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Abstract—Modern data warehouses are developed on dis- 
tributed file system and object storage that offers scalability, 
data availability and performance. Table formats define how 
the data files are organized and stored on the file system. The 
evolution of data warehousing has given rise to diverse table 
formats with unique architectures and capabilities aiming at 
query performance, scalability and storage optimization. Hive 
table format is the foundational component of Hadoop ecosystem 
which uses centralized metastore and manual partitioning but the 
query performance is hindered in cases requiring incremental 
updates or complex query patterns. Hive table format fixed 
schema structure requires downtime and manual interventions 
for schema changes. Also, query planning for tables that have 
huge number of partitions takes lot of time. Iceberg table format 
addresses these issues with decentralized metadata management, 
snapshot isolation, and hidden partitioning. Iceberg supports 
dynamic schema adjustments with version control and backward 
compatibility. Further, Iceberg supports atomic commit capabil- 
ities which ensure consistency in high concurrent environments. 
This paper discusses how the data files are stored, how read and 
write patterns work, discuss the pain points in Hive table format 
and discuss in detail Iceberg table format, how it manages the 
files on the file system, how it addresses the challenges in Hive 
format. The comparison and overview aim to guide organizations 
in transitioning towards table formats that align with modern 
analytics requirements while ensuring long-term scalability and 
performance. 
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I. INTRODUCTION 

The rapid growth of big data has transformed the land- 

scape of data analytics, making scalable and efficient data 

warehouses essential for processing and analyzing massive 

datasets. Data warehouses serve as the backbone of decision- 

making in industries supporting diverse use cases like real- 

time analytics, machine learning, and business intelligence. 

At the core of these systems are table formats, which define 

how data is stored, organized, and queried. The choice of a 

table format significantly impacts performance, scalability, and 

ease of data management. The Hive table format, introduced 

as part of the Hadoop ecosystem, has been a pioneer in 

providing SQL-like querying capabilities for data stored in 

Hadoop Distributed File System (HDFS) [7]. Hive [1] orga- 

nizes data into partitions and uses a centralized metastore to 

manage metadata, making it a reliable choice for traditional 

data warehousing. Its simplicity and integration with a wide 

range of tools have contributed to its widespread adoption. 

With evolution of data analytics and increase in data size 

for analytics, limitations with Hive table format have became 

more common. Issues such as complex schema evolution, 

inefficient handling of incremental data updates, and lack of 

advanced metadata management impact query performance 

and scalability. These challenges have led to the development 

of newer table formats and Apache Iceberg table format has 

been widely adapted. Apache Iceberg [2] was designed to 

address the shortcomings of older table formats by introducing 

features such as decentralized metadata, hidden partitioning, 

and snapshot isolation. These innovations make Iceberg par- 

ticularly suited for cloud-native environments and modern big 

data applications requiring high performance, flexibility, and 

scalability. Iceberg also introduces advanced capabilities like 

time-travel queries and atomic commits, enabling consistent 

and reliable operations even in high-concurrency scenarios. 

The remainder of this paper is structured as follows: Section 

2 provides background information on Hive table format, 

discussing its origins, architectures, read and write patterns, 

challenges. Section 3 outlines Iceberg table format, architec- 

ture, read and write patterns. Finally, Section 4 concludes the 

paper with recommendations and potential directions for future 

research. 

II. HIVE TABLE FORMAT 

Apache Hive is a foundational table format designed to 

enable SQL-like querying capabilities on top of the Hadoop 

Distributed File System (HDFS) [7]. Its architecture and data 

patterns are optimized for batch processing and large-scale 

data analytics. 

A. Overview and Architecture 

Hive’s table format architecture revolves around organizing 

data into a structured schema and partitioning it for efficient 

querying. Its core components include 

1) Metastore: Hive [7] uses centralized metastore which is 

usually MySQL database to maintain metadata about tables, 

partitions, columns and file locations. Any processing engine 

like Apache Spark [6] and Presto [12] or any new engine is 

supported by unified metadata layer supported by metastore. 

Metastore is the single entry point for query processing and it 

can become a bottleneck as the number of tables and partitions 

grow. 

2) Storage Model: Hive table format relies on HDFS for 

data storage and organizes data into directories and files. Hive 

uses schema on read approach, allowing data to be stored in 

raw format and during query execution schema is interpreted 

based on table schema. 

