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Abstract—The CIFAR-100 dataset was implemented to help 
conduct this effective comparison study across the following mod- 
els—AlexNet [8], GoogLeNet [8], and EfficientNetB0 [7]—un- 
der designs of animal, human, and many other classifications, 
respectively. To prove that the models differ significantly with 
respect to the time of training, accuracy, and loss, we ran our 
tests. Although EfficientNetB0 takes the longest to train, at 47 
minutes per epoch, it obtained the lowest final loss and best 
validation accuracy of 92.3%. Validation accuracy of 66% and 
a training period of 10 minutes were the well-balanced with 
GoogLeNet. AlexNet was the fastest with its 3-minute training 
session, but then the least accurate at 35% together with the 
most loss. Accuracy is the main factor for which EfficientNetB0 
should be used. GoogLeNet should be used where accuracy and 
time to train need to be balanced, and AlexNet should be the 
model to use if training more quickly is imperative, even if 
accuracy suffers as a result. Future research may then look 
into performance improvement and ways to apply these models. 
It may include data augmentation, transfer learning, advanced 
optimization approaches, hybrid approaches, validation on more 
real-world datasets beyond this bench marking dataset, and 
deployment in edge computing. 

Index Terms—AlexNet, Convolutional neural networks, 
CIFAR-100 dataset, Deep neural networks, EffecientNetB0, 
GoogLeNet, Image processing. 

I. INTRODUCTION 

Many blocks of recent popularity of Deep Learning Net- 

works have been triggered by the fact that they act effectively 

to classify information in an image and detect an image’s 

information with regard to certain object classes. On the other 

side, DLNs have been executed through CNNs in several 

computer vision tasks like: object tracking, pose estimation, 

action recognition and Object Counting [6]. Examples range 

from yield predictions of fruits in vineyards to disease di- 

agnosis, such as Parkinson’s, using image data alone as in 

Heinrich et al. The increase in these applications of DLN 

results from enhanced computing powers and the need for 

faster training and inference by extensive RAM and GPU 

usage, respectively[13]. 

Beyond computer vision, CNNs have also been applied in 

speech recognition and natural language processing, where 

they outperformed the preceding algorithms mainly based 

on Hidden Markov models and Gaussian mixture models. 

Requirements for the execution of CNN architecture differ 

a lot depending on the domain of application. Generally, it 

aims at reducing inference times, while improving the times 

for prediction accuracy [3]. 

Currently, there is no standard guideline on how to effec- 

tively design CNN architectures for the solution of domain- 

specific problems, many of which return apparently random 

input-output outcomes, like manufacturing fault detection 

through image classification. To some extent, this challenge 

arises due to inadequate insight into the nature and per- 

formance implications of CNN architectures [4]. Moreover, 

in many cases, DLNs are considered a black-box model 

that would make the result hard to predict, thus making 

the benchmark results and evaluations very necessary. We 

focus on giving a state-of-the-art re-view of the evolution of 

architectures of DLN for image classification in this context, 

which delivers best-practice guidelines [13]. 

Since it is the most prevalent type of network used for 

this task, we particularly focus on CNNs. Our goals are to 

provide several evaluation results and metrics that outline 

the dynamics of characteristics of CNN architectures, their 

prediction performance, and computational requirements [5]. 

We also compare the different views among them over time to 

underline the technological trends in the design of the CNNs. 

We use this knowledge to formulate five guidelines to enhance 

the methodical selection of CNN designs and architectures 

[14]. 

II. LITERATURE 

A. Convolutional Neural Network 

CNN stands for Convolutional Neural Network, a Deep 

Learning model designed particularly to work with data having 

grid topology, such as images [16]. Inherent strengths of 

CNNs in recognizing patterns and structures within input data 

make them very effective when applied for tasks like image 

classification, object detection, and segmentation. 

