
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 05 Issue: 11 | Nov - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM11056 | Page 1

Comparing Serverless and Microservices Architecture Patterns in

Fintech Space

Ramasankar Molleti, Independent Researcher,

email: sankar276@gmail.com

ABSTRACT

The study aims to compare the serverless and

microservices architectural patterns in the

FinTech sector in 2021. It looks at the history of

these architectures, their key concepts as well as

complex techniques of applying these

architectures to a Fintech context. Some of the

main issues tackled in the study are specific to

these architectures; they include security,

compliance, scalability, and data consistency

problems typical for the FinTech industry. Thus,

the study presents a performance evaluation of

serverless and microservices for financial

services based on the analysis of performance

indicators and the use of actual cases. The study

concludes that while there are relative merits in

both architectures, most FinTech firms are

integrating the two to gain the benefits of both.

Keywords: FinTech Architecture, Serverless

Computing, Microservices, Cloud-Native

Finance, Scalability in FinTech

I. Introduction

The FinTech industry has been transformed due

to the development of the new technologies and

new generation’s expectations. This evolution is

based on the decision to select an appropriate

architectural strategy to construct reliable,

extensible, and secure financial applications. This

study focuses on comparing two major

architectural patterns, serverless and

microservices architecture. FaaS is a cloud

computing model that is frequently described as

serverless computing because it allows

developers to create and deploy applications

without having to worry about the supporting

infrastructure. This model also suggests that

operational overhead will be cut, scaling will be

managed automatically and cost structures will

involve pay-per-use, which will be interesting for

FinTech startups and large institutions. While, the

microservices architecture is the development of

applications as small, autonomously deployable

services, where each service is a separate process

and communicates with other services simply.

They include the following; Modularity is

improved, and it is easier to scale and adopt

several technologies for the different

components.

In the process of attempting to grow while

offering the best security, regulatory compliance,

and efficiency, FinTech companies face a

significant decision: whether to follow the

serverless architecture or microservices

architecture or use both. The aim is to give an

overview of all these architectural patterns and

compare them to FinTech applications, especially

the key issues about their principles,

implementation, and issues. After discussing

practical examples and operational

characteristics, it will be possible to assess the

applicability of the described architectures to the

financial industry requirements regarding the

availability of high-volume transactions, data

synchronization, and compliance.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 05 Issue: 11 | Nov - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM11056 | Page 2

II. Evolution of Architecture Patterns in

FinTech

The use of technological advancement in the

provision of financial services commonly known

as FinTech has experienced a revolution in its

architectural strategies in the last few years [1].

This evolution has resulted from the need to

address the issues of flexibility, growth, and

creativity in financial solutions.

Traditional Monolithic Architectures

FinTech applications were built using monolithic

architectures at first. These systems were

characterized by:

• Single, tightly-coupled codebase

• Shared database

• Limited scalability

Lengthy development and deployment cycles

Monolithic architectures provided easy

development and deployment but were unable to

provide what the financial industry needs today.

Shift towards Distributed Systems

When the firms began to expand and the products

they offered started getting complicated, there

was an incremental move toward distributed

systems.

Figure 1: Service-Oriented Architecture

(Source: https://pub.mdpi-res.com/)

This transition was marked by:

• Service-Oriented Architecture (SOA)

adoption

• Increased modularity

• Improved scalability and fault tolerance

• Enhanced reusability of components

Distributed systems enabled FinTech firms to

divide the applications into smaller services

which could easily be handled and enhanced both

the system reliability and flexibility to be

enhanced.

Emergence of Microservices and Serverless

Paradigms

The last major change in the architecture of

FinTechs has been the transition to microservices

and serverless architecture [2]. These modern

approaches offer:

• Fine-grained, loosely-coupled services

• Independent deployment and scaling

• Improved fault isolation

• Faster time-to-market for new features

Microservices are used in the context of building

a system in which FinTech companies can create,

implement, and evolve each segment separately,

and serverless is the capability to execute code

without managing the servers. The evolution is

due to the FinTech industry’s constant search for

architectures that allow fast innovation and

growth while keeping up with the security and

compliance levels of the financial market [3]. In

this context, the industry advances in

implementing these patterns, sometimes using

fragments from several approaches to

accommodate concrete business requirements

and technological opportunities.

