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Abstract. Hyperparameter tuning is a critical yet computationally intensive step in building machine learning models for large-scale datasets. 

While Apache Spark MLlib offers distributed computing capabilities, its native hyperparameter tuning methods face efficiency and scalability 

challenges. This study investigates the viability of traditional methods (grid search, random search) and advanced techniques (Bayesian 

optimization) for optimizing hyperparameter tuning in Spark MLlib. Using the NYC Taxi Trip Duration dataset, that design a systematic 

evaluation framework to compare these strategies in terms of predictive accuracy (RMSE) and computational efficiency (execution time) 

within a distributed Spark environment. The experimental analysis highlights methodological trade-offs and provides empirical insights into 

scalable hyperparameter tuning for regression tasks in distributed machine learning workflows. 
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1  Introduction 

 
Machine learning models rely heavily on hyperparameter tuning to achieve optimal performance. However, tuning hyperparameters for large-

scale datasets is computationally expensive and time-consuming. Apache Spark MLlib offers distributed computing capabilities, but its native 

hyperparameter tuning methods, such as grid search, are not always efficient or scalable. This research addresses the challenge of optimizing 

hyperparameter tuning in Spark MLlib for large-scale predictive analytics. 

 

The primary objective of this study is to compare traditional hyperparameter tuning methods (grid search, random search) with advanced 

techniques (Bayesian optimization) in terms of accuracy and scalability. Using the NYC Taxi Trip Duration dataset, this paper evaluates the 

performance of these methods and provides insights into their trade-offs. The findings of this research will help data scientists and engineers 

optimize hyperparameter tuning for large-scale machine learning tasks in Spark MLlib. 

 

 

2  Literature Review 

 
Hyperparameter tuning is a fundamental process in machine learning that involves optimizing parameters external to the model 

itself, such as learning rates, regularization strengths, or tree depths, to maximize predictive performance. These 

hyperparameters govern the training process and significantly influence model accuracy and generalization [1]. Traditional 

methods like grid search and random search have long been the industry standard, but their limitations in scalability and 

efficiency have spurred the development of advanced techniques like Bayesian optimization, particularly in distributed 

computing environments [2]. 

 

2.1 Traditional Hyperparameter Tuning Methods 

 

   Grid Search is a brute-force approach where a predefined set of hyperparameters is exhaustively evaluated. For example, if 

tuning a model with two hyperparameters (e.g., learning rate and regularization strength), grid search evaluates every 

combination in a Cartesian product of specified values [3]. While systematic, this method suffers from the "curse of 

dimensionality": as the number of hyperparameters increases, the search space grows exponentially, leading to prohibitive 

computational costs [4]. For instance, a grid search over 5 hyperparameters with 10 values each requires 10⁵ = 100,000 

evaluations, which becomes impractical for large datasets or complex models [5]. 

 

   Random Search, proposed by Bergstra & Bengio, addresses this inefficiency by randomly sampling hyperparameters from 

predefined distributions (e.g., uniform or log-uniform). Unlike grid search, random search does not require predefining exact 

values and can explore the hyperparameter space more effectively in high-dimensional settings [6]. Empirical studies show 

that random search often outperforms grid search with fewer evaluations because it avoids redundant exploration of low-

performing regions [7]. However, both methods lack a mechanism to learn from prior evaluations, resulting in wasted 

computational resources on suboptimal configurations [8]. 
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2.2 Advanced Optimization Techniques 

   Bayesian Optimization (BO) introduces a data-driven approach to hyperparameter tuning. It constructs a probabilistic 

surrogate model (e.g., Gaussian processes or tree-based models) to approximate the relationship between hyperparameters and 

the objective function (e.g., validation RMSE). An acquisition function (e.g., Expected Improvement) then guides the search 

by balancing exploration (sampling uncertain regions) and exploitation (focusing on known promising regions) [9]. For 

example, in tuning a neural network, BO might prioritize regions where lower learning rates yield stable training while avoiding 

overly conservative regularization. This method drastically reduces the number of evaluations needed compared to grid or 

random search, making it ideal for expensive-to-train models [10]. Recent extensions, such as Hyperband [11], combine BO 

with bandit-based resource allocation to terminate poorly performing configurations early, further improving efficiency [12]. 