These layers convolve the input with filters to detect a set 

of local patterns, such as edges, textures,and shapes. In doing 

so, these layers reduce the spatial dimensions of the data 

and down sample it, reducing computational complexity and 

improving robustness to spatial variations. These layers are 

identical to traditional neural network layers, wherein every 

neuron is connected to all neurons in the previous layer [2]. 

They are normally used at the end of a network to make final 

predictions. Other activation functions like ReLU introduce 

non-linearity into the model to have it pick more complex 

patterns. 
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Fig. 1. Overview of CNN Architecture. 
 

 

Images are high-dimensional data. Even a simple 256 x 256 

RGB image has 196,608 values or pixels. Traditional neural 

networks struggle with handling input sizes this large. CNNs 

mitigate this problem by using convolutions which are local 

to receptive fields, greatly reducing the number of parameters 

and computational load [12]. CNNs can automatically learn 

to detect hierarchical features in images. Early layers capture 

simple patterns, including edges and textures, while deeper 

layers enable the extraction of more complex structures, in- 

cluding shapes and objects [17]. The hierarchical learning that 

occurs in this process plays a key role in image recognition, 

where it helps to understand different levels of abstractions. 

By the very nature of convolution and pooling operations, 

a priori translational invariance relative to the input image 

is guaranteed in CNNs [16]. This means they are able to 

detect an object regardless of where it may be in the image, 

which makes them useful during object detection and image 

classification. Images have a spatial structure, where nearby 

pixels will tend to be more related than distant ones. CNNs 

exploit this property through local connections and shared 

weights, allowing them to effectively capture and process 

spatial hierarchies within images [16]. 

Image processing requires the extraction of meaningful 

features relating to edges, textures, and shapes. Convolutional 

layers of CNNs extract these features automatically during 

training; there is no need to engineer features manually [12]. 

Because CNNs are committed to weight sharing and local 

connectivity, they have fewer parameters compared to fully 

connected networks, and their computational power is reduced. 

This makes them more efficient for large images, reducing the 

possibility of over fitting. 

Up to now, CNNs have been greatly validated and have 

given state-of-the-art results in nearly all image processing- 

related tasks. From winning the ImageNet competition with 

AlexNet in 2012 to modern computer vision applications in 

facial recognition, autonomous driving, and medical image 

analysis, it has already been established beyond doubt that 

CNNs work [19]. CNNs are specialized neural networks for 

extracting the high dimensionality, hierarchical feature learn- 

ing, and spatial hierarchies inherent in image data. The ability 

of automatic and efficient extraction of meaningful features 

means that they have really extensive applications in image 

processing. 

B. Deep Neural Network 

deep neural network is a type of Artificial Neural Network 

with multiple layers between input and output layers. Multiple 

layers in DNNs empower them to model complex patterns in 

data incorporating the learning of hierarchical representations 

[17]. 

Every layer in a DNN is composed of neurons, which are the 

basic processing units. The neurons in one layer are connected 

to the neurons in the next through weighted connections; these 

weights start the training and will aim to produce predictions 

with minimal error. 

Activation functions induce non-linearity into the network 

and thus allow it to learn more complex patterns. Common 

activation functions are the ReLU—rectified linear unit,the sig- 

moid and tanh [2]. The traditional training of DNNs involves 

backpropagation—a means of propagating an error backwards 

through the network as a means of updating the weights. It 

is normally combined with optimization algorithms such as 

stochastic gradient descent [12] . DNNs are very effective in 

applications like speech recognition, natural language process- 

ing, and image recognition due to their capability of learning 

intricate patterns and representations in data. 

 

 

 
Fig. 2. Overview of DNN Architecture. 

 

Training of DNNs, however, is compute-intensive, calls for 

large amounts of labeled data, and is model-na¨ıve. Techniques 

such as transfer learning have shown great potential in re- 

ducing these challenges, whereby a model trained on some 

other task is fine-tuned for a new task [19]. Notably, also 

successfully applied in various fields including health care, for 

example, to support diagnosis from data, autonomous systems, 

where they enable tasks such as self-driving cars, are other 

endpoints of application. To avoid the over fitting of DNNs 

and improve their generalization ability on new data, most of 
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the cases will have them with regularization techniques. This 

includes dropout and batch normalization [12]. 