III. Core Principles of Serverless and

Microservices Architectures

FinTech has incorporated serverless and

microservices to accommodate scalability,

agility, and innovation. Despite having common

objectives, these architectures greatly vary in

their implementations and principles.

Serverless Computing Fundamentals

Serverless computing also known as Function-as-

a-Service (FaaS) is an execution model in which

the cloud provider takes care of the server’s

resource allocation and scheduling. Key

principles include:

a) Event-Driven Execution: An event is

anything that happens such as an HTTP request,

changes to the database, or a scheduled event that

will cause a function to execute.

http://www.ijsrem.com/
https://pub.mdpi-res.com/processes/processes-10-01782/article_deploy/html/images/processes-10-01782-ag.png?1662367582

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 05 Issue: 11 | Nov - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM11056 | Page 3

b) Stateless Nature: Functions do not have a

state between invocations; this enhances

scalability and reduces the needed model in

programming.

c) Auto-scaling: The platform means that

resources can scale from zero volume to the

maximum volume [4].

d) Pay-per-Use Pricing: Charges are by the rate

of actual consumption of the time slices allocated

to compute as opposed to ‘licenses’.

e) Managed Infrastructure: For all the server-

related issues, the responsibility lies on the cloud

provider thus enabling developers to work on

code only.

Formula for Serverless Cost Calculation:

Total Cost = (Number of Invocations × Execution

Time × Cost per 100ms) + (Memory Allocated ×

Execution Time × Memory Price)

Microservices Architecture Principles

Microservices architecture can be defined as a

method of constructing a large application as a

collection of small services that are independent

and collaborate using simple methods. Core

principles include:

Figure 2: Monolithic v/s Microservice

Architecture

(Source: https://www.google.com/)

a) Service Independence: It is also characterized

by the fact that every microservice is built,

released, and can be scaled on its own [5].

b) Decentralized Data Management: Every

service has its database; it can be different

instances of the same DBMS or it can be a

completely different DBMS.

c) Design for Failure: Microservices are

intended to be reactive and able to work with the

failure of other services in a suitable manner.

d) Evolutionary Design: The architecture

enables the enhancement of the application and in

particular the service-oriented structure which

can easily be updated and replaced.

e) Automation: CI/CD processes are also

prescriptive for dealing with the complexity of

multiple services.

Key Differences and Similarities

While both architectures aim to improve

scalability and agility, they differ in several key

aspects:

Aspect Serverless Microservices

Deploy

ment

Unit

Function Service

State

Manage

ment

Stateless Can be stateful

or stateless

Infrastr

ucture

Manage

ment

Fully

managed by

the provider

Managed by the

development

team

Scaling Automatic

and instant

Manual or

automated, but

requires

configuration

Develo

pment

Focus

Individual

functions

Service-level

APIs

Long-

running

Process

es

Limited

support

Fully supported

http://www.ijsrem.com/
https://www.google.com/url?sa=i&url=https%3A%2F%2Fiamkanikamodi.medium.com%2Fdesign-principles-for-microservices-architecture-d637587cf394&psig=AOvVaw2sHAFu-Z5sWok4RUixb_A9&ust=1721803486318000&source=images&cd=vfe&opi=89978449&ved=0CBEQjRxqFwoTCKix0_vHvIcDFQAAAAAdAAAAABAE

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 05 Issue: 11 | Nov - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM11056 | Page 4

Pricing

Model

Pay-per-

execution

Pay-per-

allocated-

resource

Table 1: Comparison of Serverless and

Microservices Architectures

Similarities between the two architectures

include:

Modularity: Both approaches break down

applications into smaller, manageable units [6].

Scalability: Both architectures support

independent scaling of components.

Technology Diversity: Both allow different

services/functions to use different technologies.

DevOps Culture: Both benefit from and often

require DevOps practices for effective

implementation.

