

## Comparison and Analysis of Multi Storey Building with or Without Shear Wall Using Staad Pro

# Prof. R.V.R. K Prasad<sup>1</sup>, Shruti A. Telrandhe<sup>2</sup>, Dhanshree R. Padole<sup>3</sup>, Devang Mansata<sup>4</sup>, Ubaid Ahmad Khan<sup>5</sup>, Trupti Sahare<sup>6</sup>

<u>Shrutiatelrandhe.ce@kdkce.edu.in</u>, <u>dhanshreerpadole.ce@kdkce.edu.in</u>, <u>devanghmansata.ce@kdkce.edu.in</u>, <u>ubaidakhan.ce@kdkce.edu.in</u>, <u>truptisshahare.ce@kdkce.edu.in</u>

Associate Professor K.D.K College of Engineering Nagpur, Maharashtra, India (1) UG Student, Department of Civil Engineering (2,3,4,5,6) KDK College of Engineering Nagpur, Maharashtra, India

**ABSTRACT:** Due to the increasing frequency of earthquakes in the past, there has been a growing demand for earthquake-resistant buildings. One way to fulfil this demand is to incorporate shear walls into the building's structure to resist the lateral forces generated by wind, earthquakes, and other sources. Shear walls are typically made of reinforced concrete, masonry, or steel and are placed at strategic locations throughout the building to provide stability and prevent structural failure during a seismic event. In the present work, G+6 story building has been modelled using software STAAD PRO for Zone factor-0.1 in Nagpur, India. The analysis is by carried out of R.C.C building with different posting of shear wall on floor plan of by using STAAD PRO software. The present work presents a comprehensive analysis of reinforced concrete buildings with various configurations, considering factors such as location and thickness of shear walls, to investigate their efficacy in withstanding lateral forces.

#### INTRODUCTION

Shear walls play a crucial role in ensuring the safety and stability of a building during earthquakes and high winds. These walls are designed to resist lateral forces by providing rigidity and stiffness to the building's structure. Shear walls can be made from various materials, including concrete, masonry, steel, and wood. They are strategically placed in a building to resist the forces that act perpendicular to the wall's plane. The use of shear walls in building design has become increasingly popular due to their effectiveness in reducing damage and collapse during seismic events. The importance of shear walls in building design can be illustrated by analysing the behaviour of a six-story reinforced concrete building. In this case, a comparison study will be conducted to evaluate the structural response of the building with and without shear walls. The study will also assess the impact of different types of lateral loads on the building's behaviour, including wind and earthquake loads.

The building model used in the study has a rectangular floor plan with dimensions of 11.2m x 7.9m. The building model with shear walls will have shear walls located at the corner of the building, spanning the entire height of the building. The shear walls are designed to resist lateral forces and transfer them to the building's foundation. In contrast, the building model without shear walls will have no lateral load-resisting elements. The building's stability will depend solely on the strength of its columns and beams to resist lateral forces. The study will use STAAD Pro software to analyse the behaviour of the building with and without shear walls under different types of lateral loads. STAAD Pro is a powerful structural analysis software that can simulate the response of a building to various types of loads, including seismic loads and wind loads.

The study will assess the structural response of the building with and without shear walls to various types of loads. The response will be evaluated based on several factors, including the maximum displacement, maximum stress, and maximum strain of the building's elements. These factors will be used to determine the role of shear walls in mitigating structural damage and collapse during seismic events. The study's results are expected to show that the building model with shear walls is more resistant to lateral forces than the building model without shear walls. The shear walls provide additional rigidity and stiffness to the building, which increases its ability to resist lateral forces. In contrast, the building model without shear walls is



expected to be more vulnerable to lateral forces and more likely to suffer damage or collapse during seismic events. Furthermore, the study's results will demonstrate the critical importance of shear walls in modern building design. The use of shear walls in building design has become increasingly necessary due to the increased occurrence of seismic events worldwide. In regions where seismic activity is prevalent, the use of shear walls is essential to ensure the safety and stability of buildings.