C. CIFAR-100 dataset 

Among these fully open datasets, CIFAR-100 represents a 

widely used benchmark in ML and computer vision. It was 

created by the Canadian Institute for Advanced Research; 

it contains 60,000 color images of dimensionality 32x32x3, 

each assigned one of 100 different classes [20]. Each image 

in the CIFAR-100 dataset consists of 32x32 pixels. This 

dataset contains training images and test images. The classes 

are further divided into 20 superclasses, each containing five 

subclasses. The CIFAR-100 dataset is designed to be more 

challenging than the CIFAR-10 dataset, which has only 10 

classes [12]. It is, hence, an excellent resource that can be 

used to benchmark the performance of sophisticated machine 

learning algorithms. 

 

Fig. 3. Overview of CIFAR-100 dataset. 

 

Each image in the CIFAR-100 dataset is labeled with a 

”fine” label, indicating the specific class, and a ”coarse” label 

indicating the super class; this hierarchical labeling structure 

allows for experiments to be conducted of fine-grained and 

coarse-grained classification [21]. This is a very well-balanced 

test bed for bench marking the skill level of machine learning 

models in dealing with sophisticated visual tasks: recognizing 

objects from a very diverse set of categories given small image 

sizes and limited resolution [20]. It has served as a bench- 

mark in many neural network architectures, including CNN, 

ResNets, and DenseNets. Given the high complexity and diver- 

sity, CIFAR-100 is used in many works today for developing 

and evaluating new machine-learning algorithms, notably deep 

learning. The publicly available benchmark dataset gained 

wide acceptance within the research community, and massive 

improvements were realized in fields like image classification 

and recognition [21]. 

III. METHODOLOGY USED 

A. AlexNet 

There is a very serious over fitting problem in conceptual 

design with regard to a large number of parameters of a 

convolutional neural network for image categorization [2]. 

trained their Alex-Net model with a number of different 

augmentations applied to the training inputs, therefore reduc- 

ing this impact and ensuring that the model learned more 

generic characteristics rather than noise. Also, dropout was 

introduced as a regularization technique where some units are 

turned off, thus saving only the most important ones. This 

was incorporated in the fully linked layers to bring in some 

robustness. Alex-Net has a total of eight layers, three of them 

fully connected and five convolutional with corresponding 

pooling layers. 

 

 
Fig. 4. AlexNet Architecture [2]. 

 

The inception module is made of many convolutional layers 

with filters that are different. The 1×1 convolutional layers 

are applied before the more expensive 3×3 and 5×5 filters 

are ap-plied. At 64 feature maps, the input image is reduced 

to 112×112 before the first Convolutional layer with a 7×7 

filter and stride 2 is applied [1]. The first inception module 

is shown following layer C3. Despite these inception modules 

having different resolutions in their feature maps, they still use 

the same size of filters. Compared to the traditional three fully 

connected layers, Google-Net has nine inception modules. The 

model does not apply a single fully connected layer before the 

softmax activation but applies an average pooling layer. Apart 

from this difference, multiple crop sizes are used such as 1, 10 

and 144 in case of Google-Net for multi-scale voting instead 

of using a static size. 

B. GoogLeNet 

For enhancing inference and model training efficiency, 

GoogLeNet was proposed as a way of optimizing the use of 

computing resources inside CNN architecture [1] computing 

power required for model inference can be reduced while 

ensuring a deeper architecture with greater feature maps is 

maintained. This enhancement is considered very important 

considering how common embedded and mobile computers 

are becoming. These savings were enabled by limiting the 

maximum inference time while designing it. This one is 
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attributed to an architectural building piece, which acts as a 

network inside a network, and it is the inception module. This 

module uses 1×1 Convolutional layers to reduce feature map 

size [8]. 