Architectural Considerations for FinTech

In the FinTech context, several factors influence

the choice between serverless and microservices:

a) Regulatory Compliance: Some of the

compliance-type regulations that are likely to

apply to a FinTech application include GDPR,

PSD2, and SOX. Microservices might be useful

to have more control when it comes to applying

compliance requirements on the enterprise level.

b) Transaction Processing: While the large

number of transactions with low response time

might be more suitable for microservices whereas

application of serverless can be more suitable in

case of sporadic and bursty workloads like fraud

detection.

c) Data Consistency: Data integrity is generally

important in the operation of many financial

applications [7]. Microservices with their

database may be suitable for a highly

transactional kind of scenario.

d) Cost Predictability: Even though serverless

may be cheaper in terms of unpredictable

workloads, microservices may have better cost

efficiency for stable, heavy usage.

Formula for Microservices Cost Estimation:

Total Cost = Σ (Service Instance Count × Instance

Cost) + Data Transfer Costs + Storage Costs

Both serverless and microservices architectures

have numerous advantages in the context of

FinTech applications. Its decision usually

depends on certain particular functions,

workloads, and circumstances that are

characteristic of the organization. Systems of

today’s FinTech firms have many functions

implemented using serverless; however, others

use microservices for business logic and heavy

computations [8]. This way, they are in a position

to receive the better of the two architectures

without the drawbacks associated with each of

them.

IV. Advanced Implementation Techniques in

FinTech

This area focuses on the more complex patterns

and solutions that are designed specifically for

the special cases of financial technology

applications.

Serverless Patterns in FinTech Applications

Serverless computing offers several advanced

implementation techniques particularly suited to

FinTech:

a) Event-driven Processing for Real-time

Transactions

FinTech applications often require real-time

processing of financial transactions. Serverless

functions can be initiated by events such as:

• New transaction initiation

• Account balance changes

• Fraud detection alerts

b) Micro-billing Systems

Serverless architectures excel at handling micro-

billing scenarios common in modern FinTech

applications. Functions can be designed to:

• Calculate usage-based fees

• Apply tiered pricing models

• Generate itemized bills

c) Scheduled Financial Operations

Leveraging serverless scheduled events for:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 05 Issue: 11 | Nov - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM11056 | Page 5

• End-of-day reconciliation

• Periodic interest calculations

• Automated report generation

d) Secure API Gateway Integration

Implementing secure API gateways with

serverless functions for:

• Authentication and authorization

• Rate limiting

• Request/response transformation

Function

Type

Use Case Trigger

Transaction

Processor

Payment

processing

API Gateway

event

Fraud

Detector

Real-time

transaction

screening

Database change

event

Report

Generator

Daily

financial

summaries

Scheduled event

Account

Reconciler

End-of-day

balance

checks

Scheduled event

Notification

Sender

Transaction

alerts

Queue event

Table 2: Serverless Function Types in FinTech

Microservices Patterns in FinTech

Applications

Microservices architecture in FinTech leverages

several advanced patterns [9].

a) Domain-Driven Design (DDD)

Applying DDD principles to define bounded

contexts for microservices:

• Account Management Service

• Payment Processing Service

• Risk Assessment Service

• Compliance Monitoring Service

b) Event Sourcing and CQRS

Figure 3: Command Query Responsibility

Segregation

(Source: https://media.geeksforgeeks.org/)

Implementing Event Sourcing and Command

Query Responsibility Segregation (CQRS) for:

Maintaining an immutable log of all financial

transactions

Separating read and write operations for

optimized performance

c) API Composition and Backend for

Frontend (BFF)

Utilizing API composition to:

Aggregate data from multiple microservices

Implement BFF pattern for different client types

(mobile, web, third-party)

d) Circuit Breaker Pattern

Implementing circuit breakers to:

Prevent cascading failures in interconnected

financial services

Gracefully handle service unavailability

e) Saga Pattern for Distributed Transactions

Managing complex, multi-step financial

transactions across multiple services [10].

