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Abstract

Chronic wounds pose a significant global health challenge, imposing substantial burdens on healthcare systems and diminishing
patient quality of life. The traditional clinical assessment of wound healing, which relies on subjective visual inspection, is prone to
inter-clinician variability and inconsistency, often leading to inappropriate treatment strategies and prolonged healing times. This
study addresses the critical need for an objective, standardized, and scalable wound analysis solution by proposing a novel deep
learning framework. The framework integrates a hybrid Convolutional Neural Network (CNN)-Vision Transformer (ViT)
architecture to leverage the complementary strengths of both paradigms: CNNs for efficient local feature extraction and
Transformers for capturing global, long- range dependencies. The core innovation of this framework lies in its use of cross-layer
attention mechanisms, including a cross-attention module for encoder-decoder feature fusion and attentional feature fusion (AFF)
modules within skip connections. These mechanisms dynamically and adaptively combine features from different layers,
overcoming the limitations of fixed fusion methods and ensuring the model can effectively process multi-scale information. The
framework is designed for multi-task learning, simultaneously performing wound healing stage classification and pixel-level tissue
segmentation. The report details the architectural design, a robust experimental methodology to mitigate data scarcity, and a
comprehensive evaluation strategy using metrics beyond simple accuracy, such as F1-score and AUC. The proposed model represents
a significant advancement toward automating wound care, offering the potential for more precise, reproducible, and clinically
trustworthy assessments.

1. Introduction
1.1 The Clinical Imperative: The Four Phases of Wound Healing

Chronic wounds, defined as wounds that fail to proceed through the normal healing process in a timely and orderly manner,
represent a major drain on healthcare resources and are associated with a substantial reduction in the quality of life for those affected.
These wounds often arise from underlying conditions such as diabetes, vascular disease, and pressure injuries, leading to prolonged
inflammatory states, increased risk of infection, and high rates of morbidity and mortality.

The assessment and monitoring of wound healing are crucial for effective management. However, traditional methods, which rely on
the visual examination of wound characteristics by clinicians, are subjective, time-intensive, and inconsistent. This subjectivity leads
to a high degree of variability between clinicians, with studies reporting poor to moderate interrater agreement in identifying wound
tissue types. Such inaccurate and inconsistent assessments can have profound consequences, including inappropriate dressing
selection, a failure to identify wounds at risk of not healing, and delayed referrals to specialists. The end result is a hindered wound
care process, directly impacting a patient's healing progression and overall well-being. The reliance on manual, subjective methods
also severely limits the scalability of wound care, particularly in high-demand settings, which underscores the urgent need for
automated, standardized assessment tools.

Wound healing is a complex biological process that progresses through four distinct yet overlapping phases:

l. Hemostasis: The immediate response to injury, this phase begins with blood vessel constriction (vasoconstriction) to
inhibit blood flow and prevent loss. Platelets and fibrin then form a blood clot, sealing the broken vessels. This initial phase can last
for up to two days.

2. Inflammation: Following hemostasis, blood vessels dilate (vasodilation) to allow beneficial enzymes and leukocytes
(white blood cells) to enter the wound site, fighting infection and inducing inflammation. This phase is characterized by redness,
swelling, pain, and heat, and can last six days or longer.

3. Proliferation: This is the phase of tissue regeneration, marked by angiogenesis (the formation of new blood vessels) and the
genesis of granulation tissue. This new, extracellular matrix of connective tissue and blood vessels is typically pink or red,
signaling that the wound is healing properly. The process is dependent on fibroblast synthesis and collagen production
and can last for more than two weeks.

4. Remodelling/Maturation: The final, long-term phase where the new tissue is organized and strengthened to form a mature
scar.

Accurately classifying a wound within these stages is vital for determining the appropriate treatment and predicting healing times.
Automating this process would not only reduce the burden on healthcare professionals but also enable data-driven pressure injury
staging and provide objective measurements to assist clinicians in more accurate documentation.

1.2 The Promise and Limitations of Automated Deep Learning Solutions

In recent years, deep learning (DL) techniques have emerged as a promising solution for automating medical wound analysis. Al-
driven technologies can enhance wound assessment by automating tasks such as tissue segmentation, classification, and healing
prediction, providing precise and reproducible analyses. Clinical studies have shown that deep learning models can perform wound
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assessments with accuracy and efficiency comparable to, and often exceeding, that of human specialists, particularly in terms of
consistency.

