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ABSTRACT 

Cloud computing is the term used to describe an 

information technology infrastructure. Processing, in 

addition to software and data storage, takes place at 

a remote data center. Data centers for these fields are 

usually offered as a service over the internet 

existence of environments that are both large and 

complex, often accompanied by noise. Protecting 

privacy through the use of data mining approaches is 

equally crucial as well. Valuable sources should not 

be excluded while extracting frequent closed 

patterns. The ability to gather transaction-related 

information from any place is known as capability, 

which necessitates carrying out particular tasks. The 

proposed methodology in this paper aims to tackle 

the presented issue with a specific emphasis. In a 

distributed environment, the extraction of frequent 

closed patterns is integrated. We endeavor to 

maintain the confidentiality of site data, particularly 

when utilizing cloud technology. A mining task in a 

cloud environment using homomorphic encryption. 

Our mechanism requires, as indicated by the results 

of performance analysis and simulation. Reduced 

communication and computation costs can effectively 

attain data preservation. Data confidentiality is 

assured, data completeness is verified, and optimal 

transfer speeds are promoted. 

KEYWORDS: CLOUD COMPUTING, PRIVACY, DATA 

MINING, FREQUENT CLOSED PATTERNS, 

HOMOMORPHIC ENCRYPTION 
 

I. INTRODUCTION 
 

A new paradigm in computing has gained popularity in the 

last ten years due to the advent of broadband networks and 

the standardisation of the Internet: cloud computing. 

Businesses can benefit from cloud computing in several 

ways [1], including (i) cost savings and rationalisation, (ii) 

more end-user flexibility, (iii) use billing, (iv) more 

efficient use of Internet technology resources, and (v) data 

centres and high-performance storage settings. It is much 

more crucial to trust the cloud because of these new 

benefits. In virtual environments, billions of data are stored 

or shared. Thousands of storage lines packed in gigabytes 

define this massive amount of data that has been gathered. 

But because of this massive volume of data, the privacy 

issues with data mining tools have gotten worse. In this 

regard, preserving privacy is a big problem. Imagine, for 

instance, that two or more sites with private databases wish 

to combine their databases using a data mining method 

without disclosing any information that isn't absolutely 

necessary. 

 

 In this context, safeguarding sensitive information is 

essential while also facilitating its utilization for research or 

similar purposes. Despite recognizing the potential benefits 

of pooling their data, none of the involved parties are 

willing to divulge their databases to others. Consequently, 

the central challenge lies in how to securely extract data 

from distributed sources without compromising data 

confidentiality. This challenge has sparked significant 

interest among researchers focused on safeguarding the 

privacy of data sources during the extraction of frequent 

closed patterns in distributed environments. They propose 

innovative protection techniques and methodologies to 

address this issue.  

We suggest Cloud-PPDM, a novel method designed to 

protect privacy while mining, as a solution to this problem. 

Our method places a high priority on protecting privacy in 

dispersed settings, such as the cloud, when conducting 

closed, frequent pattern mining. We do this by presenting a 

brand-new homomorphic encryption-based data privacy 
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mining technique. This approach uses homomorphic 

signatures to confirm the integrity of aggregated data and 

symmetric-key homomorphic encryption to protect data 

privacy. Additionally, site managers can categorise 

encrypted and aggregated data according to encryption keys 

throughout the decryption process. The effectiveness of our 

suggested strategy is shown by experimental results in 

terms of security metrics and runtime performance.  

 

 The rest of the paper is structured as follows. 

Section 2 provides an overview of related work concerning 

privacy-preserving data mining. In Section 3, we introduce 

various notations that are based on cryptographic principles. 

Our approach, which focuses on extracting frequent closed 

patterns in a cloud environment while upholding privacy 

constraints through the use of tailored homomorphic 

encryption, is outlined in Section 4. Section 5 presents tests 

conducted to demonstrate the performance of our approach. 

Finally, Section 6 summarizes our work and outlines 

potential areas for future research. 

II. BACKGROUND AND RELATED WORK 

Privacy-preserving data mining refers to various methods 

used to extract valuable insights from data while protecting 

individuals' privacy. The main challenge is to create 

effective models that respect privacy. We discuss different 

approaches to tackle this challenge. Four main categories of 

Privacy Preserving Data Mining (PPDM) methods are 

recognized: 

1. Anonymization-based PPDM: This method uses 

techniques like generalization and suppression to 

generate individual records that are 

indistinguishable within a group. 

2. Perturbation-based PPDM: Here, statistical 

information from perturbed data closely matches 

that from the original data, minimizing 

differences significantly. 

3. Randomization-based PPDM: This technique 

distorts data through minimal noise introduction 

to preserve privacy. 

4. Cryptography-based PPDM: Cryptographic 

algorithms are used when multiple parties 

collaborate to compute results, share non-

sensitive mining outcomes, and prevent the 

disclosure of sensitive information. 

This passage discusses privacy-preserving data mining 

(PPDM) techniques that allow researchers to extract 

knowledge from datasets without revealing individual data 

points. 

