling, and SMOTE balancing are taken 

care of. 

 

Step 3 — Feature Engineering 

The ratio features, averages, severity index, and interaction 

terms are computed. 

 

Step 4 — Model Training 

XGBoost, which has been fine-tuned with GridSearchCV, gets 

trained on 80% of the preprocessed data. 

 

Step 5 — Model Evaluation 

The following metrics are used: 

• Accuracy 

• F1-score 

• Confusion matrix 

• ROC-AUC 

Step 6 — Flask Deployment 

The model is serialized and incorporated into a Flask server that 

offers: 

• Real-time predictions 

• Batch CSV classification 

• Graphical output 

 

2.7 Flask Web Application Module  
The final step of the entire process includes the ML pipeline 

embedded within a completely live web application with Flask, 

which permits user interaction, visualization, and prediction in 

real time. This module is the system's visible part for the user 

and is liable to present the facilities of the machine learning 

model to the end users in an easy and straightforward way. It 

links the XGBoost model that has been trained in advance with 

the front-end elements and takes care of managing the user 

sessions, data uploads, input validation and the whole 
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prediction process.  

The Flask module provides three main functions:  

• User Authentication  

• Single and Batch Prediction  

• Interactive Graphical Visualization  

 

2.7.1 User Authentication and Session Management 

The system makes use of the Flask-Login library to provide a 

secure authentication mechanism and, thus, controlling who 

has access to the prediction tools. Users must first register and 

then log in to be able to use the prediction tools. The passwords 

of the users are kept safe and secure through salted hashing 

which is a technique offered by the security library of 

Werkzeug.  

The authentication functions provide the following:  

• Secure login/logout  

• Authorization based on session  

• Predictions only for specific users  

• Tracking of user sessions  

Through the implementation of authentication, not only user 

data integrity and privacy are preserved but also unauthorized 

access to the sensitive ML functionalities prevented. 

 

2.7.2 Single PP Score Prediction Module 
 

The rapid estimation of mutation-risk basing mostly on a single 

PolyPhen-2 (PP) score is the capability of this module. The 

cancer-risk potential of a mutation can be quickly tested by 

researchers without the need for uploading a file. 

The features of this module are as follows: 

• Validation of numeric PP score 

• Other features' automatic imputation using dataset 

mean values 

• Preprocessing using the same scaler used for training 

the model 

• Prediction in real-time with the XGBoost model 

• Distribution of probabilities visualization by means of 

bar graphs 

The output consists of: 

• Predicted class label 

• Mutation's probability of being high-risk cancer one 

• Confidence visualization 

 

2.7.3 Batch Prediction Using CSV Upload 
 

The large-scale genomic analysis is the main purpose of this 

module. The users are allowed to upload CSV files with many 

POLB mutation entries in it. 

 

The system does: 

• Validation of columns (PP, SIFT, PROVEAN, 

CADD) 

• Handling of missing data 

• Removal of outliers 

• Feature engineering 

• StandardScaler transformation 

• Prediction of the model on a batch-level basis 

• Results file that can be automatically downloaded 

In addition, the output includes graphical summaries, such as: 

• Class distribution bar chart 

• Risk heat map 

• Feature-level trend visualization 

 

2.7.4 Dynamic Visualization 
 

Through Flask App dynamic Matplotlib plots are rendered to 

the users by the prediction interpreter. Probability bar charts, 

class comparison graphs, mutation-risk trend lines, and high-

risk mutations' summary visualizations are the types of these 

visualizations. 

The graphical components like these make the interpretations 

easier for non-technical users. 

 

2.7.5 Error Handling and Validation 
 

This web application possesses extensive error-handling 

features: 

 

• Wrong file formats are not allowed. 

• Missing columns or invalid values are detected. 

• Errors from the server side are handled. 

• Flash messages are displayed in a user-friendly 

manner. 

 

Such a practice guarantees the application's reliability even in 

the case of wrong input formats. 

 

2.7.6 Model Integration Backend 
 

The XGBoost model that has been trained is kept as a joblib 

serialized file. At the start of the application, the model is 

loaded into memory once and then it is reused for all requests 

to reduce latency. 

The backend consists of: 

• A preprocessing pipeline that is the same as the 

training pipeline 

• Feature extraction logic 

• Prediction engine 

• Debugging logs 

 

2.7.7 User Interface Design 
 

The front-end technology stack consists of: 

• HTML5 

• CSS 

• Bootstrap 

• Jinja2 templating 

The interface design (UI) is kept simple, responsive, and very 

user-friendly. 

 

 

 

 

3. RESULTS AND DISCUSSION  

The system's performance was assessed using a carefully 

selected dataset containing more than 1000 POLB mutations 

from TCGA and COSMIC. Several machine learning models 

were employed, their performance evaluated and compared. 