In conclusion, shear walls are an essential component of a building's lateral load-resisting system. They provide rigidity and stiffness to the structure and ensure that the building can withstand lateral forces, such as those caused by earthquakes and winds. The study discussed in this article will evaluate the structural response of a six-story reinforced concrete building with and without shear walls. The results of the study will demonstrate the critical importance of shear walls in modern building design.

#### LITERATURE REVIEW

#### Radhika Rajeev, R. Senthil Kumar (2022) [1]

This paper provides an overview of different research works done to improve the performance of shear walls and determine their best position in a building for seismic analysis. Shear walls are rigid vertical diaphragms that transfer lateral forces from exterior walls, floors, and roofs to the ground foundation parallel to their planes, keeping buildings from blowing over during seismic activity or high wind. The paper presents several research studies that analysed the location of shear walls in buildings based on factors such as lateral displacement, story drift, concrete quantity, total cost for steel and reinforced concrete [RC], and percentage of Ast in the middle column. The researchers concluded that constructing buildings with shear walls in short dimensions at corners is more economical and effective in resisting lateral forces. The paper also highlights the importance of shear walls in high-rise buildings and areas with high wind and seismic activity. Additionally, the studies analysed the effect of shear walls on displacement, story drift, shear, story stiffness model period, and frequency on different floors, concluding that shear walls outperform framed structures in earthquake-prone areas. The researchers used software such as ETABS and STAAD. Pro V8i for modelling, analysing, and designing various sections of multi-story buildings.

#### Axay Thapa, Sajal Sarkar (2017) [2]

This is a technical article about the seismic design of buildings with a focus on the use of reinforced concrete shear walls as a major earthquake-resisting member. The article discusses the importance of evaluating the seismic response of shear walls appropriately and compares the dynamic responses of frame structures with and without shear walls. Three models of varying height with and without shear walls are analysed using static and response spectrum methods in seismic zone V in STAAD. Pro V8i. The article also includes a literature review of related studies on seismic behaviour, dynamic analysis, and the evaluation of the effectiveness of shear walls. The methodology used in this study includes the equivalent lateral force method and response spectrum method. The article concludes with the importance of properly designing structures to resist seismic forces and the advantages of using reinforced concrete shear walls in high-rise buildings.

#### Sanjeebanee Behera, P. K. Parhi (2017) [3]

The article discusses the importance of shear walls in making a building earthquake resistant. Shear walls are vertical cantilevers that counteract lateral loads caused by wind load and seismic loads. They provide adequate stiffness to the structure and limit lateral drift. The paper presents a comparison of the earthquake behaviour of buildings with and without shear walls using STAAD Pro V8i. The study analyses reinforced concrete buildings by changing the position of shear walls, considering various parameters such as story drift and lateral displacement. The models analysed include a multistorey building frame without shear walls, with shear walls at each periphery, with shear walls at each corner, and with shear walls at the centre. The paper determines the efficient, effective, and ideal location of shear walls in high seismic regions. The study shows that the building with shear walls in the short span at the corner is more economical than the others.

#### Kirankumar Gaddad, Vinayak Vijapur (2018) [4]

This is a technical research paper that discusses the behaviour of structures during earthquakes. The study focuses on comparing the performance of four models of a G+20 storey building, including a normal building, a floating column structure, a shear wall structure, and both shear walls and floating column's structure. The seismic analysis of the building is done using both equivalent static and response spectrum methods, with the help of Indian Standard code IS 1893(Part-1) 2002 and ETABS-2016 software. The paper concludes that the shear wall structure performs better than the other three models, with lesser displacements and more strength. The study also explains the concept of floating columns and shear walls and their



role in resisting earthquake forces. The paper aims to contribute to the understanding of earthquake-resistant structures, which is crucial in a country like India that lies in an earthquake-prone zone.