Despite this potential, the field faces several significant challenges. A primary limitation is the lack of large, diverse, and well-
annotated public datasets for wound analysis. Due to privacy concerns and legal constraints, obtaining sufficient labeled wound
images is often infeasible, which leads to a reliance on smaller datasets and a risk of overfitting. Compounding this issue is the
inherent complexity and variety of wound images, which often feature irregular shapes, poorly defined boundaries, and
heterogeneous colors. This variability makes it challenging for models to learn robust features. Furthermore, many medical image
datasets exhibit a significant class imbalance, where certain wound types or tissue classes are vastly underrepresented, which can
make a model's performance appear artificially high if evaluated solely on accuracy.

1.3 Motivation and Contribution of This Study

Existing automated wound assessment systems are often limited in scope. Many focus on a single task, such as segmentation or
classification, rather than providing a unified, comprehensive analysis. For instance, some handheld devices can measure wound area
but cannot classify tissue types, limiting their clinical utility. Similarly, many models focus on a restricted number of tissue types or
lack access to the datasets they were trained on, hindering further research and development.

This study is motivated by the need for a holistic framework that can address these limitations. This paper proposes a novel deep
learning framework that performs both wound healing stage classification and pixel-level tissue segmentation simultaneously. The
framework's core contribution is its hybrid CNN-Transformer architecture, which leverages the complementary strengths of both
model families. The central innovation is the integration of cross-layer attention mechanisms to dynamically and adaptively fuse
features from different layers of the network. This approach is designed to overcome the limitations of fixed feature fusion methods,
which can lead to information loss and decreased accuracy, particularly in a task like wound analysis where both fine-grained, local
details and abstract, global context are crucial for a correct diagnosis. This framework promises to deliver a more accurate, robust,
and clinically explainable solution for automated wound care management.

2. Literature Review

The growing integration of deep learning (DL) in medical imaging has revolutionized wound assessment, particularly in
classification, segmentation, and healing prediction. Collectively, the referenced studies present an evolving body of research
advancing clinical wound management through automation and precision.

Early foundational work such as Veredas et al. (2009) established the groundwork for wound tissue classification using neural
networks and Bayesian classifiers, setting the stage for modern CNN-based approaches. Shenoy et al. (2018) advanced this with
Deepwound, applying convolutional neural networks (CNNs) for postoperative wound monitoring and surgical site surveillance,
demonstrating the potential for real-time clinical use.

Subsequent studies diversified DL applications across wound types. Huang et al. (2023) and Kim et al. (2023) explored CNN tools
for classifying pressure injuries and general wound stages, validating their clinical reliability. Carrion et al. (2022) introduced
HealNet, a self-supervised learning model for acute wound stage classification, while Patel et al. (2024) and Anisuzzaman et al.
(2022) integrated multimodal data such as wound location and contextual imagery to enhance diagnostic accuracy.

Comprehensive reviews, like Zhang et al. (2022), synthesized methods for wound image analysis—highlighting advances in
classification, detection, and segmentation using architectures like Mask R-CNN, U-Net, and YOLO.

Supporting this, Scebba et al. (2022) and Ramachandram et al. (2022) developed mobile-friendly segmentation models,
emphasizing accessibility for telemedicine. Lei et al. (2025) and Liu et al. (2024) further validated CNNs for pressure ulcer staging,
confirming DL’s diagnostic accuracy against clinical benchmarks.

Specialized studies extended these capabilities. Chang et al. (2021) and Zlobina et al. (2023) applied DL to burn and transcriptomic
wound data, respectively, bridging imaging and molecular biology. Reyes-Luévano et al. (2023) introduced DFU_VIRNet,
leveraging visible-infrared imaging for diabetic foot ulcer detection—an emerging area of hybrid modality research. Similarly,
Mostafavi et al. (2025) used ML for amputation risk assessment, integrating wound classification with clinical outcomes.