 

 3.1 Model Performance Evaluation  

The three principal ML models under consideration were: 

Logistic Regression, Random Forest, and XGBoost. 
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Table 2: ML Model Comparison 

 

Model Accuracy Remarks 

Logistic 

Regression 

82% Baseline linear classifier 

Random Forest 91% Good with nonlinearities 

XGBoost 98% Tuning made it the best 

choice 

 

The XGBoost model was the most accurate due to this reason: 

• Gradient boosting,  

• A very good way to handle the noisy and sparse 

mutation data.  

• Possibility to work together with engineered features.  

 

3.2. Effect of Preprocessing Techniques  
The models were very much impacted by the preprocessing: 

1. Outlier Removal: Steady learning was achieved thanks to 

the removal of extremely high and low cases. Out of the picture 

were the biologically impossible scores. 

2. Scaling: Use of the StandardScaler equalized the various 

scoring ranges. CADD score was not allowed in the dominating 

position 

.3. SMOTE: The class imbalance issue was solved. The recall 

of high-risk mutations was raised from approximately 70% to 

95%. F1-score and ROC-AUC metrics experienced a 

significant increase. 

 

3.3. Visualization Results  
 

Several graphical outputs were generated by the Flask web 

application: 

• Class distribution graphs indicated a clear division 

between anticipated high-risk and low-risk 

individuals. 

• Confidence levels for predictions were shown in 

probability plots as calibrated. 

• Severe POLB mutation areas were indicated on batch-

level heat maps. 

These visuals helped scientists identify the types of mutations 

that were common in cancer. 

 

 

3.4. Web Application Performance  
 

Flask interface worked effectively on a variety of devices.  

• Single predictions were done in less than 0.5 seconds.  

• Batch predictions with (100+ entries) were done in 

less than 2 seconds.  

• Lightweight deployment resulted in a very small 

memory footprint.  

 

 

 

 

4. CONCLUSION  
 

The findings of this study introduce a detailed machine 

learning-based system for the detection of POLB gene 

mutations in different types of cancer. The integration of 

sophisticated pre-processing, feature engineering, SMOTE 

balancing, and a very well-tuned XGBoost classifier makes the 

system capable of reaching 98% accuracy in mutation-risk 

prediction. 

The system has a web interface based on Flask that is user-

friendly and enables the analysis of single and multiple 

mutation samples at the same time. The application is also 

equipped with dynamic charts, automated preprocessing, and 

strong error handling which makes it suitable for use by 

researchers and clinicians working with genomic data. 

The combination of machine learning and real-time web 

deployment for precision oncology has proven to be a very 

effective approach in this work. 

 

5. FUTURE WORK  
There are numerous improvements that can be done to the 

current system that will not only expand its capabilities but also 

make it a more powerful tool: 

 

5.1 Integration of Deep Learning Models 
The use of deep learning models such as CNNs or Transformers 

would enable raw DNA sequences or 3D protein structures to 

be analyzed for insights at a whole new level. 

 

5.2 Inclusion of Multiple BER Pathway Genes 
Going beyond POLB and including MSH2, XRCC1, and 

OGG1 will allow analysis of mutation risk at the entire pathway 

level. 

 

5.3 Real-Time Genomic API Integration 
The integration of APIs like Ensembl or NCBI Variant services 

will provide instantaneous scoring of mutations. 

 

5.4 Cloud Deployment 
Cloud deployment on AWS, Azure, or Google Cloud will make 

it possible to support many users concurrently on a large scale. 

 

5.5 SHAP Explainability Dashboard 
The addition of visual tools for interpreting SHAP 

contributions will enable clinical trust to be increased. 

 

6. LIMITATIONS  
On the other hand, the system has some limitations that cannot 

be overlooked: 

 

6.1 Dataset Constraints 
The dataset is constructed from the TCGA and COSMIC 

databases, which consist of curated samples. The inclusion of 

more clinical data from the real world rewould validate the 

performance of the system even more. 

 

6.2 Limited to Numerical Mutation Scores 
The current version of the system accepts only numerical 

mutation scores and does not include nucleotide sequences, 

protein structure data, or metrics of evolutionary conservation, 

for example. 
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6.3 Model Interpretability 
XGBoost is an accurate model, but it is also a “black box” 

without explainability features; hence, it is not interpretable. 

 

6.4 Performance on Very Large CSV Files 
Working with huge datasets (over 10,000 records) will 

probably affect the performance of the website. 

 

6.5 No 3D Structural Analysis 
Protein folding and structural functional impact models are not 

part of the system. 
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