#### Mr. Shailesh Patil, Prof. K. K. Tolani (2017) [5]

In conclusion, this paper provides a comprehensive literature review on the design and analysis of shear walls, which are commonly used as lateral load resisting systems in high-rise buildings. The effectiveness of shear walls in resisting seismic loads is highlighted, and the importance of their location in the building is emphasized. The paper presents a problem statement related to the decrease in lateral load resisting capacity of buildings due to the presence of soft stories and proposes a solution to increase the stiffness and strength of the building by introducing shear walls. The main objective of the study is to determine the optimum location of shear walls in RC buildings using STAAD Pro software, which will help structural designers in the design of buildings to overcome the ill effects of earthquakes. Overall, this paper contributes to the body of knowledge on the use of shear walls in structural engineering and provides valuable insights for future research in this field.

#### Priyanka Kosare, Deepti Hazari (2019) [6]

This passage discusses the importance of shear walls in buildings, especially in seismically active zones where buildings are subject to lateral loads from earthquakes, wind, and blasting. Shear walls are vertical diaphragms that can transfer lateral forces from exterior walls, floors, and roofs to the ground foundation. They are constructed to counteract the effects of lateral loads and are especially important in high-rise buildings subject to lateral wind and seismic forces. The passage discusses the various types of shear walls and their classification, as well as codal provisions for shear walls. The ideal position of a shear wall is in a symmetric position to avoid torsion and bring in a lot of lateral resistance. The role of shear walls is to reduce lateral displacement/storey drift, reduce the time period of vibration of the building, reduce moments and induced torsion during earthquakes, and increase the stiffness of the building. Shear walls are easy to construct and efficient in terms of minimizing earthquake damage.

#### METHODOLOGY

The methodology section outlines the approach taken to design a multi-storeyed residential building to withstand dead load and live load, earthquake, and wind loads as per Indian Code of Practice. To ensure the building can withstand various loads, the member forces are calculated using load combinations specified in IS 456: 2000. Additionally, seismic provisions are taken into consideration to ensure the building's safety, including the use of a special RC moment resisting frame, response reduction factor, importance factor, and soil type. These provisions are intended to reduce the impact of earthquakes on the building's structural integrity.

Overall, the methodology section highlights the various factors considered in the design of the building, including the location, building type, response reduction factor, importance factor, soil type, and damping ratio, among other factors. The combination of these factors ensures that the building is structurally sound and capable of withstanding various loads and environmental conditions.

Seismic provision for this building:

- Seismic Zone: Nagpur (Z=0.1)
- Types of the frame: Special RC Moment Resisting Frame
- Response reduction factor (R): 5.0
- Importance factor (1): 1.0
- Soil type: medium soil
- Damping ratio: 5%.

#### MODELING



#### Figure 1: Plan of G+6 Model Without Shear Wall

International Journal of Scientific Research in Engineering and Management (IJSREM) Volume: 07 Issue: 05 | May - 2023 Impact Factor: 8.176 ISSN: 2582-3930



WITHOUT SHEAR WALL

### MAX BENDING MOMENT

Figure 2: Rendered View of G+6 Model Without Shear Wall



#### WITH SHEAR WALL



Figure 3: Plan of G+6 Model with Shear Wall International Journal of Scientific Research in Engineering and Management (IJSREM) Volume: 07 Issue: 05 | May - 2023 Impact Factor: 8.176 ISSN: 2582-3930









 USREM
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 05 | May - 2023
 Impact Factor: 8.176
 ISSN: 2582-3930















#### **MAX. SHEAR FORCE**

#### WITHOUT SHEAR WALL











#### WITH SHEAR WALL



 User
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 05 | May - 2023
 Impact Factor: 8.176
 ISSN: 2582-3930











International Journal of Scientific Research in Engineering and Management (IJSREM)Volume: 07 Issue: 05 | May - 2023Impact Factor: 8.176ISSN: 2582-3930

