
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 07 | July - 2022 SJIF Rating: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15425 | Page 1

Comparison of Table formats for Data Warehouse

Arjun Reddy Lingala

arjunreddy.lingala@gmail.com

Abstract—Modern data warehouses are developed on dis-
tributed file system and object storage that offers scalability,
data availability and performance. Table formats define how
the data files are organized and stored on the file system. The
evolution of data warehousing has given rise to diverse table
formats with unique architectures and capabilities aiming at
query performance, scalability and storage optimization. Hive
table format is the foundational component of Hadoop ecosystem
which uses centralized metastore and manual partitioning but the
query performance is hindered in cases requiring incremental
updates or complex query patterns. Hive table format fixed
schema structure requires downtime and manual interventions
for schema changes. Also, query planning for tables that have
huge number of partitions takes lot of time. Iceberg table format
addresses these issues with decentralized metadata management,
snapshot isolation, and hidden partitioning. Iceberg supports
dynamic schema adjustments with version control and backward
compatibility. Further, Iceberg supports atomic commit capabil-
ities which ensure consistency in high concurrent environments.
This paper discusses how the data files are stored, how read and
write patterns work, discuss the pain points in Hive table format
and discuss in detail Iceberg table format, how it manages the
files on the file system, how it addresses the challenges in Hive
format. The comparison and overview aim to guide organizations
in transitioning towards table formats that align with modern
analytics requirements while ensuring long-term scalability and
performance.

Keywords—Hive, Iceberg, Table Formats, Data Warehousing,
Apache Hadoop, Schema Evolution, Performance, Scalability

I. INTRODUCTION

The rapid growth of big data has transformed the land-

scape of data analytics, making scalable and efficient data

warehouses essential for processing and analyzing massive

datasets. Data warehouses serve as the backbone of decision-

making in industries supporting diverse use cases like real-

time analytics, machine learning, and business intelligence.

At the core of these systems are table formats, which define

how data is stored, organized, and queried. The choice of a

table format significantly impacts performance, scalability, and

ease of data management. The Hive table format, introduced

as part of the Hadoop ecosystem, has been a pioneer in

providing SQL-like querying capabilities for data stored in

Hadoop Distributed File System (HDFS) [7]. Hive [1] orga-

nizes data into partitions and uses a centralized metastore to

manage metadata, making it a reliable choice for traditional

data warehousing. Its simplicity and integration with a wide

range of tools have contributed to its widespread adoption.

With evolution of data analytics and increase in data size

for analytics, limitations with Hive table format have became

more common. Issues such as complex schema evolution,

inefficient handling of incremental data updates, and lack of

advanced metadata management impact query performance

and scalability. These challenges have led to the development

of newer table formats and Apache Iceberg table format has

been widely adapted. Apache Iceberg [2] was designed to

address the shortcomings of older table formats by introducing

features such as decentralized metadata, hidden partitioning,

and snapshot isolation. These innovations make Iceberg par-

ticularly suited for cloud-native environments and modern big

data applications requiring high performance, flexibility, and

scalability. Iceberg also introduces advanced capabilities like

time-travel queries and atomic commits, enabling consistent

and reliable operations even in high-concurrency scenarios.

The remainder of this paper is structured as follows: Section

2 provides background information on Hive table format,

discussing its origins, architectures, read and write patterns,

challenges. Section 3 outlines Iceberg table format, architec-

ture, read and write patterns. Finally, Section 4 concludes the

paper with recommendations and potential directions for future

research.

II. HIVE TABLE FORMAT

Apache Hive is a foundational table format designed to

enable SQL-like querying capabilities on top of the Hadoop

Distributed File System (HDFS) [7]. Its architecture and data

patterns are optimized for batch processing and large-scale

data analytics.

A. Overview and Architecture

Hive’s table format architecture revolves around organizing

data into a structured schema and partitioning it for efficient

querying. Its core components include

1) Metastore: Hive [7] uses centralized metastore which is

usually MySQL database to maintain metadata about tables,

partitions, columns and file locations. Any processing engine

like Apache Spark [6] and Presto [12] or any new engine is

supported by unified metadata layer supported by metastore.

