
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 1

Comparative Evaluation of Hyperparameter Tuning Strategies in Apache Spark

MLlib

Dr. Meenakshi Garg1 , Shreyash Haram2 , Yash Mirashi3

1Dept. of Master of Computer Applications, Vivekanand Education Society Institute for Technology, Mumbai, India.

meenakshi.garg@ves.ac.in

Abstract. Hyperparameter tuning is a critical yet computationally intensive step in building machine learning models for large-scale datasets.

While Apache Spark MLlib offers distributed computing capabilities, its native hyperparameter tuning methods face efficiency and scalability

challenges. This study investigates the viability of traditional methods (grid search, random search) and advanced techniques (Bayesian

optimization) for optimizing hyperparameter tuning in Spark MLlib. Using the NYC Taxi Trip Duration dataset, that design a systematic

evaluation framework to compare these strategies in terms of predictive accuracy (RMSE) and computational efficiency (execution time)

within a distributed Spark environment. The experimental analysis highlights methodological trade-offs and provides empirical insights into

scalable hyperparameter tuning for regression tasks in distributed machine learning workflows.

Keywords: Hyperparameter tuning ,Apache Spark MLib, Grid search, Random search, Bayesian optimization, Predictive Analytics.

1 Introduction

Machine learning models rely heavily on hyperparameter tuning to achieve optimal performance. However, tuning hyperparameters for large-

scale datasets is computationally expensive and time-consuming. Apache Spark MLlib offers distributed computing capabilities, but its native

hyperparameter tuning methods, such as grid search, are not always efficient or scalable. This research addresses the challenge of optimizing

hyperparameter tuning in Spark MLlib for large-scale predictive analytics.

The primary objective of this study is to compare traditional hyperparameter tuning methods (grid search, random search) with advanced

techniques (Bayesian optimization) in terms of accuracy and scalability. Using the NYC Taxi Trip Duration dataset, this paper evaluates the

performance of these methods and provides insights into their trade-offs. The findings of this research will help data scientists and engineers

optimize hyperparameter tuning for large-scale machine learning tasks in Spark MLlib.

2 Literature Review

Hyperparameter tuning is a fundamental process in machine learning that involves optimizing parameters external to the model

itself, such as learning rates, regularization strengths, or tree depths, to maximize predictive performance. These

hyperparameters govern the training process and significantly influence model accuracy and generalization [1]. Traditional

methods like grid search and random search have long been the industry standard, but their limitations in scalability and

efficiency have spurred the development of advanced techniques like Bayesian optimization, particularly in distributed

computing environments [2].

2.1 Traditional Hyperparameter Tuning Methods

 Grid Search is a brute-force approach where a predefined set of hyperparameters is exhaustively evaluated. For example, if

tuning a model with two hyperparameters (e.g., learning rate and regularization strength), grid search evaluates every

combination in a Cartesian product of specified values [3]. While systematic, this method suffers from the "curse of

dimensionality": as the number of hyperparameters increases, the search space grows exponentially, leading to prohibitive

computational costs [4]. For instance, a grid search over 5 hyperparameters with 10 values each requires 10⁵ = 100,000

evaluations, which becomes impractical for large datasets or complex models [5].

 Random Search, proposed by Bergstra & Bengio, addresses this inefficiency by randomly sampling hyperparameters from

predefined distributions (e.g., uniform or log-uniform). Unlike grid search, random search does not require predefining exact

values and can explore the hyperparameter space more effectively in high-dimensional settings [6]. Empirical studies show

that random search often outperforms grid search with fewer evaluations because it avoids redundant exploration of low-

performing regions [7]. However, both methods lack a mechanism to learn from prior evaluations, resulting in wasted

computational resources on suboptimal configurations [8].

http://www.ijsrem.com/
mailto:meenakshi.garg@ves.ac.in

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 2

2.2 Advanced Optimization Techniques

 Bayesian Optimization (BO) introduces a data-driven approach to hyperparameter tuning. It constructs a probabilistic

surrogate model (e.g., Gaussian processes or tree-based models) to approximate the relationship between hyperparameters and

the objective function (e.g., validation RMSE). An acquisition function (e.g., Expected Improvement) then guides the search

by balancing exploration (sampling uncertain regions) and exploitation (focusing on known promising regions) [9]. For

example, in tuning a neural network, BO might prioritize regions where lower learning rates yield stable training while avoiding

overly conservative regularization. This method drastically reduces the number of evaluations needed compared to grid or

random search, making it ideal for expensive-to-train models [10]. Recent extensions, such as Hyperband [11], combine BO

with bandit-based resource allocation to terminate poorly performing configurations early, further improving efficiency [12].