Coordinating operations like fund transfers

between accounts

Ensuring consistency in distributed systems

Hybrid Approaches and Their Applicability

Many FinTech companies are adopting hybrid

architectures, combining elements of both

serverless and microservices:

a) Serverless Functions as Microservice

Extensions

Using serverless functions to extend

microservices capabilities:

• Handling spiky workloads

http://www.ijsrem.com/
https://media.geeksforgeeks.org/wp-content/uploads/20240313163857/CQRS-new.webp

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 05 Issue: 11 | Nov - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM11056 | Page 6

• Implementing cross-cutting concerns

(e.g., logging, monitoring)

b) Event-Driven Communication between

Microservices and Serverless Functions

Leveraging message queues and event streaming

platforms to facilitate communication:

• Apache Kafka for high-throughput event

streaming

• Amazon SQS for decoupled,

asynchronous processing

c) Serverless Data Processing Pipelines

Implementing data processing workflows using a

combination of microservices and serverless

functions [11].

ETL processes for financial data

Real-time analytics on transaction streams

Formula for Hybrid Architecture Cost

Estimation:

Total Cost = (Serverless Costs) + (Microservices

Costs) + (Integration Costs)

Where:

Serverless Costs = Σ (Function Invocations ×

Execution Time × Cost per 100ms)

Microservices Costs = Σ (Service Instance Count

× Instance Cost)

Integration Costs = Data Transfer Costs + API

Gateway Costs

Performance Optimization Techniques

Regardless of the chosen architecture, FinTech

applications require careful performance

optimization:

a) Caching Strategies

Implementing multi-level caching:

In-memory caches for frequently accessed

financial data

Distributed caches for shared state across services

b) Asynchronous Processing

Utilizing asynchronous patterns for non-critical

operations:

Background processing of analytical tasks

Deferred execution of reporting functions

c) Database Optimization

Applying advanced database techniques:

Sharding for horizontal scalability

Read replicas for improved query performance

d) Predictive Scaling

Implementing machine learning models for

predictive auto-scaling [12].

Analyzing historical usage patterns

Proactively adjusting resources based on

predicted demand

The implementation of advanced techniques of

FinTech uses the best of the serverless and

microservices architecture. Through the proper

use of these patterns, FinTech companies can

implement systems that are scalable as well as

efficient to meet the demands of today’s financial

sector. The major issue is to identify the

requirements of the particular component in the

application and use the proper architectural

pattern and implementation approach.

V. Overcoming Implementation Challenges

Applying serverless and microservices

architectures in the FinTech area has its

irregularities because of the high requirements for

security, compliance, performance, and data

management. This section discusses these issues

and provides solutions to them [13].

Security and Compliance Considerations

Challenge: FinTech applications handle

sensitive financial data and must adhere to strict

regulatory requirements (e.g., GDPR, PSD2,

SOX).

Strategies:

a) Encryption: Implement end-to-end

encryption for data in transit and at rest.

Use TLS 1.3 for all network communications

Employ hardware security modules (HSMs) for

key management

b) Fine-grained Access Control: Implement the

least privilege principle using:

Role-Based Access Control (RBAC) for

microservices

Resource-based policies for serverless functions

c) Audit Trails: Maintain comprehensive logs

for all financial transactions.

Use distributed tracing tools like Jaeger or Zipkin

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 05 Issue: 11 | Nov - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM11056 | Page 7

Implement event sourcing for immutable

transaction history

d) Compliance Automation: Leverage

Infrastructure as Code (IaC) to ensure

compliance.

Use tools like Terraform or AWS

CloudFormation

Implement automated compliance checks in

CI/CD pipelines

Scalability and Performance Issues

Challenge: An application in FinTech is likely to

experience high variability in load and the

response time needs to be minimal when

performing important operations [14].

Strategies:

a) Auto-scaling: Apply dynamic scaling for

microservices and serverless functions.

Use Horizontal Pod Autoscaler of Kubernetes for

microservices

Rely on the auto-scaling feature provided by the

cloud providers for the serverless.

b) Caching: Caching is another technique that

can be used to minimize the level of latency; this

should be done at multiple levels.

It is recommended to use Redis or Memcached

for distributed caching.

Make use of Application Cache for the data that

is frequently retrieved.

c) Asynchronous Processing: Delegate the less

important tasks to the background processes.

There are various message queues available,

some of them are RabbitMQ or Apache Kafka.

Use event-driven architectures for more

decoupling

d) Performance Monitoring: Ensure that the

systems are constantly fine-tuned to provide

optimal results.