#### MAX. BENDING MOMEMNT ON COLUMN

#### WITHOUT SHEAR WALL

|      |     |                     | COLUMN |
|------|-----|---------------------|--------|
| Beam | L/C | Bending Moment [M1] | NO     |
| 36   | 34  | 31.037              | C1     |
| 37   | 29  | 24.904              | C2     |
| 38   | 29  | 26.514              | С3     |
| 113  | 25  | 55.659              | C4     |
| 80   | 34  | 30.08               | C5     |
| 114  | 20  | 63.506              | C6     |
| 115  | 20  | 56.586              | C7     |
| 70   | 34  | 38.459              | C8     |
| 79   | 20  | 32.468              | С9     |
| 71   | 29  | 38.664              | C10    |
| 72   | 29  | 44.409              | C11    |
| 107  | 20  | 49.389              | C12    |
| 108  | 20  | 53.294              | C13    |
| 109  | 25  | 51.802              | C14    |

#### WIT SHEAR WALL

|      |     |                     | COLUMN |
|------|-----|---------------------|--------|
| Beam | L/C | Bending Moment [M1] | NO     |
|      |     | SHEARWALL           | SH1    |
| 37   | 29  | 13.689              | C2     |
|      |     | SHEARWALL           | SH2    |
| 113  | 25  | 39.079              | C4     |
| 80   | 34  | 18.313              | C5     |
| 114  | 20  | 49.074              | C6     |
| 115  | 20  | 32.23               | C7     |
| 70   | 34  | 28.835              | C8     |
| 79   | 20  | 21.202              | С9     |
| 71   | 29  | 23.132              | C10    |
| 72   | 29  | 27.516              | C11    |
|      |     | SHEARWALL           | SH3    |
| 108  | 20  | 45.296              | C13    |
|      |     | SHEARWALL           | SH4    |

|      |     |                     | COLUMN |
|------|-----|---------------------|--------|
| Beam | L/C | Bending Moment [M2] | NO     |
| 36   | 23  | 43.545              | C1     |
| 77   | 23  | 59.302              | C2     |
| 118  | 23  | 57.506              | С3     |
| 33   | 18  | 46.768              | C4     |
| 80   | 27  | 63.386              | C5     |
| 74   | 32  | 53.686              | C6     |
| 115  | 23  | 71.109              | C7     |
| 30   | 18  | 46.685              | C8     |
| 79   | 27  | 64.158              | С9     |
| 71   | 32  | 53.959              | C10    |
| 112  | 23  | 70.094              | C11    |
| 27   | 32  | 42.912              | C12    |
| 68   | 23  | 59.008              | C13    |
| 109  | 23  | 58.474              | C14    |

|      |     |                     | COLUMN |
|------|-----|---------------------|--------|
| Beam | L/C | Bending Moment [M2] | NO     |
|      |     | SHEARWALL           | SH1    |
| 77   | 23  | 40.932              | C2     |
|      |     | SHEARWALL           | SH2    |
| 33   | 18  | 37.886              | C4     |
| 80   | 27  | 51.247              | C5     |
| 74   | 32  | 44.084              | C6     |
| 115  | 23  | 68.392              | C7     |
| 30   | 18  | 38.02               | C8     |
| 79   | 27  | 52.283              | С9     |
| 71   | 32  | 44.545              | C10    |
| 112  | 23  | 67.292              | C11    |
|      |     | SHEARWALL           | SH3    |
| 68   | 23  | 41.962              | C13    |
|      |     | SHEARWALL           | SH4    |

International Journal of Scientific Research in Engineering and Management (IJSREM)Volume: 07 Issue: 05 | May - 2023Impact Factor: 8.176ISSN: 2582-3930