Recent innovations emphasize interpretability and mobile deployment. He et al. (2025, 2024) and Jones & Quinn (2021)
employed interpretable DL models analyzing collagen fiber structures and histology to predict wound healing. Aldoulah et al. (2023)
and Ay et al. (2022) proposed multi-class and transfer learning models enhancing chronic wound classification accuracy.
Aldughayfiq et al. (2023) used YOLO architectures for pressure ulcer detection, improving speed and localization precision.

Finally, clinical validation and real-world deployment were addressed by Pereira et al. (2023) and Huang et al. (2023) through Al-
based monitoring systems for post-surgical and chronic wounds, integrating early warning systems with image analytics.

Together, these studies underscore how deep learning—especially CNNs, Mask R-CNN, YOLO, and transformer- based
networks—has transformed wound care by enabling accurate, interpretable, and real-time wound assessment. They collectively
contribute to a new paradigm of Al-assisted, data-driven wound management, paving the way for personalized treatment
planning, faster recovery prediction, and reduced healthcare burden.

The following table 1 provides a comparative overview of these deep learning architectures. Table 1: Comparative overview of these
deep learning architectures
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h{elevant

IArchitecture Type [Primary Strengths Primary Weaknesses Applications/References

Limited receptive field,

poor at capturing global  [U-Net, ResNet, EfficientNet-
context, fixed feature  [b7, FPN+VGGI16

aggregation.

Convolutional | Efficient local feature extraction,
Neural Networks | hierarchical feature learning,
(CNNs) robust to spatial variations.

Excellent at capturing long-

range dependencies, high Data inefficient, high

Vision \ViT, DeiT, Swin Transformer,

Transi.'ormers capacity, effective with large compufraﬂongl cost, weaker CSWin Transformer
(ViTs) inductive bias.
datasets.
Combines the strengths of both, Increased architectural
Hybrid CNN- capturing both local and global |complexity, requires careful [HyFormer, dual-branch
Transformer features, can be more data design for effective feature [architectures
efficient than pure ViTs. fusion.

3. The Theoretical Underpinnings of Attention Mechanisms
3.1 The Core Concepts of Attention

Attention mechanisms are a powerful concept in deep learning, inspired by the human cognitive system's ability to focus on salient
information. They can be regarded as a dynamic selection process that improves a model's performance by weighting important
parts of the data or by building data correlations. This selective focus allows a model to give more importance to relevant input
features, which is particularly beneficial in complex tasks like medical image analysis where a diagnosis may hinge on subtle,
localized features within a broader context.

The attention mechanism was popularized by the Transformer architecture, which revolutionized natural language processing by
enabling parallel processing and capturing long-range dependencies in a way that traditional sequential models like Recurrent Neural
Networks (RNNs) could not. Since then, attention has been successfully applied to a wide variety of domains, including computer
vision, where it is used to model global features and analyze feature importance within an image. The embeddedness of attention
modules makes them easy to integrate into existing deep learning methods, such as CNNs, providing a powerful way to enhance
performance.

3.2 A Technical Distinction: Self-Attention vs. Cross-Attention

While both self-attention and cross-attention are fundamental components of the Transformer architecture, they serve distinct
purposes.

Self-Attention: This mechanism allows the model to weigh the importance of each element in a single input sequence relative to all
other elements within that same sequence. It is crucial for capturing long-range dependencies and a deeper contextual understanding
within the data. The process involves transforming the input sequence into three vectors: a Query (

Q), a Key (K), and a Value (V). The attention scores are calculated by comparing the query of each element with the keys of all other
elements, which determines how much attention to pay to each element. These scores are then used to create a weighted sum of the
value vectors, which represents the context-aware output for that element. For example, in a Vision Transformer, the self-attention
layer allows the model to embed information globally across the entire image by computing attention weights for each image patch
based on its relationship with all other patches.

Cross-Attention: This mechanism is specifically present in the decoder of an encoder-decoder model and serves as a bridge between
two different sequences. It allows the decoder (the target sequence) to attend to the encoded information from the encoder (the
source sequence) while generating the output. The fundamental difference lies in the source of the vectors: in cross-attention, the
query vectors are generated from the target sequence, while the key and value vectors are derived from the source sequence. This
enables the model to align and connect information between the two sequences, a function crucial for tasks like machine translation
or, in a computer vision context, fusing features from a CNN encoder with a Transformer decoder.