2.3 Hyperparameter Tuning in Distributed Systems

 The rise of big data has necessitated distributed frameworks like Apache Spark MLlib, which parallelizes machine learning

workflows across clusters [13]. However, native hyperparameter tuning tools in Spark, such as grid search, often fail to leverage

distributed resources optimally. For instance, Spark’s CrossValidator splits data into partitions for parallel training but does

not dynamically prioritize promising hyperparameters, leading to redundant computations [14]. Karau & Warren highlighted

that traditional methods in Spark scale linearly with the number of hyperparameters, creating bottlenecks for large datasets like

the NYC Taxi Trip Duration dataset (1.4 million records) [15].

To address these challenges, researchers have explored integrating advanced optimization techniques with distributed

frameworks. For example, hyperopt-spark extends Bayesian optimization to Spark by parallelizing trials across worker nodes

[16]. Similarly, Li et al. demonstrated that bandit-based methods like Hyperband can dynamically allocate resources in

distributed environments, though their implementation in Spark MLlib remains nascent. Despite these advancements, few

studies empirically compare the scalability and accuracy of grid search, random search, and Bayesian optimization within

Spark’s ecosystem, particularly for regression tasks on real-world datasets.

2.4 Research Gap and Contribution

 Prior work has extensively explored hyperparameter tuning in centralized settings, but there is limited analysis of its

application in distributed frameworks like Spark MLlib. While Snoek et al. and Feurer & Hutter established the theoretical

superiority of Bayesian optimization, practical insights into its integration with Spark’s distributed architecture are lacking.

This study bridges this gap by evaluating traditional and advanced tuning methods on the NYC Taxi Trip Duration dataset,

quantifying trade-offs between accuracy (RMSE) and scalability (execution time) in a real-world distributed environment.

3 Methodology

3.1 Dataset and Preprocessing

 This study utilizes the NYC Taxi Trip Duration dataset, which consists of approximately 1.4 million records of taxi trips.

Each entry includes pickup and dropoff coordinates, timestamps, and passenger counts. Due to the dataset's structured nature

and the necessity for robust AutoML pipelines, it aligns well with tools like AutoGluon, which are tailored for tabular data

[17].Preprocessing was carried out using Apache Spark, enabling scalable distributed data transformation. Feature engineering

steps included calculating the geodesic distance between pickup and dropoff points using the Haversine formula, as well as

extracting temporal features such as the day of the week and hour of the day. The structured features were assembled using

Spark's VectorAssembler, allowing them to be consumed by Spark MLlib models [18].

Table 1. Table depicting data fields in NYC taxi trip duration dataset.

Name Description

id a unique identifier for each trip
vendor_id a code indicating the provider associated with the trip record
pickup_datetime date and time when the meter was engaged
dropoff_datetime date and time when the meter was disengaged
passenger_count the number of passengers in the vehicle (driver entered value)

pickup_longitude the longitude where the meter was engaged
pickup_latitude the latitude where the meter was engaged
dropoff_longitude the longitude where the meter was disengaged
dropoff_latitude the latitude where the meter was disengaged
store_and_fwd_flag This flag indicates whether the trip record was held in vehicle memory

before sending to the vendor because the vehicle did not have a
connection to the server - Y=store and forward; N=not a store and
forward trip

trip_duration duration of the trip in seconds

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 3

3.2 Baseline Methods

 Two baseline methods were employed for hyperparameter tuning: grid search and random search.