3) Partitioning and Bucketing: Hive table format parti- 

tioning divides data into directories based on partition keys, 

enabling pruning during query execution to minimize the 

amount of data scanned. Within partitions, data can be divided 
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into buckets based on hash values of a specified column, 

improving join and aggregation performance. 

B. Read Pattern 

In Hive, data is stored in HDFS, and the Hive table 

format organizes this data into partitions and files. Queries 

are written in HiveQL (SQL-like syntax) and executed using 

a query engine, such as Hive’s native execution engine, Apache 

Tez [5], or Spark [6]. The query execution process involves 

multiple stages of optimization and data retrieval. 

1) Parsing and Optimization: When a query is submitted 

to Hive query engine, it parses the input HiveQL query into 

abstract syntax tree (AST). Semantic analysis is performed 

to validate the query against the table schema and metadata. 

Next, query optimizer generates a logical plan and applies 

optimizations like predicate pushdown and partition pruning. 

Additional optimizations like vectorized execution is applied 

based on execution engine. 

2) Partition Pruning: Hive partition pruning identifies the 

partitions relevant to query predicates and retrieves only spe- 

cific partitions avoiding full scan of the table. Partition pruning 

is achieved by evaluating partition metadata stored in Hive 

metastore which reduces I/O overhead significantly. 

3) File Scanning: Hive reads raw data from files and 

applies the table schema to parse and interpret it during query 

execution. This flexibility allows Hive to work with semi- 

structured and evolving data. Columnar file formats like ORC 

and Parquet enable efficient file scanning by reading only 

relevant columns and skipping irrelevant rows using stats saved 

in columnar file formats. 

4) Data Transformation: Hive performs predicate push- 

down which pushes down the filters to storage layer, reducing 

the amount of data to read from disk. During transformations, 

intermediate results are often written to temporary storage 

before the final aggregation. Hive uses broadcast joins or 

bucketing based joins when multiple tables are involved to 

minimize data shuffling. After transformations, the processed 

results are usually written to a file or stored in another table. 

C. Write Pattern 

In Hive, write operations typically include data transforma- 

tions, partitioning, and metadata updates. Hive’s write opera- 

tions are designed for high-throughput rather than low-latency 

writes. 

1) Data Transformation: Hive applies transformations to 

ensure that it matches the schema and structure of the target 

table by converting input data types to match the column def- 

initions, makes sure incoming data aligns with table schema, 

derives partition keys from input data for partitioned tables. 

2) Partition and Bucketing: Partitions improve query per- 

formance by limiting the data scanned but add complexity 

to write operations. Data is divided into directories based on 

partition keys. Data within a partition can be further divided 

into buckets based on a hash function applied to a specified 

column. 

3) Write to HDFS: Hive writes large batches of data to 

minimize the overhead of small writes. Data is first written 

to temporary locations before being committed to the final 

directory. Compressed writes reduce storage space and im- 

prove read performance but may add overhead during write 

operations. Common compression codecs include Snappy [10], 

Gzip [11], and Zlib. 

4) Metadata Updates: After data is written to HDFS, 

the Hive metastore is updated with information about new 

partitions, files, and table schema with newly created partitions 

are registered in metastore and schema is validated. 

D. Challenges 

1) Metadata Management: Hive relies heavily on the Hive 

Metastore to store metadata about tables, partitions, and 

schemas. Inefficient partition listing, high overhead in query- 

ing and updating metadata will become a bottleneck in large 

datasets with more partitions or small files. In addition to this, 

query performance also degrades as the number of partitions 

of files increases. 

2) Small file Problem: Hive often writes data in small files, 

especially when ingesting data in micro-batches or through 

frequent writes. HDFS inefficiencies arise as each small file 

requires its own metadata leading to increased load on the 

name node, slower query performance due to higher file scan 

overhead 

3) Snapshot Isolation and Transaction Support: Hive is 

inherently append-only, making it unsuitable for use cases 

requiring updates or deletes. While ACID transactions were 

introduced, they come with significant performance overhead 

due to compaction processes and limitations in handling 

concurrent modifications. Hive lacks native support for snap- 

shot isolation, leading to potential data inconsistency during 

concurrent read/write operations. 

4) Schema Evolution: Schema changes in Hive, such as 

adding, renaming, or deleting columns, are difficult to handle. 

Compatibility issues arise when downstream systems consume 

data with older schemas. Hive lacks built-in mechanisms to 

manage schema versions effectively. 