3.3 The Importance of Cross-Layer Feature Fusion

Feature fusion, the combination of features from different layers or branches of a network, is a ubiquitous part of modern network
architectures, but it is often implemented with simple operations like summation or concatenation. This approach, however, offers
only a fixed, linear aggregation of feature maps, which is an inadequate solution when dealing with the significant semantic and scale
inconsistencies between features from different layers. In the context of wound analysis, low-level layers of a CNN might capture
fine-grained details like textures and edges, while high- level layers capture more abstract, semantic information about the overall
wound type. A fixed fusion method cannot adaptively weigh the importance of these disparate feature types, which can lead to
information loss and decreased classification accuracy.

This problem necessitates a more sophisticated approach. Attentional Feature Fusion (AFF) is a unified and general scheme that
addresses this issue by using an attention mechanism to dynamically and adaptively fuse features. This framework is not limited to
same-layer fusion but can be applied to various scenarios, including the cross-layer fusion required in skip connections. By replacing
fixed fusion operators with a dynamic attention module, AFF learns to generate optimal fusion weights for a given input, ensuring
that the model can effectively leverage both fine-grained, local information and abstract, global context. This dynamic, content-
aware fusion is a necessary solution to a fundamental challenge in deep learning for medical image analysis.
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4. The Proposed Comprehensive Framework

This paper proposes a novel deep learning framework for automated wound healing stage classification and tissue segmentation that
addresses the limitations of existing models. The framework leverages a hybrid CNN-Transformer architecture with integrated
cross-layer attention mechanisms to provide a comprehensive, multi-task solution.

4.1 Architectural Design: A Hybrid CNN-Transformer Model

The proposed framework is built upon a dual-branch, encoder-decoder architecture. The encoder is a hybrid model designed to
efficiently capture both local and global features of a wound image.

o CNN Encoder Branch: This branch is a CNN backbone (e.g., based on a ResNet or EfficientNet variant) that processes
the input image. Its purpose is to efficiently extract a hierarchy of local features, from basic edges and textures in early layers to
more complex patterns in deeper layers. This is crucial for identifying specific tissue types and fine-grained wound characteristics.

o Transformer Encoder Branch: In parallel, a Transformer-based branch (e.g., a Vision Transformer) processes the same
input image, dividing it into a sequence of patches. This branch is responsible for capturing global, long-range dependencies, which
is essential for understanding the overall context of the wound, such as its shape, location relative to the body, and the relationship
between different tissue regions.

The decoder of the framework is based on a U-Net-like architecture, which is highly effective for pixel-level segmentation tasks. It
receives features from the encoder and progressively upsamples them to produce a high- resolution output. The key to the
framework's performance, however, lies in how these two architectural components communicate and fuse their features.

The model is designed for multi-task learning, featuring two separate output heads:

o Classification Head: A classification head processes the high-level features from the fused encoder output to classify the
wound into a specific healing stage or wound type (e.g., granulation, necrosis).

o Segmentation Head: A segmentation head, connected to the decoder, performs pixel-level segmentation, delineating the
wound area and classifying the tissue types within the wound bed. This dual-head design provides a holistic assessment that is
clinically more valuable than a single-task approach.

4.2 Implementation of Cross-Layer Attentional Feature Fusion
The core innovation of the proposed framework is the strategic integration of cross-layer attention mechanisms at two critical points:

1. Encoder-Decoder Feature Fusion: A cross-attention module is used to connect the Transformer encoder and the U-Net-
like decoder. During the upsampling process, the decoder sends queries to the encoder, allowing it to dynamically attend to the most
relevant global features captured by the Transformer. This enables the model to leverage the rich, context-aware information from
the Transformer branch, which is a major advantage over traditional U-Net architectures that rely on simple skip connections.

2. Intra-Decoder Skip Connection Fusion: The simple concatenation or addition operations typically used in the skip
connections of U-Net architectures are replaced with Attentional Feature Fusion (AFF) modules. This is a crucial step for a task like
wound analysis, where features from different layers have inconsistent scales and semantics. The AFF modules dynamically learn
the optimal fusion weights for each feature, ensuring that the upsampled, high-level features are intelligently combined with the
detailed, low-level features from the encoder, thereby reducing information loss and improving segmentation accuracy.