 Grid Search: This approach systematically explores all combinations of specified hyperparameters. Despite being exhaustive,

it suffers from exponential growth in computation with increased parameters and values. Spark MLlib's CrossValidator was

used to evaluate model performance for each grid point. However, as discussed by Zhang et al., such methods often lack

adaptive exploration and are computationally intensive for high-dimensional spaces [19].

 Random Search:In contrast, random search samples hyperparameter values from defined distributions, improving efficiency

by avoiding exhaustive enumeration. This method was implemented by wrapping Spark’s parameter tuning API with Python

functions to introduce randomness. Random search's ability to find near-optimal configurations with fewer evaluations makes

it a strong baseline for comparison.

3.3 Optimized Methods

 To address the limitations of baseline methods, Bayesian optimization was implemented using the Hyperopt library,

integrated with Spark via hyperopt-spark. This framework employs probabilistic surrogate models (specifically Tree-structured

Parzen Estimators) to model the objective function. It then selects promising hyperparameter configurations using an

acquisition function.Unlike static methods, Bayesian optimization is adaptive and sequential. By learning from previous

evaluations, it significantly reduces the number of trials needed to reach optimal configurations. Wistuba et al. proposed using

scalable Gaussian process-based surrogates to enhance this process in distributed environments, a concept reflected in our

adaptation within the Spark MLlib pipeline [20].

3.4 Experimental Setup

 All experiments were conducted on a Spark cluster configured with 8GB executor/driver memory and 100 shuffle partitions

to optimize distributed processing. Prior to hyperparameter tuning, exploratory data analysis was performed to guide feature

selection and model design. The following visualizations were generated to analyze dataset characteristics:

Feature Correlation Matrix: A heatmap illustrating pairwise correlations between numerical features (e.g., Haversine Distance,

Latitude Difference, Longitude Difference) and the target variable (duration). This analysis identified features with significant

relationships to prioritize during modeling.

Fig.1 : Feature Correlation Matrix

Feature Relationships : A pairwise scatterplot and distribution plot of sampled data, highlighting trends and interactions

between key features. This visualization informed decisions about non-linear feature engineering and model assumptions.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 4

 Fig.2: Feature Relationships

Temporal Analysis : A dual-axis plot comparing hourly trip volume (bars) and average trip duration (line) across the dataset.

This revealed temporal patterns that justified the inclusion of time-based features (e.g., pickup_hour).

 Fig.3 : Temporal Analysis

Feature Importance Analysis : A bar chart derived from a preliminary linear regression model, ranking features by their absolute

coefficients. This guided hyperparameter tuning focus on influential predictors.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 5

 Fig.4: Feature Importance Analysis

Based on these insights, hyperparameters such as regularization strength (regParam) and elastic net mixing (elasticNetParam)

were selected for optimization. The study compared three tuning methods—grid search, random search, and Bayesian

optimization—using RMSE (Root Mean Squared Error) as the accuracy metric and execution time as the scalability metric.

Each method was evaluated under identical cluster conditions with 20 trials to ensure fairness, and results were averaged across

three runs to minimize variance.

4 Results and Discussion

4.1 Performance Comparison

 This paper compared the performance of grid search, random search, and Bayesian optimization in terms

of RMSE and execution time. The results are summarized below:

Table 2. Table depicting accuracy across all methods explored.

Method RMSE Execution Time(s)

Grid Search 5267.12 217.5
Random Search 5227.23 66.4
Bayesian Optimization 3167.42 36.2

4.2 Analysis

 Accuracy (RMSE): Bayesian Optimization achieved a significantly lower RMSE (3167.42) compared to

Grid Search (5267.12) and Random Search (5227.23), demonstrating its superior ability to navigate high-

dimensional hyperparameter spaces.

Scalability (Execution Time): Bayesian optimization was the fastest, followed by random search and grid

search . This demonstrates the efficiency of Bayesian optimization in exploring the hyperparameter

space.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 6

Fig. 1: Comparison of RMSE for Hyperparameter Tuning Methods

Fig. 2: Comparison of Execution Time for Hyperparameter Tuning Methods

4.3 Trade-offs

 While grid search and random search are straightforward to implement, they are computationally expensive for large-scale

datasets. Bayesian optimization, on the other hand, provides a better trade-off between accuracy and scalability, making it a

more suitable choice for large-scale predictive analytics in Spark MLlib.