5) Query Performance: Hive table format’s directory and 

file-based partitioning results leads to high overhead during 

query planning and execution, full table scans when partitions 

are not properly pruned. 

6) Time Travel: Hive does not natively support time travel, 

making it difficult to query historical data states. Without 

versioning, rollback or audit of data changes is cumbersome 

and requires external tooling. 

7) Real Time: Hive is optimized for batch processing 

and struggles with real-time or near-real-time streaming data 

ingestion. High write latency and lack of efficient small file 

handling hinder its applicability for modern streaming use 

cases. 

III. ICEBERG TABLE FORMAT 

Apache Iceberg is a table format for big data environments 

that supports schema evolution, multi-engine interoperability, 
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and efficient querying. It provides a robust layer for organizing 

datasets stored in distributed file systems or object stores, 

enabling reliable analytics at scale. Key features of Iceberg 

include hidden partitioning, schema evolution, snapshot isola- 

tion, time travel, efficient metadata management 

A. Overview and Architecture 

Iceberg’s architecture is designed to improve query perfor- 

mance and manageability by separating metadata from the 

physical layout of data. Iceberg [2] tables abstract the under- 

lying data storage and expose a SQL-like interface. Tables are 

defined using schemas and partition specifications. Metadata 

layer is the key component of Iceberg’s architecture which 

ensures efficient operations on large scale datasets. Table 

metadata maintains the top-level information about the table 

including schema, partition specification, list of snapshots and 

current snapshot reference saved as a single JSON file named 

metadata.json. Snapshots represent point-in-time views of a 

table which contains references to manifest files and data files 

at a specific state enabling time travel and rollback. Manifest 

files track metadata for data files in the table that provides file 

level details like file path, record count, file size, and partition 

information. Manifest files are small and designed for faster 

access. Manifest lists summarize metadata about manifests 

files and they point to individual manifest files aggregating 

file stats. Iceberg stores data files in distributed file systems 

or object stores and it uses metadata to decouple logical table 

structure from physical file locations. 

B. Read Pattern 

Iceberg’s read pattern is designed to be metadata-driven, 

minimizing the need to scan unnecessary files or partitions. By 

leveraging rich metadata, predicate pushdown, and manifest 

files, Iceberg ensures that queries read only the data required 

for computation. 
1) Metadata: The read process starts by loading metadata 

file which contains schema definition, partition specifications, 

list of snapshots, and current snapshot reference to identify the 

relevant snapshot for the query. Metadata file is very compact 

making it lightweight to load and parse and has minimal 

latency. 
2) Snapshot Resolution: Reader determines the active snap- 

shot based on the metadata file. Snapshots enable quick access 

to consistent table states, avoiding the need to traverse the 

entire file system. 
3) Manifest Files: Reader next loads the manifest files to 

identify candidate data files. Manifest files contain metadata 

about the data files which includes file paths, partition values, 

and file level statistics like minimum value, maximum value, 

number of null values. Manifest files allow the query engine 

to eliminate irrelevant partitions or files early in the process. 
4) Predicate Pushdown: Iceberg performs predicate push- 

down at the metadata level, applying query filters to the man- 

ifest files to prune unnecessary data files. Predicate pushdown 

reduces the number of files that need to be scanned, minimiz- 

ing I/O operations. This approach is particularly effective for 

large datasets with many partitions. 

C. Write Pattern 

Write pattern in Iceberg is designed to meet the needs of 

modern data processing, ensuring Atomicity, Consistency, Scal- 

ability, Flexibility. The process of writing data to an Iceberg 

table involves multiple stages, ensuring data consistency and 

efficiency. 

1) Transaction Init: The writer fetches the current metadata 

snapshot to ensure that changes are applied to the latest table 

state and starts with initialization of a transaction. Snapshot 

isolation ensures that write process is isolated from concurrent 

reads and writes. 

2) Data File Generation: Each writer generates multiple 

small, independent data files to optimize parallelism and writes 

data in columnar formats such as Parquet, Avro and ORC. 

Columnar formats enables efficient compression and encoding 

supporting predicate pushdown for future queries. Data files 

are organized based on the table’s partition spec, ensuring 

efficient pruning during reads and typically files of size of 

128MB to 1GB are created to balance storage efficiency and 

read performance. 