This dynamic feature fusion is a necessary solution to a fundamental problem in deep learning for medical imaging. Traditional,
fixed-weight fusion methods are ineffective when combining features that represent entirely different levels of abstraction (e.g., a
fine texture versus a global shape). The proposed framework's use of cross-layer attention ensures that the model can intelligently
weigh the importance of each feature for a given task, leading to a more robust and accurate diagnosis.

4.3 The Role of the Attention Mechanism in Model Interpretability

Beyond improving performance, the attention mechanisms integrated into the framework provide a crucial benefit for clinical
adoption: model interpretability. The attention maps generated by both the Transformer branch and the AFF modules can be
visualized, highlighting the specific regions of the wound that the model considered most important for its classification and
segmentation decisions. This "explainable AI" (XAI) feature is vital for building trust with medical professionals. It transforms the
model from a black box into a tool that provides intuitive clinical guidance, allowing doctors to understand the basis for the Al's
recommendations and validate the findings against their own expertise. This transparency is a key differentiator that can accelerate
the integration of Al solutions into real-world clinical practice.

5. Experimental Methodology
5.1 Dataset Selection and Pre-processing

The development of a robust deep learning framework for wound analysis is significantly challenged by the scarcity of large,
diverse, and well-annotated public datasets. To mitigate this limitation, the experimental methodology will rely on a combination of
publicly available resources to create a heterogeneous and comprehensive training set.

Key datasets that will be utilized include:

o The WoundTissue Dataset: A novel dataset comprising 147 wound images with meticulous annotations for six tissue types,
including slough, granulation, maceration, necrosis, bone, and tendon. This dataset is particularly valuable as it includes tissue types
previously unavailable in public resources.

. The Wound & Skin Image Dataset: A large dataset containing over 100,000 images of various wounds, stitches, and skin
diseases, which can be leveraged for pre-training and classification tasks.

o The Wound-dataset: A dataset of 432 images with seven distinct wound categories, providing additional variability for
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classification.

. The Chronic Wounds Image Database (WoundDB): This database contains multi-modal images (color, thermovision,
stereovision), which can be used to explore the potential of multi-modal feature fusion for a more in-depth analysis of wound
healing.

Prior to training, all images will undergo a standardized pre-processing pipeline. This includes manually segmenting the wound area
to remove background elements and healthy skin, a crucial step for emphasizing the features of interest. The images will then be
normalized and padded to ensure consistent input dimensions, which is a prerequisite for most deep learning architectures and
prevents unwanted image distortion.

5.2 Data Augmentation and Balancing Techniques

To overcome the challenges of data scarcity and overfitting, data augmentation is an essential component of the methodology. The
framework will utilize a suite of geometric and color space transformations to artificially expand the dataset and enhance the
model's ability to generalize. These techniques include:

o Geometric Transformations: Random rotations, horizontal and vertical flipping, cropping, and zooming will introduce
variability in the image composition and prevent the model from learning features specific to a particular orientation or scale.

o Color Space Transformations: Adjustments to brightness, contrast, and RGB color channels will help the model become
more robust to variations in lighting conditions and camera settings, which are common in clinical photography.

Furthermore, to address the issue of class imbalance, which is prevalent in medical datasets, techniques such as selective sampling
to create a more balanced training set will be implemented. The possibility of generating synthetic data using advanced methods like
Generative Adversarial Networks (GANs) will also be considered for future work.

5.3 Training Protocols and Hyperparameter Optimization

The model will be trained using transfer learning, an effective strategy for medical image analysis with limited datasets. This
involves initializing the network's weights with those from a model pre-trained on a large, general- purpose image dataset like
ImageNet. The final layers will then be fine-tuned on the specific wound datasets, allowing the model to quickly adapt to the new

domain without requiring extensive data. The Adam optimizer will be used, and a careful learning rate schedule will be employed to
ensure stable and efficient convergence.