Metastore is the single entry point for query processing and it

can become a bottleneck as the number of tables and partitions

grow.

2) Storage Model: Hive table format relies on HDFS for

data storage and organizes data into directories and files. Hive

uses schema on read approach, allowing data to be stored in

raw format and during query execution schema is interpreted

based on table schema.

3) Partitioning and Bucketing: Hive table format parti-

tioning divides data into directories based on partition keys,

enabling pruning during query execution to minimize the

amount of data scanned. Within partitions, data can be divided

http://www.ijsrem.com/
mailto:arjunreddy.lingala@gmail.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 07 | July - 2022 SJIF Rating: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15425 | Page 2

into buckets based on hash values of a specified column,

improving join and aggregation performance.

B. Read Pattern

In Hive, data is stored in HDFS, and the Hive table

format organizes this data into partitions and files. Queries

are written in HiveQL (SQL-like syntax) and executed using

a query engine, such as Hive’s native execution engine, Apache

Tez [5], or Spark [6]. The query execution process involves

multiple stages of optimization and data retrieval.

1) Parsing and Optimization: When a query is submitted

to Hive query engine, it parses the input HiveQL query into

abstract syntax tree (AST). Semantic analysis is performed

to validate the query against the table schema and metadata.

Next, query optimizer generates a logical plan and applies

optimizations like predicate pushdown and partition pruning.

Additional optimizations like vectorized execution is applied

based on execution engine.

2) Partition Pruning: Hive partition pruning identifies the

partitions relevant to query predicates and retrieves only spe-

cific partitions avoiding full scan of the table. Partition pruning

is achieved by evaluating partition metadata stored in Hive

metastore which reduces I/O overhead significantly.

3) File Scanning: Hive reads raw data from files and

applies the table schema to parse and interpret it during query

execution. This flexibility allows Hive to work with semi-

structured and evolving data. Columnar file formats like ORC

and Parquet enable efficient file scanning by reading only

relevant columns and skipping irrelevant rows using stats saved

in columnar file formats.

4) Data Transformation: Hive performs predicate push-

down which pushes down the filters to storage layer, reducing

the amount of data to read from disk. During transformations,

intermediate results are often written to temporary storage

before the final aggregation. Hive uses broadcast joins or

bucketing based joins when multiple tables are involved to

minimize data shuffling. After transformations, the processed

results are usually written to a file or stored in another table.

C. Write Pattern

In Hive, write operations typically include data transforma-

tions, partitioning, and metadata updates. Hive’s write opera-

tions are designed for high-throughput rather than low-latency

writes.

1) Data Transformation: Hive applies transformations to

ensure that it matches the schema and structure of the target

table by converting input data types to match the column def-

initions, makes sure incoming data aligns with table schema,

derives partition keys from input data for partitioned tables.

2) Partition and Bucketing: Partitions improve query per-

formance by limiting the data scanned but add complexity

to write operations. Data is divided into directories based on

partition keys. Data within a partition can be further divided

into buckets based on a hash function applied to a specified

column.

3) Write to HDFS: Hive writes large batches of data to

minimize the overhead of small writes. Data is first written

to temporary locations before being committed to the final

directory. Compressed writes reduce storage space and im-

prove read performance but may add overhead during write

operations. Common compression codecs include Snappy [10],

Gzip [11], and Zlib.

4) Metadata Updates: After data is written to HDFS,

the Hive metastore is updated with information about new

partitions, files, and table schema with newly created partitions

are registered in metastore and schema is validated.

D. Challenges

1) Metadata Management: Hive relies heavily on the Hive

Metastore to store metadata about tables, partitions, and

schemas. Inefficient partition listing, high overhead in query-

ing and updating metadata will become a bottleneck in large

datasets with more partitions or small files. In addition to this,

query performance also degrades as the number of partitions

of files increases.

2) Small file Problem: Hive often writes data in small files,

especially when ingesting data in micro-batches or through

frequent writes. HDFS inefficiencies arise as each small file

requires its own metadata leading to increased load on the

name node, slower query performance due to higher file scan

overhead

3) Snapshot Isolation and Transaction Support: Hive is

inherently append-only, making it unsuitable for use cases

requiring updates or deletes. While ACID transactions were

introduced, they come with significant performance overhead

due to compaction processes and limitations in handling

concurrent modifications. Hive lacks native support for snap-

shot isolation, leading to potential data inconsistency during

concurrent read/write operations.