 

 
Fig. 5. GoogLeNet Architecture [1]. 

 

The inception module is made of many convolutional layers 

with filters that are different. The 1×1 convolutional layers 

are applied before the more expensive 3×3 and 5×5 filters 

are applied. At 64 feature maps, the input image is reduced 

to 112×112 before the first Convolutional layer with a 7×7 

filter and stride 2 is applied [1]. The first inception module 

is shown following layer C3. Despite these inception modules 

having different resolutions in their feature maps, they still use 

the same size of filters. Compared to the traditional three fully 

connected layers, Google-Net has nine inception modules. The 

model does not apply a single fully connected layer before the 

softmax activation but applies an average pooling layer Apart 

from this difference, multiple crop sizes are used such as 1, 10 

and 144 in case of Google-Net for multi-scale voting instead 

of using a static size. 

C. EffecientNet 

EfficientNet-B0 is the most revolutionary CNN architec- 

ture, acclaimed for its great speed and parameter efficiency. 

This is because it has a more organized way of scaling up 

the CNN models through a compound scaling method that 

grows network parameters like depth, breadth, and resolution 

equally [7]. In carrying out classification tasks, EfficientNet- 

B0 is mainly used as a network for spatial feature extraction. 

The EfficientNet family happens to comprise seven models: 

EfficientNet-B0 through EfficientNet-B7 models. This can be 

proved to be the case, as EfficientNet-B0 has more accuracy 

than ResNet-50 for the same input size with fewer parameters 

and FLOPs. It can be divided into seven blocks based on the 

convolutional filter size and stride, and also on the number 

of channels for each block. The basic building block of 

EfficientNet-B0 is the mobile inverted bottleneck (MBConv), 

inspired by the MobileNet idea [11]. 

MBConv includes a depthwise convolutional layer, followed 

by a squeeze-and-excitation block, a dropout layer, and two 

1x1 convolutional layers. The first convolutional layer will 

expand the channels, and then the number of parameters will 

be decreased by the depthwise convolution [12]. It is in this 

sense that the SE block refines the model by re-accentuating 

the relationship between stations through the application of 

 

 

 

Fig. 6. EffecientNet-B0 Architecture [8]. 

 

 

distinctive weights for each channel, rather than all having 

equal importance. Once done, these channels are compressed 

by the second convolution layer [10]. 

IV. TABLE I 

Table (1): Comparison of EffecientNetB0, GoogLeNet, 

and  AlexNet  with  validation  accuracy  and  loss 
Table 1 

Model Validation Accu- 

racy 

Validation Loss 

EffecientNetB0 92% 40% 

GoogLeNet 66% 10% 

AlexNet 35% 21% 

RESULTS AND DISCUSSIONS 

In this study, we compared the performance of AlexNet, 

GoogLeNet, and EfficientNet using the CIFAR-100 dataset. 

The CIFAR-100 dataset was chosen due to its extensive 

range of classifications, including various animals and human 

objects, providing a robust benchmark for evaluating the object 

detection capabilities of these models. Each model was trained 

with a learning rate of 0.01 to ensure a fair comparison. 

The training was carried out over several epochs, and the 

performance was assessed based on validation accuracy and 

loss. 
 

 
Fig. 7. AlexNet Accuracy vs. epoch’s graph. 

 

EfficientNet achieved the highest validation accuracy at 

92%, with a validation loss of 40%. GoogLeNet followed 

with a validation accuracy of 66%, which is 31% lower than 

EfficientNet but 13% higher than AlexNet, and a validation 

loss of 10%. AlexNet recorded the lowest validation accuracy 
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at 35% and a validation loss of 29%. These results indicate 

that EfficientNet is significantly more accurate in detecting 

objects in the CIFAR-100 dataset compared to GoogLeNet 

and AlexNet. The higher accuracy of EfficientNet suggests 

that it is better suited for applications requiring high precision 

in object detection. 