3) Metadata Creation: Each data file creates its metadata 

which includes file path, record count, partition values, and 

column stats with minimum, maximum, null values. It updates 

manifest files that contain metadata for set of data files 

including statistics for filtering and pruning. It also updates 

manifest list pointing to all manifest files in current snapshot. 

4) Atomic Commit: Once all data files and metadata are 

written, the changes are committed atomically. The writer 

checks that the current metadata snapshot has not changed dur- 

ing the write process. A new snapshot is created, referencing 

the updated manifest list and is updated as current snapshot. 

If validation fails, the write operation is retried. 

 
TABLE I 

COMPARISON OF HIVE AND ICEBERG TABLE FORMATS 
 

Feature Hive Table For- 

mat 

Iceberg Table 

Format 

Atomicity Limited Full Atomic 
Commit 

Partition Man- 
agement 

Directory based Metadata based 

Schema Evolu- 
tion 

Limited Fully Supported 

Concurrency 
Support 

Limited Optimistic 
concurrency 
control 

Write Modes 
(Append, 
Overwrite) 

Basic Flexible 

 

 

 

IV. HOW ICEBERG ADDRESSES CHALLENGES 

Apache Iceberg with its modern table format designed 

to handle large scale datasets in distributed environments 
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addresses the challenges face with Hive table format. 

1) Advanced Metadata Management: Iceberg maintains a 

manifest file structure, replacing Hive’s dependency on the 

metastore for partition and file listing. Metadata is stored in 

a highly optimized format and it only takes O(1) partition 

discovery regardless of the number of partitions with fast 

metadata lookups. Iceberg avoids Hive’s overhead of querying 

and updating the metastore frequently, improving scalability. 

2) Small File Problem: Iceberg consolidates metadata for 

all data files into manifest lists and provides automated file 

compaction ensuring efficient handling of micro-batches, re- 

duced load on HDFS Name Node, optimal file sizes for both 

storage and query performance. 

3) Transactions: Iceberg provides snapshot isolation, al- 

lowing multiple concurrent readers and writers without con- 

flicts. Transactions in Iceberg are atomic, ensuring data consis- 

tency during writes. Unlike Hive ACID, Iceberg does not rely 

on compaction, eliminating associated performance overhead. 

4) Efficient Partition Management: Iceberg implements 

hidden partitioning, decoupling partition management from 

the physical directory structure. Faster partition pruning and 

reduced complexity in managing high-cardinality partitions is 

achieved with metadata tracking partitions rather than relying 

on directory names. Iceberg’s partitioning system supports 

advanced techniques like transformations (e.g., bucketing, 

truncation) to optimize query performance. 

5) Schema Evolution: Iceberg supports evolutionary 

schemas which allows additions, renames, and deletions of 

columns without breaking compatibility and versioning to 

maintain historical schema states. Downstream consumers can 

seamlessly handle schema updates without requiring manual 

interventions. 

6) Time Travel: Iceberg provides built-in time travel capa- 

bilities, allowing users to query historical states of the dataset. 

Metadata versions and snapshots enable rollback to specific 

points in time, ensuring robust auditability and compliance. 

7) Real-Time and Streaming: Iceberg integrates with 

streaming platforms like Apache Kafka, Flink, and Spark 

Structured Streaming. Its architecture supports real-time in- 

gestion by efficiently handling small incremental writes and 

compactions. 

V. CONCLUSION 

The rapid growth of big data analytics and the increasing 

reliance on data lakes have brought table formats into sharp 

focus as a critical component of modern data infrastructure. 

This paper presented a detailed comparison of the Apache Hive 

table format and the Apache Iceberg table format, exploring 

their architectures, read and write patterns, and the challenges 

they address. The analysis highlights the advancements intro- 

duced by Iceberg over the traditional Hive format, emphasizing 

its suitability for large-scale, cloud-native, and evolving data 

ecosystems. Iceberg’s support for schema and partition evolu- 

tion, time travel, and incremental reads and writes significantly 

outpaces Hive’s capabilities. These features align with modern 

data use cases, such as machine learning pipelines, real-time 

data processing, and regulatory compliance. As the field of 

data management evolves, the adoption of advanced table 

formats like Iceberg will likely grow. However, the choice 

between Hive and Iceberg may depend on organizational 

constraints, such as existing ecosystem investments and the 

specific requirements of analytics workloads. Future work 

could explore hybrid approaches, where Hive and Iceberg 

coexist within a single architecture, leveraging the strengths 

of both systems. 
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