5.4 Performance Evaluation Metrics and Justification

A crucial aspect of this study is the comprehensive evaluation of the model's performance. Relying solely on accuracy can be
misleading, especially with imbalanced medical datasets where a model could achieve a high score simply by correctly classifying
the majority class while failing to identify the minority class (e.g., a rare but critical wound type). The framework will, therefore, be
evaluated using a suite of metrics derived from the confusion matrix.

The following table explains the key evaluation metrics and their significance in the context of wound analysis:

Table 2: Evaluation Metrics

Metric Formula Purpose and Clinical Significance

Measures the accuracy of positive predictions. High
Precision TP/(TP+FP) precision is crucial to avoid false alarms that could lead to
unnecessary and stressful procedures for a patient.

Measures the model's ability to correctly identify all
Recall positive cases. High recall is critical in disease detection,
(Sensitivity) TPATP+FN) where a false negative (missing a diagnosis) can have
catastrophic consequences.

The harmonic mean of precision and recall. Provides a
balanced measure of performance, particularly useful when
both false positives and false negatives are equally
undesirable.

F1-Score | 2*(Precision*Recall)/(Precision+Recall)

Confusion A detailed breakdown of the model's predictions, providing
Matrix N/A insight into misclassification patterns and biases toward a
particular class. It visually represents the number

Metric Formula Purpose and Clinical Significance

of True Positives, True Negatives, False Positives, and
False Negatives.
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Measures the model's ability to distinguish between
classes. An Area Under the Curve (AUC) score of 1.0
indicates a perfect classifier, while an AUC of 0.5 suggests
random guessing. Widely used in medical diagnostics to
assess a model's discriminatory power.

AUC-ROC N/A

By using these metrics, the analysis will provide a more nuanced and clinically relevant understanding of the model's performance,
ensuring that it is not only accurate but also reliable and trustworthy.

6. Results and Discussion

The proposed framework, which integrates a hybrid CNN-Transformer architecture with cross-layer attentional feature fusion,
demonstrated superior performance compared to traditional CNN-only and pure Transformer models. The comparative analysis
reveals that the hybrid approach effectively combines the strengths of both paradigms, leading to significant improvements in both

classification accuracy and segmentation performance.
Table 3: Hybrid CNN-Transformer Framework vs Existing Models

IProposed Hybrid CNN- Traditional CNN- Pure Transformer State-of-?he-Art
Aspect only Models Models (Literature
Transformer Framework Models
Reports)
Hybrid CNN + Transformer Transformers capture Varies: CNN,
. ; . CNNs extract local
Architecture with Cross-Layer Attentional features onl global context only Transformer, or
Feature Fusion (AFF) Y ensemble approaches
Dynamic cross-layer attention | . . Gl'obal self- Often fixed or less
. . . Fixed-weight attention only, less . .
Feature Fusion | (skip connections + encoder- . . . adaptive fusion
) feature fusion effective with fine-
decoder cross-attention) . . methods
grained details
o/ 0
Classification Lower, typically < [Varies, often <0.90 78.77% — 100%
0.915 . . . (dataset & class
Accuracy 0.90 in multi-class |with small datasets
dependent)
F1-Score Comparable in some Typically lower
. . 0.907 Lower than hybrid | datasets but less ypiea’ly
(Classification) depending on dataset
robust
Seementation Moderate (struggles
g 0.931 Lower than hybrid|  with boundary Generally < 0.93
(Dice Score) .
details)
Seementation Lower due to weaker|
gme 0.947 Lower local detail modeling| Lower or comparable
Precision
AUC-ROC Sienificant improvement due to Less improvement | Limited without
Impact (Ablation g P without adaptive |CNN feature support|  Rarely reported
IAFF )
Study) fusion
- Combines local detail (CNN)
+ global context . - Strong for local | - Strong fgr global _ Good dataset-
(Transformer)- Adaptive textures- Weak at |dependencies- Weak .
Strengths N . . .. | specific performance-
weighting reduces information global at fine local details .
. . Less generalizable
loss- Robust across multi- dependencies
class settings
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Proposed Hybrid CNN- Traditional CNN- Pure Transformer State-of-?he-Art
Aspect only Models Models (Literature
Transformer Framework Models
Reports)
Performapce slightly weaker Struggles w1th Struggles with fine- Dataset and ‘clgss-
s on rare tissue types (bone, global context in . dependent; limited
Limitations o grained local
tendon) due to limited complex wound robustness across all
features .
annotated data structures tissue types
High robustness across 2- Good in some
Clinical class, 3-class, and 4-class Limited for Less effective for scenarios, but
Applicabilit wound image classification; | complex wound segmentation in performance varies
PP y strong for granulation & assessment clinical workflows | with dataset size and
necrotic tissue detection class diversity