#### MAX. AXIAL FORCE ON COLUM

#### L/C Axial Force (KN) COLUMN NO Beam 36 19 1146.812 C1 37 7 1511.981 C2 38 18 1408.9 C3 22 C4 33 1336.796 21 40 1224.46 C5 34 23 1617.383 C6 C7 35 23 1569.731 22 30 1314.042 C8 20 39 C9 1173.842 31 18 1484.07 C10 18 1523.957 32 C11 27 22 1118.071 C12 25 28 1440.923 C13 29 23 1126.572 C14

#### WITH SHEAR WALL

| Beam | L/C | Axial Force (KN) | COLUMN NO |
|------|-----|------------------|-----------|
|      |     | 1764.832         | SH1       |
| 37   | 7   | 1014.886         | C2        |
|      |     | 2136.204         | SH2       |
| 33   | 22  | 1144.928         | C4        |
| 40   | 21  | 1108.829         | C5        |
| 34   | 23  | 1543.989         | C6        |
| 35   | 23  | 1341.002         | C7        |
| 30   | 22  | 1130.823         | C8        |
| 39   | 20  | 1060.957         | С9        |
| 31   | 18  | 1414.168         | C10       |
| 32   | 18  | 1304.981         | C11       |
|      |     | 1789.758         | SH3       |
| 28   | 25  | 1035.531         | C13       |
|      |     | 1844.355         | SH4       |

#### CONCLUSION

WITHOUT SHEAR WAL

The present research involved the use of STAAD pro software to design a G+6 building with seismic loading. The software was used to model the building as a 3D space frame, and various loads such as dead load, live load, wind loads, and seismic loads were calculated based on the Indian standards, IS 875(Part 1Part 2 Part 3): 1987 and IS 1893:2002.

The study considered two models - a building frame without a shear wall and a building frame with a corner shear wall. The results showed that without a shear wall, medium to high-rise multistorey buildings experienced high lateral displacement. Additionally, the axial load and bending moments on the columns were found to be maximum.

However, the inclusion of a shear wall was found to be effective, economical, and easy for construction as it is made of reinforced concrete. As such, the study concluded that shear walls provide lateral strength and stiffness to the building, improving its performance under seismic forces. Furthermore, the study identified the corner portion of the building as the ideal location to install the shear wall, making the building more resistant to earthquakes.

#### REFRENCES

[1] Radhika Rajeev, R. Senthil Kumar "ANALYSIS OF RCC BUILDING WITH AND WITHOUT SHEAR WALL - AN OVERVIEW" International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181

[2] Axay Thapa & Sajal Sarkar "COMPARATIVE STUDY OF MULTI-STORIED RCC BUILDING WITH AND WITHOUT SHEAR WALL" International Journal of Civil Engineering (IJCE) ISSN(P): 2278-9987; ISSN(E): 2278-9995 VOL. 6, ISSUE 2, Feb - Mar 2017; 11-20.

[3] Sanjeebanee Behera, P.K Parhi "STUDIES ON LOCATION OF SHEAR WALL IN BUILDINGS FOR STRUCTURAL STABILITY" IJRET: International Journal of Research in Engineering and Technology e ISSN: 2319-1163 | p ISSN: 2321-7308



Volume: 07 Issue: 05 | May - 2023

**Impact Factor: 8.176** 

ISSN: 2582-3930

[4] Kirankumar Gaddad, Vinayak Vijapur "COMPARATIVE STUDY OF MULTI STOREY BUILDING WITH AND WITHOUT FLOATING COLUMNS AND SHEAR WALLS" International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 07 | July-2018

[5] Mr. Shailesh Patil, Prof. K. K. Tolani, "A REVIEW ON LIMIT STATE DESIGN AND ANALYSIS OF MULTISTOREY BUILDING WITH AND WITHOUT SHEAR WALL BY USING STAAD.PRO SOFTWARE" International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 Volume: 04 Issue: 01 | Jan -2017

[6] IS 456 (2000): Plain and Reinforced Concrete - Code of Practice

[7] Is 13920: 1993: - Ductile Detailing of Reinforced Concrete Structures Subjected to Seismic Forces - Code of Practice.