2.3 Hyperparameter Tuning in Distributed Systems 

   The rise of big data has necessitated distributed frameworks like Apache Spark MLlib, which parallelizes machine learning 

workflows across clusters [13]. However, native hyperparameter tuning tools in Spark, such as grid search, often fail to leverage 

distributed resources optimally. For instance, Spark’s CrossValidator splits data into partitions for parallel training but does 

not dynamically prioritize promising hyperparameters, leading to redundant computations [14]. Karau & Warren highlighted 

that traditional methods in Spark scale linearly with the number of hyperparameters, creating bottlenecks for large datasets like 

the NYC Taxi Trip Duration dataset (1.4 million records) [15]. 

To address these challenges, researchers have explored integrating advanced optimization techniques with distributed 

frameworks. For example, hyperopt-spark extends Bayesian optimization to Spark by parallelizing trials across worker nodes 

[16]. Similarly, Li et al. demonstrated that bandit-based methods like Hyperband can dynamically allocate resources in 

distributed environments, though their implementation in Spark MLlib remains nascent. Despite these advancements, few 

studies empirically compare the scalability and accuracy of grid search, random search, and Bayesian optimization within 

Spark’s ecosystem, particularly for regression tasks on real-world datasets. 

2.4 Research Gap and Contribution 

   Prior work has extensively explored hyperparameter tuning in centralized settings, but there is limited analysis of its 

application in distributed frameworks like Spark MLlib. While Snoek et al. and Feurer & Hutter established the theoretical 

superiority of Bayesian optimization, practical insights into its integration with Spark’s distributed architecture are lacking. 

This study bridges this gap by evaluating traditional and advanced tuning methods on the NYC Taxi Trip Duration dataset, 

quantifying trade-offs between accuracy (RMSE) and scalability (execution time) in a real-world distributed environment. 

 

3 Methodology 
             
3.1 Dataset and Preprocessing 

   This study utilizes the NYC Taxi Trip Duration dataset, which consists of approximately 1.4 million records of taxi trips. 

Each entry includes pickup and dropoff coordinates, timestamps, and passenger counts. Due to the dataset's structured nature 

and the necessity for robust AutoML pipelines, it aligns well with tools like AutoGluon, which are tailored for tabular data 

[17].Preprocessing was carried out using Apache Spark, enabling scalable distributed data transformation. Feature engineering 

steps included calculating the geodesic distance between pickup and dropoff points using the Haversine formula, as well as 

extracting temporal features such as the day of the week and hour of the day. The structured features were assembled using 

Spark's VectorAssembler, allowing them to be consumed by Spark MLlib models [18]. 

Table 1. Table depicting data fields in NYC taxi trip duration dataset. 
 

Name Description 

id a unique identifier for each trip 
vendor_id a code indicating the provider associated with the trip record 
pickup_datetime date and time when the meter was engaged 
dropoff_datetime date and time when the meter was disengaged 
passenger_count  the number of passengers in the vehicle (driver entered value) 

pickup_longitude the longitude where the meter was engaged 
pickup_latitude the latitude where the meter was engaged 
dropoff_longitude the longitude where the meter was disengaged 
dropoff_latitude the latitude where the meter was disengaged 
store_and_fwd_flag This flag indicates whether the trip record was held in vehicle memory 

before sending to the vendor because the vehicle did not have a 
connection to the server - Y=store and forward; N=not a store and 
forward trip 

trip_duration duration of the trip in seconds 
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3.2 Baseline Methods 

   Two baseline methods were employed for hyperparameter tuning: grid search and random search. 

   Grid Search: This approach systematically explores all combinations of specified hyperparameters. Despite being exhaustive, 

it suffers from exponential growth in computation with increased parameters and values. Spark MLlib's CrossValidator was 

used to evaluate model performance for each grid point. However, as discussed by Zhang et al., such methods often lack 

adaptive exploration and are computationally intensive for high-dimensional spaces [19]. 

   Random Search:In contrast, random search samples hyperparameter values from defined distributions, improving efficiency 

by avoiding exhaustive enumeration. This method was implemented by wrapping Spark’s parameter tuning API with Python 

functions to introduce randomness. Random search's ability to find near-optimal configurations with fewer evaluations makes 

it a strong baseline for comparison. 

3.3 Optimized Methods 

   To address the limitations of baseline methods, Bayesian optimization was implemented using the Hyperopt library, 

integrated with Spark via hyperopt-spark. This framework employs probabilistic surrogate models (specifically Tree-structured 

Parzen Estimators) to model the objective function. It then selects promising hyperparameter configurations using an 

acquisition function.Unlike static methods, Bayesian optimization is adaptive and sequential. By learning from previous 

evaluations, it significantly reduces the number of trials needed to reach optimal configurations. Wistuba et al. proposed using 

scalable Gaussian process-based surrogates to enhance this process in distributed environments, a concept reflected in our 

adaptation within the Spark MLlib pipeline [20]. 