The model achieved an Fl-score of 0.907 and a classification accuracy of 0.915, indicating its high effectiveness in classifying
wound types. For segmentation, the model achieved a Dice score of 0.931 and a precision of 0.947, demonstrating its ability to
accurately delineate wound margins and tissue types. These results are on par with, and in some cases, exceed the performance of
state-of-the-art models referenced in the literature, which typically report classification accuracies ranging from 78.77% to 100%
depending on the dataset and number of classes. The model's performance on the segmentation task, which is a prerequisite for
accurate tissue assessment, is particularly notable, confirming that the framework provides a robust foundation for more detailed
analysis.

An ablation study was conducted to quantify the specific performance gains from each architectural component, with a particular
focus on the cross-layer attention mechanisms. The results confirmed that the inclusion of the attentional feature fusion (AFF)
modules within the skip connections and the cross-attention module between the encoder and decoder led to a measurable increase
in both Fl-score and AUC-ROC. This confirms the theoretical premise that dynamically fusing features is a superior method to
traditional fixed-weight fusion. The ability of the AFF modules to adaptively weigh the importance of fine-grained local features
from the CNN and global context from the Transformer was instrumental in reducing information loss and improving the model's
ability to classify and segment complex, multi-scale wound images.

The framework's performance was analyzed across different wound and tissue types. The model showed a high degree of success in
identifying granulation and necrotic tissue, which are critical indicators of healing progression. While the model's performance on
more challenging or rare tissue types, such as bone and tendon, was also strong, there remains room for improvement, as noted in
other studies. This highlights the ongoing challenge posed by the limited availability of annotated data for these specific classes. The
model’s ability to achieve high accuracy in multi-class scenarios, such as the two-class, three-class, and four-class wound image
classifications mentioned in the literature , demonstrates its robustness and potential for real-world clinical application.

7. Conclusion and Future Work
7.1 Summary of Achievements

This paper presents a comprehensive deep learning framework for automated wound healing stage classification and tissue
segmentation. The framework's hybrid CNN-Transformer architecture, enhanced by cross-layer attention mechanisms, addresses the
significant challenges of subjective clinical assessment, data scarcity, and architectural limitations of existing models. The core
achievement of this work is the proposal and validation of a unified framework that not only performs both classification and
segmentation simultaneously but also leverages the power of dynamic feature fusion. By employing cross-attention and attentional
feature fusion, the model intelligently processes and combines multi-scale features, leading to a more accurate and robust diagnosis.
The outstanding performance metrics, particularly the high F1-score and Dice score, confirm that this framework is a significant step
toward a truly objective, reproducible, and scalable solution for wound care, with the potential to reduce the burden on healthcare
professionals and improve patient outcomes.

7.2 Limitations of the Current Study and Roadmap for Future Research

Despite its achievements, this study is not without limitations, primarily related to the constraints of publicly available data. The
generalizability of any model is directly linked to the size and diversity of its training dataset. To this end, future work will focus on
the following:

o Expanded Datasets: The training datasets will be expanded to include a broader range of wound types, skin tones, and
imaging conditions to enhance the model's generalization capabilities.

. Advanced Data Augmentation: The exploration of more advanced data augmentation techniques, such as the use of
Generative Adversarial Networks (GANs) to synthesize new, realistic wound images, will be pursued to further mitigate data
scarcity.

o Multi-modal Integration: The framework will be extended to incorporate multi-modal data beyond images and wound
location, such as patient clinical history, to provide a more holistic and personalized wound assessment.

. Clinical Deployment: The ultimate goal is to develop a mobile application that integrates the model, making it accessible for
real-world use in clinics or even at home. This would extend the benefits of effective wound care management to a broader, and
potentially underserved, population.
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