 

 
Fig. 8. AlexNet Loss vs. epoch’s graph. 

 

The loss values for the models decreased progressively over 

the training epochs. AlexNet started with a high loss of 43%, 

which decreased exponentially to 21% by the end of the 

training. GoogLeNet began with a lower initial loss, which was 

com-parable to the lowest loss recorded by AlexNet, indicating 

better initial performance and overall lower loss. EfficientNet 

started with a loss of 35% and decreased rapidly to 4%, 

demonstrating efficient learning and the lowest final loss 

among the models. The rapid decrease in loss for EfficientNet 

suggests that it learns more effectively than the other models, 

leading to better overall performance. 

 

 
Fig. 9. GoogLeNet Accuracy vs. epoch’s graph. 

 

Training time per epoch varied significantly among the 

models. AlexNet took approximately 3 minutes per epoch, 

making it the fastest to train. GoogleNet took about 10 minutes 

per epoch, while EfficientNet took nearly 47 minutes per 

epoch. Although AlexNet had the shortest training time, it 

also exhibited the highest learning loss and lowest accuracy. 

GoogLeNet offered a balance between training time and 

accuracy, making it a viable option when both factors are 

critical. EfficientNet, despite its longer training time, provided 

the highest accuracy and lowest final loss, making it the best 

performer in terms of accuracy but the most time-consuming 

to train. These insights highlight the trade-offs between model 

complexity, training time, and accuracy. 
 

Fig. 10. GoogLeNet Loss vs. epoch’s graph. 

 

 

Fig. 11. EffecientNetB0 Accuracy and Loss vs. epoch’s graph. 

In comparing AlexNet, GoogLeNet, and EfficientNet on 

the CIFAR-100 dataset, EfficientNet achieved the highest 

accuracy and lowest loss but required the longest training 

time. GoogLeNet balanced accuracy and training time well, 

while AlexNet trained fastest but performed least favor- 

ably.EfficientNet is recommended for high-accuracy needs, 

GoogLeNet for balanced performance, and AlexNet when 

quick training is essential despite lower accuracy. 

V. CONCLUSION 

In summary, the CIFAR-100 dataset comparison for 

AlexNet, GoogLeNet, and EfficientNetB0 underlines the com- 
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promises between model complexity, time to train, and accu- 

racy. While requiring the longest time per epoch to train at 

47 minutes, EfficientNet showed both the best accuracy, at 

92.3%, and the lowest final loss. GoogLeNet had an accuracy 

of 66% and a training period of 10 minutes per epoch, which 

forms a reasonable balance and so, would be suitable for 

applications which are equally critical on both counts. Even 

though AlexNet trained the quickest, three minutes per epoch, 

it turned out to perform the worst in both accuracy and loss, 

about 35%. These results set a balance of training limitations 

and accuracy of the models used, considering the application 

demands of each. 

VI. FUTURE WORK 

For high accuracy applications, EfficientNetB0 should be 

used; in situations that require a balance between—, Other 

methods can be followed to enhance the performance of 

these models further and make them more useful for ob- 

ject detecting tasks in the future. Implementing Rotation, 

Flipping, random Cropping, and Color jittering may enable 

model generalization. The fine-tuning of the already pretrained 

weights on the CIFAR-100 dataset available in GoogLeNet, 

EfficientNetB0, and AlexNet can achieve all accuracy and time 

efficiency goals. Other miscellaneous areas include sophisti- 

cated optimization techniques to train efficiently and to gain 

final accuracy based on features like Cosine Annealing, with 

adjustable learning rates like Ad-am/RMSprop, and learning 

rate Warm up. Moreover, it can also be improved upon by 

investigating hybrid models and group learning techniques that 

give both models better accuracy and resilience. It will be good 

to test on more challenged datasets, like COCO and Pascal 

VOC, and fine-tune these models on higher resolution images. 
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