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Abstract - Esophageal cancer (EC) is a rare but serious 

health condition due to its late diagnosis and high fatality rates. 

Its early detection greatly enhances patient outcomes, and 

recent advances in artificial intelligence (AI) introduce new 

possibilities in diagnosis. This research explores deep-learning 

models for early EC detection based on high-resolution 

endoscopic images. We compared logistic regression, 

decision-tree and random forest methods as conventional 

machine learning methods with deep learning models like 

convolutional neural networks (CNNs) and U-Net 

architectures to separate cancerous from non-cancerous 

esophageal tissues. Annotated endoscopic images were used 

as the dataset, with models assessed in terms of accuracy, 

sensitivity, and specificity. Pilot results indicate that deep 

learning, particularly CNNs, performs better than conventional 

machine learning. These results indicate AI-based detection 

combined with routine procedures can enhance early 

diagnosis, lower errors, and enhance EC patient survival. 

Research in the future should improve model robustness and 

establish efficacy across a wide population. 
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1. Introduction 

 
Esophageal cancer is a serious health issue, characterized by 

its poor survival rates, largely due to the fact that it is usually 

diagnosed late. Early detection of the disease is crucial in order 

to enhance patient survival. Current diagnostic techniques 

such as endoscopy and biopsy are not ideal; they are invasive, 

expensive, and not suitable for screening large numbers of 

people. Machine learning (ML) provides a potential solution 

through processing patient data in order to detect cancer 

presence with greater efficiency and fewer invasive 

techniques, employing methodologies such as Logistic 

Regression, Decision Tree, Random Forest, U-Net structures, 

and CNN. This research compares and examines two popular 

classification strategies—Logistic Regression and Decision 

Tree Classifiers—for the detection of esophageal cancer early 

on. Logistic Regression offers an easy-to-read, simple 

explanation that provides probabilities. Decision Trees, in 

contrast, excel at discovering non-linear and complicated 

relationships in data. By testing these models through 

important metrics—accuracy, precision, recall, and 

interpretability—this work aims to discern which method 

works best for predicting cancer, as well as evaluate the 

potential for more sophisticated techniques such as CNN and 

U-Net architectures. This comparison is aimed at projecting 

the advantages and disadvantages of both models to provide 

insight into their applicability in medical science. The results 

are anticipated to help develop data-driven, non-invasive 

diagnostic systems that will lead to earlier interventions and 

better survival rates for patients with esophageal cancer. In 

addition, the investigation of Random Forest algorithms with 

deep learning methods like CNN and U-Net architectures will 

give a complete overview of the present potential in machine 

learning for early detection. 

2. Literature Review 

Recognizing the symptoms of esophageal cancer (EC) at an 

early stage is still a challenge due to the lack of more 

pronounced signs that usually get ignored, however, if 

achieved would greatly benefit the patient’s quality of life [1]. 