3.4 Experimental Setup 

  All experiments were conducted on a Spark cluster configured with 8GB executor/driver memory and 100 shuffle partitions 

to optimize distributed processing. Prior to hyperparameter tuning, exploratory data analysis was performed to guide feature 

selection and model design. The following visualizations were generated to analyze dataset characteristics: 

Feature Correlation Matrix: A heatmap illustrating pairwise correlations between numerical features (e.g., Haversine Distance, 

Latitude Difference, Longitude Difference) and the target variable (duration). This analysis identified features with significant 

relationships to prioritize during modeling. 

 

Fig.1 : Feature Correlation Matrix 

 

Feature Relationships : A pairwise scatterplot and distribution plot of sampled data, highlighting trends and interactions 

between key features. This visualization informed decisions about non-linear feature engineering and model assumptions. 

http://www.ijsrem.com/


        International Journal of Scientific Research in Engineering and Management (IJSREM) 
                  Volume: 09 Issue: 07 | July - 2025                           SJIF Rating: 8.586                                   ISSN: 2582-3930                                                     
 

© 2025, IJSREM      | www.ijsrem.com                                                                                                                                                             |        Page 4 

 

    Fig.2: Feature Relationships  

 

Temporal Analysis : A dual-axis plot comparing hourly trip volume (bars) and average trip duration (line) across the dataset. 

This revealed temporal patterns that justified the inclusion of time-based features (e.g., pickup_hour). 

 

    Fig.3 : Temporal Analysis 

 

Feature Importance Analysis : A bar chart derived from a preliminary linear regression model, ranking features by their absolute 

coefficients. This guided hyperparameter tuning focus on influential predictors. 
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  Fig.4: Feature Importance Analysis 

 

Based on these insights, hyperparameters such as regularization strength (regParam) and elastic net mixing (elasticNetParam) 

were selected for optimization. The study compared three tuning methods—grid search, random search, and Bayesian 

optimization—using RMSE (Root Mean Squared Error) as the accuracy metric and execution time as the scalability metric. 

Each method was evaluated under identical cluster conditions with 20 trials to ensure fairness, and results were averaged across 

three runs to minimize variance. 

 

4  Results and Discussion 
 
4.1   Performance Comparison 

   This paper compared the performance of grid search, random search, and Bayesian optimization in terms 

of RMSE and execution time. The results are summarized below: 

Table 2. Table depicting accuracy across all methods explored. 

Method RMSE Execution Time(s) 

Grid Search 5267.12 217.5 
Random Search 5227.23 66.4 
Bayesian Optimization 3167.42 36.2 

 

4.2   Analysis 

   Accuracy (RMSE): Bayesian Optimization achieved a significantly lower RMSE (3167.42) compared to 

Grid Search (5267.12) and Random Search (5227.23), demonstrating its superior ability to navigate high-

dimensional hyperparameter spaces. 

Scalability (Execution Time): Bayesian optimization was the fastest, followed by random search and grid 

search . This demonstrates the efficiency of Bayesian optimization in  exploring the hyperparameter 

space. 
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Fig. 1: Comparison of RMSE for Hyperparameter Tuning Methods 

 

 

 

 

 

Fig. 2: Comparison of Execution Time for Hyperparameter Tuning Methods 

 

4.3  Trade-offs 

      While grid search and random search are straightforward to implement, they are computationally expensive for large-scale 

datasets. Bayesian optimization, on the other hand, provides a better trade-off between accuracy and scalability, making it a 

more suitable choice for large-scale predictive analytics in Spark MLlib. 

 

5  Conclusion and Future Scope 

 
This research compared traditional hyperparameter tuning methods (grid search, random search)  with an advanced 

technique (Bayesian optimization) in Apache Spark MLlib. Using the NYC Taxi Trip Duration dataset, this paper evaluated 

the performance of these methods in terms of accuracy (RMSE) and scalability (execution time). The results show that Bayesian 

optimization achieves a better trade-off between accuracy and scalability compared to grid search and random search.The key 

contributions of this research are:A comprehensive comparison of hyperparameter tuning methods in Spark MLlib.Insights 

into optimizing hyperparameter tuning for large-scale predictive analytics.Future work could explore the implementation of 

other advanced techniques, such as Hyperband, and evaluate their performance on larger datasets. Additionally, optimizing 

resource utilization (e.g., CPU, memory) during hyperparameter tuning could further improve scalability. 
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