Some of the frequently used APM tools include

New Relic or Datadog.

It is necessary to set KPIs based on FinTech

companies’ field-specific peculiarities

Data Management and Consistency

Challenge: The challenge of keeping data

synchronized across distributed systems and at

the same time being highly available and high

performing [15].

Strategies:

Figure 4: NewSQL

(Source: https://editor.analyticsvidhya.com/)

a) ACID Compliance: It employs appropriate

databases for transactional consistency.

People can use NewSQL databases such as

CockroachDB for distributed ACID transactions.

Introduce compensating transactions for the

models of the eventual consistency.

b) Data Partitioning: Partition level data to

enhance its capability and efficiency.

Lease always uses hash functions in such a way

that it distributes the load evenly.

Use entity groups to keep data that are related in

the same partition

c) Eventual Consistency: Welcome eventual

consistency where applicable.

Use event sourcing and CQRS patterns

Introduce event sourcing and CQRS patterns

Introduce conflict resolution mechanisms (vector

clocks, CRDTs).

d) Data Synchronization: Make sure that the

services and regions maintain data consistency.

Set up CDC to enable real-time synchronization

Multi-region replication is a good practice for

when the application should be available in

several regions.

With the help of strong solutions for these

difficulties and a cautious approach to applying

serverless and microservices, FinTech companies

can get the most efficiency from them [16]. The

idea is to follow the right balance between the

security levels, performance, and repeatability

http://www.ijsrem.com/
https://editor.analyticsvidhya.com/uploads/60059newsql.JPG

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 05 Issue: 11 | Nov - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM11056 | Page 8

without violating the legal and organizational

requirements.

VI. Performance Analysis and Case Studies

This section includes a comparison of the

serverless and microservices approaches in

FinTech use cases along with practical examples

and KPIs.

Comparative Analysis of Serverless vs

Microservices in FinTech Scenarios

To effectively compare these architectures, we'll

focus on key performance indicators (KPIs)

relevant to FinTech applications:

KPI Serverless Microservices

Latenc

y

Low for

infrequent

requests,

potential

cold starts

Consistent, generally

low

Scalab

ility

Automatic,

rapid

Manual or automated,

but requires

configuration

Cost

Efficie

ncy

Pay-per-

use, cost-

effective for

variable

loads

Constant cost,

efficient for steady,

high loads

Develo

pment

Speed

Rapid for

simple

functions

Moderate, depending

on service complexity

Mainte

nance

Overh

ead

Low,

managed by

the cloud

provider

Higher, requires

dedicated DevOps

Table 3: Performance Comparison of

Serverless and Microservices in FinTech

Total Cost of Ownership (TCO):

TCO = IC + OC + MC

Where:

IC = Initial Costs (development, setup)

OC = Operational Costs (running costs, scaling

costs)

MC = Maintenance Costs (updates, monitoring,

troubleshooting)

Real-world Case Studies from FinTech

Industry

Case Study 1: TransferWise (now Wise) -

Microservices Architecture

TransferWise the international money transfer

service, chose microservices as its architectural

pattern to address their challenging and high

throughput application [17].

Key Outcomes:

Cut new features’ time-to-market in half

Better reliability of the systems, now with 99.

99% uptime

Designed to accommodate more than £4 billion a

month in transactions.

Implementation Details:

Applied the concept of domain-driven design to

establish the right level of granularity of services.

Introduced an event-driven system to enable real-

time updates

Used containerization technique (Docker) and

container orchestration (Kubernetes) for

scalability.

Case Study 2: Capital One - Serverless

Architecture

The large American bank, Capital One, uses its

chatbot and fraud prevention services.

Key Outcomes:

Minimized infrastructure cost by 60 %

Reduced new feature time-to-market by 70 %

Enhanced capacity to accommodate a large

number of transactions in millions every day

Implementation Details:

AWS Lambda used for Event-Driven Processing

Used API Gateway for API security, ease of

scaling

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 05 Issue: 11 | Nov - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM11056 | Page 9

Also used DynamoDB for the fast storage and

access of low-latency data.