The combination of artificial intelligence (AI) with machine 

learning (ML) and deep learning (DL) offers the possibility of 

employing imaging and clinical information to accurately and 

timely diagnose medical conditions [2]. Combating the issue 

of EC, numerous researchers have already invested significant 

time into such technologies. According to ease of use and 

interpretability, Artificial Intelligence provides a broad range 

of tools like ML algorithms; such as Logistic Regression (LR), 

Decision Trees (DT), and Random Forests (RF). Regression 

models have a tendency of being a go-to model of choice for 

most because of the transparency of the evaluation, yet can be 

significantly poor when confronted with real life data because 

of complex data patterns and multilayered hidden 

dependencies as seen in cancer diagnosis [3][4]. As mentioned 

in [5], Decision Trees do assist to some degree by being 

capable of modeling non-linear relationships and feature 

interactions, but they can overfit, particularly with smaller 

datasets. Random Forests more accurately and sturdily 

combine multiple trees together, averaging their outputs. They 

have been particularly useful when dealing with structured 

clinical data and have been able to determine risk factors for 

EC [6][7]. Again, as more conventional ML methods begin to 

encounter a roadblock, deep learning, and in particular 

Convolutional Neural Networks (CNNs), have given new 

thrust. These models are astounding in the medical imaging 

space, especially for endoscopic and histological and CT scans 

of the esophagus [8]. CNNs learn features beautifully from 

image data and have been demonstrated to classify cancerous 

lesions well—usually beating expert humans [9][10]. They 

have quickly found use in recent studies and real-world 

applications [2][11]. Segmentation tasks, which involve 

marking the precise location of tumors, have also been greatly 

advanced through the use of models like U-Net U-Net and its 

numerous descendants were originally designed for 

biomedical image segmentation but have proven highly 

capable of distinguishing between cancerous and non-

cancerous tissues [3][12]. More advanced models like 

Channel-Attention U-Net and 3D Res-U-Net have since been 

developed to deliver more precision via the capability to pay 

more attention to the image features of interest [3][4]. Such 

advancements have clinical uses. For example, better 

segmentation helps doctors plan surgery or radiation therapy 
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more precisely, improving the effectiveness of treatment. 

More research proves that combining deep learning models 

with imaging technologies like hyperspectral imaging or 

narrow-band imaging can significantly improve the diagnostic 

accuracy by visualizing lesions more effectively and making 

classification easier [13][14]. Interestingly, a few researchers 

have started experimenting with hybrid models that are a blend 

of ML and DL. For instance, some models employ CNN to 

extract features of images and then use more complex Logistic 

Regression models to arrive at classification, which is capable 

of combining the benefits of both approaches [6]. Some 

research has sought to test quantum CNNs along with 

ensemble methods in order to enhance robustness even more, 

especially in cases with big data [15][25]. Transfer learning 

has also come into focus as a core approach in EC studies. By 

using pre trained CNNs—originally trained on big image 

datasets like ImageNet—and fine tuning them on medical 

images, scientists have been able to achieve high diagnosis 

accuracy even with limited training sets [16][20]. Similarly, 

object detection algorithms like YOLO have shown promise 

for real-time detection of lesions during endoscopy, which has 

the potential to enable physicians to make quicker and better 

decisions [12][18]. Hyperspectral imaging is also another 

rapidly developing modality being combined with deep 

learning architectures. This imaging modality captures a wide 

spectrum of wavelengths of light to detect extremely subtle 

differences in tissue composition. If processed using CNNs, it 

has been shown to improve sensitivity in early detection 

significantly [10][14]. At the same time, techniques like Cycle 

Gans are helping generate synthetic narrow-band images from 

normal ones, and they can assist in reducing imaging hardware 

expense and complexity while preserving diagnostic quality 

[13][33]. Despite all these breakthroughs, challenges still 

exist. The majority of the models still struggle with 

explainability—therefore making it challenging for clinicians 

to understand why a model arrived at a particular decision 

[9][21]. There is also dataset bias, in which models perform 

well on internal data but fail to generalize across populations 

or institutions [1][27]. Computational requirements and data 

privacy are others that can render real-world deployment 

challenging [30]. In attempts to overcome these limitations, 

recent research seeks to make the AI models transparent and 

generalizable. Techniques like explainable AI (XAI), domain 

adaptation, and data augmentation have been suggested for the 

improvement of reliability and trust [28]. Federated learning is 

another promising direction, allowing institutions to train the 

models collectively without the exchange of sensitive patient 

data [29]. In general, deep learning—specifically CNNs and 

U-Net models—has shown significant potential in the early 

diagnosis of esophageal cancer, especially image-based 

diagnosis and segmentation. However, even now models like 

Random Forest are still applicable to structured clinical data. 

In the near future, hybrid systems that are capable of blending 

the interpretability of traditional ML with the raw performance 

of DL could offer the best way forward in making early EC 

detection more accurate, interpretable, and clinically relevant 

[1][7][14][24]. 

3. Methodology 

In order to compare the performance of various machine 

learning methods in the early diagnosis of esophageal cancer, 

we utilized the following models: 

 

3.1 Logistic Regression: It is a statistical model for binary 

classification and works by predicting the probability that a 

particular input will fall into a particular category. It uses a 

logistic function to describe relationships between 

independent variables and the dependent outcome and is easy 

but efficient for linear separability [6]. 

3.2 Decision Tree: A tree model where the dataset is divided 

into subsets according to feature values. Nodes are decision 

rules, and the branches are leading to the results. Decision 

Trees are useful in dealing with non-linear relationships and 

offering interpretability but may suffer from overfitting [5] 

3.3 Random Forest: This ensemble learning technique 

constructs several Decision Trees and aggregates their 

predictions to enhance accuracy and minimize variance. By 

combining outputs from different trees, Random Forest 

reduces overfitting and increases model robustness, making it 

applicable to medical data analysis [8]. 