4) Schema Evolution: Schema changes in Hive, such as

adding, renaming, or deleting columns, are difficult to handle.

Compatibility issues arise when downstream systems consume

data with older schemas. Hive lacks built-in mechanisms to

manage schema versions effectively.

5) Query Performance: Hive table format’s directory and

file-based partitioning results leads to high overhead during

query planning and execution, full table scans when partitions

are not properly pruned.

6) Time Travel: Hive does not natively support time travel,

making it difficult to query historical data states. Without

versioning, rollback or audit of data changes is cumbersome

and requires external tooling.

7) Real Time: Hive is optimized for batch processing

and struggles with real-time or near-real-time streaming data

ingestion. High write latency and lack of efficient small file

handling hinder its applicability for modern streaming use

cases.

III. ICEBERG TABLE FORMAT

Apache Iceberg is a table format for big data environments

that supports schema evolution, multi-engine interoperability,

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 07 | July - 2022 SJIF Rating: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15425 | Page 3

and efficient querying. It provides a robust layer for organizing

datasets stored in distributed file systems or object stores,

enabling reliable analytics at scale. Key features of Iceberg

include hidden partitioning, schema evolution, snapshot isola-

tion, time travel, efficient metadata management

A. Overview and Architecture

Iceberg’s architecture is designed to improve query perfor-

mance and manageability by separating metadata from the

physical layout of data. Iceberg [2] tables abstract the under-

lying data storage and expose a SQL-like interface. Tables are

defined using schemas and partition specifications. Metadata

layer is the key component of Iceberg’s architecture which

ensures efficient operations on large scale datasets. Table

metadata maintains the top-level information about the table

including schema, partition specification, list of snapshots and

current snapshot reference saved as a single JSON file named

metadata.json. Snapshots represent point-in-time views of a

table which contains references to manifest files and data files

at a specific state enabling time travel and rollback. Manifest

files track metadata for data files in the table that provides file

level details like file path, record count, file size, and partition

information. Manifest files are small and designed for faster

access. Manifest lists summarize metadata about manifests

files and they point to individual manifest files aggregating

file stats. Iceberg stores data files in distributed file systems

or object stores and it uses metadata to decouple logical table

structure from physical file locations.

B. Read Pattern

Iceberg’s read pattern is designed to be metadata-driven,

minimizing the need to scan unnecessary files or partitions. By

leveraging rich metadata, predicate pushdown, and manifest

files, Iceberg ensures that queries read only the data required

for computation.
1) Metadata: The read process starts by loading metadata

file which contains schema definition, partition specifications,

list of snapshots, and current snapshot reference to identify the

relevant snapshot for the query. Metadata file is very compact

making it lightweight to load and parse and has minimal

latency.
2) Snapshot Resolution: Reader determines the active snap-

shot based on the metadata file. Snapshots enable quick access

to consistent table states, avoiding the need to traverse the

entire file system.
3) Manifest Files: Reader next loads the manifest files to

identify candidate data files. Manifest files contain metadata

about the data files which includes file paths, partition values,

and file level statistics like minimum value, maximum value,

number of null values. Manifest files allow the query engine

to eliminate irrelevant partitions or files early in the process.
4) Predicate Pushdown: Iceberg performs predicate push-

down at the metadata level, applying query filters to the man-

ifest files to prune unnecessary data files. Predicate pushdown

reduces the number of files that need to be scanned, minimiz-

ing I/O operations. This approach is particularly effective for

large datasets with many partitions.

C. Write Pattern

Write pattern in Iceberg is designed to meet the needs of

modern data processing, ensuring Atomicity, Consistency, Scal-

ability, Flexibility. The process of writing data to an Iceberg

table involves multiple stages, ensuring data consistency and

efficiency.

1) Transaction Init: The writer fetches the current metadata

snapshot to ensure that changes are applied to the latest table

state and starts with initialization of a transaction. Snapshot

isolation ensures that write process is isolated from concurrent

reads and writes.