Metrics and Evaluation Criteria

To objectively evaluate the performance of these

architectures in FinTech, consider the following

metrics:

Transaction Processing Time (TPT):

TPT = Ts - Tr

Where Ts = Settlement time, Tr = Request time

Requests Per Second (RPS):

RPS = Total Requests/period (in seconds)

Error Rate (ER):

ER = (Failed Transactions / Total Transactions) *

100

Cost Per Transaction (CPT):

CPT = Total Operational Cost / Number of

Transactions

Scalability Index (SI):

SI = (Performance at Peak Load / Performance at

Average Load) * 100

Analysis:

The serverless architecture is found to be cheaper

per transaction and more scalable than the

serverful approach and hence is suitable for

organizations that operate in an environment of

unpredictable traffic and/or where costs are

critical. Microservices show less latency and high

throughput which is ideal for applications that run

large volumes of work with high consistency

[18].

Therefore, both of the architectures have been

used in the FinTech applications successfully.

The decision of whether to use serverless or

microservices can be based on the use cases, the

expected workload profiles, and organizational

competencies. Currently, there is a trend where

many FinTech companies incorporate both

architectures to gain the best of each for their

overall system result and cost.

VII. Future Trends and Research Directions

The FinTech sector has more architectural

development opportunities in the future due to

new technologies and the development of a new

market. Key trends and research directions

include:

1. AI-Driven Architectures: Application of the

Machine learning models into the Serverless

functions and Microservices for real-time

decisions and Predictive Analytics.

2. Quantum-Safe Cryptography: Creating

specific resistant algorithms for financial

transactions with the further use of quantum

computers.

3. Edge Computing in FinTech: Edge nodes are

used where low latency is required for example in

trading financial instruments, particularly in

high-frequency trading.

4. Blockchain Integration: Diving deeper into

the integration of conventional cloud solutions

with distributed ledgers for improving the level of

openness and security.

5. Green Computing: A study on the efficient

design of serverless and microservices to align

with energy objectives in the financial industry.

6. Regulatory Technology (RegTech):

Designing and creating specific microservices for

automated compliance checks and information

reporting [19].

7. Cross-Cloud Interoperability: Studying the

possibilities of proper integration of multi-cloud

environments to avoid the lock-in situation and

improve the reliability of the systems used in

FinTech.

VIII. Conclusion

There is a benchmark to decide whether to adopt

serverless or microservices for the FinTech

applications that are under consideration, which

includes; use case, company capability, and

growth. Both have their benefits, and more

businesses are starting to use the combination of

both. Therefore, as the world adapts to changed

dynamics in the FinTech sector, consequent

research and development of these architectural

patterns will define the FinTech technological

breakthrough.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 05 Issue: 11 | Nov - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM11056 | Page 10

IX. Reference List

Journals

[1] Still, K., Lähteenmäki, I. and Seppänen, M.,

2019. Innovation relationships in the emergence

of Fintech ecosystems.

[2] Fan, C.F., Jindal, A. and Gerndt, M., 2020.

Microservices vs Serverless: A Performance

Comparison on a Cloud-native Web Application.

In CLOSER (pp. 204-215).

[3] Lloyd, W., Ramesh, S., Chinthalapati, S., Ly,

L. and Pallickara, S., 2018, April. Serverless

computing: An investigation of factors

influencing microservice performance. In 2018

IEEE international conference on cloud

engineering (IC2E) (pp. 159-169). IEEE.

[4] Somma, G., Ayimba, C., Casari, P., Romano,

S.P. and Mancuso, V., 2020, July. When less is

more: Core-restricted container provisioning for

serverless computing. In IEEE INFOCOM 2020-

IEEE Conference on Computer Communications

Workshops (INFOCOM WKSHPS) (pp. 1153-

1159). IEEE.

[5] Bogner, J., Fritzsch, J., Wagner, S. and

Zimmermann, A., 2019, March. Microservices in

industry: insights into technologies,

characteristics, and software quality. In 2019

IEEE international conference on software

architecture companion (ICSA-C) (pp. 187-195).

IEEE.

[6] Kratzke, N., 2018. A Brief History of Cloud

Application Architectures: From Deployment

Monoliths via Microservices to Serverless

Architectures and Possible Roads Ahead.