 

3.4 Convolutional Neural Networks (CNN): A deep learning 

model that is mainly applied for image analysis. CNNs are 

made up of convolutional layers that capture spatial features 

from images, followed by pooling and fully connected layers 

for classification. CNNs have been shown to have better 

performance in detecting cancerous areas in medical imaging 

[17]. 

                     

3.5 U-Net: A dedicated CNN architecture for biomedical 

image segmentation. It has an encoder-decoder architecture 

that extracts high-level and fine-grained spatial information, 

allowing for accurate boundary detection of cancerous tissues. 

U-Net is extensively applied in segmentation tasks where 

boundary detection is of utmost importance [3]. 

 

4. Discussion and Comparative Study Analysis 

The comparative study of machine learning models used for 

the detection of esophageal cancer reflects the relative merits 

and demerits of each model. Decision Trees were the best-

performing model, with the highest accuracy (96%). This 

finding is a testament to its efficiency in representing complex 

relationships in well-structured data while still being easy to 

interpret. Yet, Decision Trees are prone to overfitting, 

especially with noisy data. Random Forest, a model based on 

ensemble, avoids overfitting by combining several decision 

trees. Although it showed high accuracy (90%), it failed to 

outperform the Decision Tree model, indicating that the 

ensemble approach might not always lead to better results, 

particularly in highly structured data. Nevertheless, Random 

Forest is robust and suitable for dealing with missing values 

and high-dimensional data. Deep learning architectures, 

especially CNN and U-Net, performed impressively well in 

cancer detection from images. CNN was 83% accurate, 

rendering it most suitable for feature extraction from medical 

images. U-Net, being a specially designed architecture for 

medical image segmentation, performed marginally better 

than CNN with an accuracy of 85%, reflecting its capability in 

outlining cancerous areas. Since these models have the 

capacity to learn spatial features independently, they are 

extremely useful in medical imaging applications. However, 

deep learning algorithms need large amounts of data, high 

computational power, and lack interpretability, thus limiting 

their clinical uptake. Logistic Regression, though interpretable 
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and simple, performed worst with the lowest accuracy of 67%. 

Its limitation in being able to model sophisticated interactions 

and relationships between variables restricts its use in medical 

diagnostics. It can still be used as a baseline model for 

comparison purposes and for rapid screening. 

 
                  
Fig - Logistic Regression Confusion Matrix  

                                  Fig:1 

Fig -Decision Tree Confusion Matrix       

                

                                    Fig:2 

Fig - Random Forest Confusion Matrix 

                                    Fig:3 

Fig - Detection of Cancer Using Selective Search 

                            Fig:4 

 

Fig -CNN Confusion Matrix 

                               Fig:5 

Fig - U-Net Confusion Matrix 
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Charts 

 

 

 

Table -1: Model Accuracy 

 
 

 

 

 

 

Table -2:  Performance data and Comparative Study on 

studies for early detection of EC 

 

The performance metrics show that the Decision Tree model 

attained the highest accuracy, thus the most efficient among 

the tested methods for structured data analysis. Deep learning 

methods, especially CNN and U-Net, also showed very high 

performance, particularly in image-based diagnostics. 

Although Logistic Regression offers a straightforward and 

interpretable model, its predictive capability is lower than tree-

based and deep learning techniques. Random Forest is still a 

robust ensemble model with several decision trees, and future 

work should be centered on combining hybrid methods that 

include structured data analysis and deep learning for 

enhanced diagnostic performance [18]. 

5. CONCLUSIONS 

 
The comparison between the machine learning models for 

detecting esophageal cancer highlights the suitability of 

Decision Trees for analyzing structured data with the best 

accuracy among all tested methods. Deep learning models like 

CNN and U-Net are shown to be highly effective in image-

based cancer detection and, as such, are suitable tools for 

medical imaging applications. Logistic Regression, though 

interpretable, cannot model intricate relationships, whereas 

Random Forest possesses a good trade-off between accuracy 

and stability. The findings suggest that the combination of 

traditional ML algorithms with deep learning models can also 

enhance diagnostic accuracy and clinical practicability. Hybrid 

model optimization, dataset diversity improvement, and 

interpretability should be given top priority in subsequent 

research to facilitate real-world application in medical 

diagnosis. 
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