2) Data File Generation: Each writer generates multiple

small, independent data files to optimize parallelism and writes

data in columnar formats such as Parquet, Avro and ORC.

Columnar formats enables efficient compression and encoding

supporting predicate pushdown for future queries. Data files

are organized based on the table’s partition spec, ensuring

efficient pruning during reads and typically files of size of

128MB to 1GB are created to balance storage efficiency and

read performance.

3) Metadata Creation: Each data file creates its metadata

which includes file path, record count, partition values, and

column stats with minimum, maximum, null values. It updates

manifest files that contain metadata for set of data files

including statistics for filtering and pruning. It also updates

manifest list pointing to all manifest files in current snapshot.

4) Atomic Commit: Once all data files and metadata are

written, the changes are committed atomically. The writer

checks that the current metadata snapshot has not changed dur-

ing the write process. A new snapshot is created, referencing

the updated manifest list and is updated as current snapshot.

If validation fails, the write operation is retried.

TABLE I

COMPARISON OF HIVE AND ICEBERG TABLE FORMATS

Feature Hive Table For-

mat

Iceberg Table

Format

Atomicity Limited Full Atomic
Commit

Partition Man-
agement

Directory based Metadata based

Schema Evolu-
tion

Limited Fully Supported

Concurrency
Support

Limited Optimistic
concurrency
control

Write Modes
(Append,
Overwrite)

Basic Flexible

IV. HOW ICEBERG ADDRESSES CHALLENGES

Apache Iceberg with its modern table format designed

to handle large scale datasets in distributed environments

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 07 | July - 2022 SJIF Rating: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15425 | Page 4

addresses the challenges face with Hive table format.

1) Advanced Metadata Management: Iceberg maintains a

manifest file structure, replacing Hive’s dependency on the

metastore for partition and file listing. Metadata is stored in

a highly optimized format and it only takes O(1) partition

discovery regardless of the number of partitions with fast

metadata lookups. Iceberg avoids Hive’s overhead of querying

and updating the metastore frequently, improving scalability.

2) Small File Problem: Iceberg consolidates metadata for

all data files into manifest lists and provides automated file

compaction ensuring efficient handling of micro-batches, re-

duced load on HDFS Name Node, optimal file sizes for both

storage and query performance.

3) Transactions: Iceberg provides snapshot isolation, al-

lowing multiple concurrent readers and writers without con-

flicts. Transactions in Iceberg are atomic, ensuring data consis-

tency during writes. Unlike Hive ACID, Iceberg does not rely

on compaction, eliminating associated performance overhead.

4) Efficient Partition Management: Iceberg implements

hidden partitioning, decoupling partition management from

the physical directory structure. Faster partition pruning and

reduced complexity in managing high-cardinality partitions is

achieved with metadata tracking partitions rather than relying

on directory names. Iceberg’s partitioning system supports

advanced techniques like transformations (e.g., bucketing,

truncation) to optimize query performance.

5) Schema Evolution: Iceberg supports evolutionary

schemas which allows additions, renames, and deletions of

columns without breaking compatibility and versioning to

maintain historical schema states. Downstream consumers can

seamlessly handle schema updates without requiring manual

interventions.

6) Time Travel: Iceberg provides built-in time travel capa-

bilities, allowing users to query historical states of the dataset.

Metadata versions and snapshots enable rollback to specific

points in time, ensuring robust auditability and compliance.

7) Real-Time and Streaming: Iceberg integrates with

streaming platforms like Apache Kafka, Flink, and Spark

Structured Streaming. Its architecture supports real-time in-

gestion by efficiently handling small incremental writes and

compactions.

V. CONCLUSION

The rapid growth of big data analytics and the increasing

reliance on data lakes have brought table formats into sharp

focus as a critical component of modern data infrastructure.