[7] García-López, P., Sánchez-Artigas, M.,

Shillaker, S., Pietzuch, P., Breitgand, D., Vernik,

G., Sutra, P., Tarrant, T. and Ferrer, A.J., 2019.

Servermix: Tradeoffs and challenges of

serverless data analytics. arXiv preprint

arXiv:1907.11465.

[8] Van Eyk, E., Grohmann, J., Eismann, S.,

Bauer, A., Versluis, L., Toader, L., Schmitt, N.,

Herbst, N., Abad, C.L. and Iosup, A., 2019. The

SPEC-RG reference architecture for FaaS: From

microservices and containers to serverless

platforms. IEEE Internet Computing, 23(6), pp.7-

18.

[9] Rademacher, F., Sachweh, S. and Zündorf,

A., 2018. Towards a UML profile for domain-

driven design of microservice architectures. In

Software Engineering and Formal Methods:

SEFM 2017 Collocated Workshops: DataMod,

FAACS, MSE, CoSim-CPS, and FOCLASA,

Trento, Italy, September 4-5, 2017, Revised

Selected Papers 15 (pp. 230-245). Springer

International Publishing.

[10] Štefanko, M., Chaloupka, O., Rossi, B., van

Sinderen, M. and Maciaszek, L., 2019, July. The

saga pattern in a reactive microservices

environment. In Proc. 14th Int. Conf. Softw.

Technologies (ICSOFT 2019) (pp. 483-490).

Prague, Czech Republic: SciTePress.

[11] Cordingly, R., Yu, H., Hoang, V., Perez, D.,

Foster, D., Sadeghi, Z., Hatchett, R. and Lloyd,

W.J., 2020, August. Implications of

programming language selection for serverless

data processing pipelines. In 2020 IEEE Intl Conf

on Dependable, Autonomic and Secure

Computing, Intl Conf on Pervasive Intelligence

and Computing, Intl Conf on Cloud and Big Data

Computing, Intl Conf on Cyber Science and

Technology Congress

(DASC/PiCom/CBDCom/CyberSciTech) (pp.

704-711). IEEE.

[12] Chithrananda, S., Grand, G. and Ramsundar,

B., 2020. ChemBERTa: large-scale self-

supervised pretraining for molecular property

prediction. arXiv preprint arXiv:2010.09885.

[13] Muhammad, T., Munir, M.T., Munir, M.Z.

and Zafar, M.W., 2018. Elevating Business

Operations: The Transformative Power of Cloud

Computing. International Journal of Computer

Science and Technology, 2(1), pp.1-21.

[14] Kumar, M., 2019. Serverless architectures

review, future trend and the solutions to open

problems. American Journal of Software

Engineering, 6(1), pp.1-10.

[15] García-López, P., Sánchez-Artigas, M.,

Shillaker, S., Pietzuch, P., Breitgand, D., Vernik,

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 05 Issue: 11 | Nov - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM11056 | Page 11

G., Sutra, P., Tarrant, T. and Ferrer, A.J., 2019.

Servermix: Tradeoffs and challenges of

serverless data analytics. arXiv preprint

arXiv:1907.11465.

[16] Smid, A., Wang, R. and Cerny, T., 2019,

September. Case study on data communication in

microservice architecture. In Proceedings of the

Conference on Research in Adaptive and

Convergent Systems (pp. 261-267).

[17] Papadis, N. and Tassiulas, L., 2020.

Blockchain-based payment channel networks:

Challenges and recent advances. IEEE Access, 8,

pp.227596-227609.

[18] Gan, Y. and Delimitrou, C., 2018. The

architectural implications of cloud microservices.

IEEE Computer Architecture Letters, 17(2),

pp.155-158.

[19] Johansson, E., Sutinen, K., Lassila, J., Lang,

V., Martikainen, M. and Lehner, O.M., 2019.

Regtech-a necessary tool to keep up with

compliance and regulatory changes. ACRN

Journal of Finance and Risk Perspectives, Special

Issue Digital Accounting, 8, pp.71-85.

http://www.ijsrem.com/