5 Conclusion and Future Scope

This research compared traditional hyperparameter tuning methods (grid search, random search) with an advanced

technique (Bayesian optimization) in Apache Spark MLlib. Using the NYC Taxi Trip Duration dataset, this paper evaluated

the performance of these methods in terms of accuracy (RMSE) and scalability (execution time). The results show that Bayesian

optimization achieves a better trade-off between accuracy and scalability compared to grid search and random search.The key

contributions of this research are:A comprehensive comparison of hyperparameter tuning methods in Spark MLlib.Insights

into optimizing hyperparameter tuning for large-scale predictive analytics.Future work could explore the implementation of

other advanced techniques, such as Hyperband, and evaluate their performance on larger datasets. Additionally, optimizing

resource utilization (e.g., CPU, memory) during hyperparameter tuning could further improve scalability.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 7

Funding Declaration
No funding was received for conducting this study or preparing the manuscript.

References

1. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A., Hyperband: A novel bandit-based
approach to hyperparameter optimization, Journal of Machine Learning Research, (2018).

2. Feurer, M., Hutter, F., Hyperparameter Optimization, Automated Machine Learning, (2019).

3. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M., Optuna: A Next-generation Hyperparameter Optimization
Framework, Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
(2019).

4. Real, E., Aggarwal, A., Huang, Y., Le, Q.V., Regularized evolution for image classifier architecture search,
Proceedings of the AAAI Conference on Artificial Intelligence, (2019).

5. Klein, A., Falkner, S., Springenberg, J.T., Hutter, F., Efficient and Robust Automated Machine Learning, Advances
in Neural Information Processing Systems, (2019).

6. Xie, Y., Zhou, Y., Scalable hyperparameter tuning in distributed environments, Journal of Machine Learning
Research, (2020).

7. Shilpa P., Meenakshi G., Balancing between 'Big Data Analytics Tools', International Journal of Advanced Research
in Computer Science, (2020).

8. Akshata B., Meenakshi G., Sentiment analysis on twitter data using lexicon-based and naive bayes approach, Journal
of Data Mining and Knowledge Discovery, (2020).

9. Zheng, A., Casari, A., Feature Engineering for Machine Learning: Principles and Techniques, O'Reilly Media, (2018).

10. Raschka, S., Patterson, J., Nolet, C., Machine Learning in Python: Main Developments and Technology Trends, arXiv
preprint arXiv:2002.04803, (2020).

11. Paleyes, A., Urma, R.G., Lawrence, N.D., Challenges in Deploying Machine Learning: A Survey of Case Studies,
ACM Computing Surveys, (2022).

12. Bisong, E., Building Machine Learning and Deep Learning Models on Google Cloud Platform, Apress, (2019).

13. Géron, A., Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, O'Reilly Media, (2019).

14. Chollet, F., Deep Learning with Python, Manning Publications, (2018).

15. Karau, H., Warren, R., High-Performance Spark: Best Practices for Scaling and Optimizing Apache Spark, O’Reilly
Media, (2017)

16. Kumar, A., Boehm, M., Yang, J., Data Management in Machine Learning Systems, Synthesis Lectures on Data
Management, (2019).

17. Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy, P., Li, M., Smola, A., AutoGluon-Tabular: Robust and
Accurate AutoML for Structured Data, arXiv preprint arXiv:2003.06505, (2020).

18. Falkner, S., Klein, A., Hutter, F., BOHB: Robust and Efficient Hyperparameter Optimization at Scale, Proceedings
of the 35th International Conference on Machine Learning, (2018).

19. Yang, C., Akimoto, Y., Kim, D.W., Udell, M., OBOE: Collaborative Filtering for AutoML Model Selection,
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, (2019).

20. Wistuba, M., Schilling, N., Schmidt-Thieme, L., Scalable Gaussian Process-Based Transfer Surrogates for
Hyperparameter Optimization, Machine Learning Journal, (2019).

http://www.ijsrem.com/