This paper presented a detailed comparison of the Apache Hive

table format and the Apache Iceberg table format, exploring

their architectures, read and write patterns, and the challenges

they address. The analysis highlights the advancements intro-

duced by Iceberg over the traditional Hive format, emphasizing

its suitability for large-scale, cloud-native, and evolving data

ecosystems. Iceberg’s support for schema and partition evolu-

tion, time travel, and incremental reads and writes significantly

outpaces Hive’s capabilities. These features align with modern

data use cases, such as machine learning pipelines, real-time

data processing, and regulatory compliance. As the field of

data management evolves, the adoption of advanced table

formats like Iceberg will likely grow. However, the choice

between Hive and Iceberg may depend on organizational

constraints, such as existing ecosystem investments and the

specific requirements of analytics workloads. Future work

could explore hybrid approaches, where Hive and Iceberg

coexist within a single architecture, leveraging the strengths

of both systems.

REFERENCES

[1] A. Thusoo, J. Sen Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H.
Liu, N. Zhang, S. Shah, and R. Murthy, ”Hive: A Warehousing Solution
Over a Map-Reduce Framework,” *Proc. VLDB Endowment*, vol. 2,
no. 2, pp. 1626–1629, Aug. 2009. doi: 10.14778/1687553.1687609.

[2] R. Ryan Blue, A. Goyal, and R. Dayson, ”Apache Iceberg: Open Table
Format for Huge Analytics Datasets,” Apache Software Foundation,
2018. [Online]. Available: https://iceberg.apache.org/

[3] J. Cryans, D. Borthakur, T. Dunning, M. Dong, G. Malamud, and T.
Chaitanya, ”Apache Parquet: Efficient Columnar Storage for Hadoop and
Big Data Ecosystems,” Apache Software Foundation, 2013. [Online].
Available: https://parquet.apache.org/

[4] O. Balaban, S. Seth, O. O’Malley, and S. Radia, ”Apache ORC:
Optimized Row Columnar Storage for Big Data,” Apache Software
Foundation, 2013. [Online]. Available: https://orc.apache.org/

[5] S. Seth, V. Kumar, S. Radia, B. Eng, and R. Chaiken, ”Apache Tez:
A Unifying Framework for Modeling and Building Data Processing
Applications,” Apache Software Foundation, 2014. [Online]. Available:
https://tez.apache.org/

[6] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X.
Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia, ”Spark
SQL: Relational Data Processing in Spark,” *Proc. 2015 ACM SIGMOD
Int. Conf. Management of Data (SIGMOD’15)*, Melbourne, VIC,
Australia, pp. 1383–1394, May 2015. doi: 10.1145/2723372.2742797.

[7] S. Ghemawat, H. Gobioff, and S.-T. Leung, ”The Hadoop Distributed
File System,” *Proc. 2003 ACM Symp. Operating Systems Principles
(SOSP ’03)*, Bolton Landing, NY, USA, pp. 107–120, Oct. 2003. doi:
10.1145/945445.945450.

[8] M. S. S. R. Chakka, S. G. Avasarala, A. Goyal, and M. Zadeh,
”Apache Hudi: A Distributed Data Lake Framework for Streamlining
Data Processing in Big Data Ecosystems,” *Proceedings of the 2020
IEEE International Conference on Big Data (Big Data)*, pp. 1724–1734,
Dec. 2020. doi: 10.1109/BigData50022.2020.9377790.

[9] D. W. Embley, P. J. M. Van der Aalst, and M. L. De Moura, ”Data
Lakes: A Survey of Modern Data Storage and Analysis Architectures,”
IEEE Access, vol. 7, pp. 57383–57398, 2019. doi: 10.1109/AC-
CESS.2019.2917422.

[10] D. L. Meier, J. Dean, and S. Ghemawat, ”Snappy: A Fast Compres-
sor for Modern Systems,” *Google Inc.*, 2011. [Online]. Available:
https://snappy.googlecode.com/

[11] M. J. Rochkind, ”The Gzip File Compression Utility,” *IEEE Software*,
vol. 11, no. 3, pp. 79–85, May 1994. doi: 10.1109/52.286397.

[12] D. R. Oppenheimer, M. C. Isard, and A. S. Ousterhout, ”Presto:
Distributed SQL Query Engine for Big Data,” *Proc. of the 2012 ACM
SIGMOD International Conference on Management of Data (SIGMOD
’12)*, pp. 11-16, May 2012. doi: 10.1145/2213836.2213841.

http://www.ijsrem.com/