The focus is on cryptographic methods that guarantee strong 

privacy. Researchers in [10] tackled association rule mining 

on horizontally partitioned data. Their engagement involved 

parties encrypting their data multiple times and sharing 

counts with added random values. This way, a final count 

could be reached without revealing the underlying data. 

Another study [11] addressed association rule mining on 

vertically partitioned data. Here, the goal was to find how 

often items appear together without revealing individual 

transactions. The authors focused on the security of the 

method used to calculate a specific mathematical operation. 

A different approach is presented in [28] where a substitution 

cipher protects data privacy when mining is outsourced to a 

service provider. However, this method assumes a 

centralized system where one party receives all the data and 

performs all the mining tasks. To avoid overloading this 

central party, the authors propose a scheme where the data 

holders only send counts in response to queries, and the 

mining itself happens at a global level. 

 Several studies explore advanced cryptographic 

techniques for privacy-preserving association rule mining. A 

combination of secure multi-party computation and 

differential privacy was proposed [29] to protect statistical 

operations. However, challenges arise when applying it to 

association rule validation due to the need for secure division 

operations. Another study[30] introduced RobFrugal, a 

scheme for outsourced mining based on substitution ciphers. 

Research by [12] investigates multi-party computation using 

asymmetric cryptography to achieve anonymity for data 

owners. While communication is secure and site privacy is 

respected, this method doesn't guarantee the integrity of 

exchanged data, leaving it vulnerable to manipulation by 

malicious participants. A method in [32] utilizes a special 

type of encryption (homomorphic encryption) to perform 

calculations on encrypted data while ensuring message 

authenticity. Finally, [33] proposes a method based on 

Secure Multiparty Computation (SMC) for distributed data 

mining. This technique offers strong privacy but suffers from 

increased communication overhead as the number of 

participants grows. 

 This section explores the use of public key 

cryptography (asymmetric ciphers) in privacy-preserving 

data mining ([34]). Public key systems use separate keys for 

encryption and decryption, like the widely used RSA method 

that secures online transactions. While offering strong 

security, public key cryptography can be slower than 

alternative methods. 

 Another approach leverages Elliptic Curve 

Cryptography (ECC) and the ElGamal cryptosystem ([13]). 

These techniques aim to minimize encryption operations at 

each site, facilitating secure communication. 

   As discussed in [27], cryptographic techniques for 

PPDM offer a balance between advantages and 

disadvantages: 
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• Advantages: 

o Strong data protection 

o Verification of sender and recipient 

identities 

o Anonymity for data owners 

o Fair and unbiased computations 

o Ability to track responsibility for actions 

o Data integrity during storage 

• Disadvantages: 

o Increased processing time for decryption 

o Potentially complex cryptographic 

operations 

 This section highlights the trade-offs of cryptographic 

techniques in privacy-preserving data mining (PPDM). 

While ideal for secure collaboration and hiding sensitive 

data, cryptography can be computationally expensive. 

Despite this drawback, ensuring data privacy in cloud 

environments remains crucial. 

 Our paper proposes a new approach called Cloud-

PPDM, which leverages cryptography for privacy-preserving 

data mining while optimizing execution time. Cloud-PPDM 

specifically focuses on mining closed item sets within the 

cloud. This approach is inspired by data mining research that 

emphasizes the benefits of lossless reduction techniques for 

cloud-based mining tasks. Extracting closed item sets, which 

are maximally condensed datasets, requires less memory and 

processing power compared to full datasets. 

Table 1: Advantages and limitations of cryptography-based 

PPDM 

Technique  Advantage  Limitations 

Canard et al Anonymity 

approach to 

protect the 

identity of 

respondents and 

reduce link 

attacks. 

Inadequate 

Safeguard against 

attribute exposure 

from homogeneous 

and background 

knowledge attacks. 

Approaches 

proposed in  

[ 2, 13, 14] 

-Maintaining 

Confidentiality 

By leveraging 

Elliptic curve 

cryptography 

and the ElGamal 

cryptosystem. 

Limited scalability 

regarding dataset 

size and the number 

of sites. 

Zhang et al -Enhance Privacy 

compared to 

existing efficient 

secure multi-party 

computation 

methods. 

-Improved 

Precision 

compared to 

current 

approaches based 

on Differential 

privacy, all while 

upholding 

efficiency. 

Vulnerability of 

directly 

implementing 

differential privacy 

in privacy-

preserving data 

mining to collision 

attacks 

Vaidya 

and Clifton 

An efficient way 

to calculate a 

scalar product 

while preserving 

the privacy of 

individual values. 

-Boolean 

Association rule 

mining. 

-Difficulty to 

compute scalar 

product while 

preserving privacy 

Giannotti et 

al 

-Introducing 

weighted support 

into the original 

item support 

transactions to 

mitigate the 

proliferation of 

fake transaction 

tables and 

minimize storage 

overhead. 

-Enhanced 

Resilience against 

guessing attacks 

and man-in-the-

middle attacks. 

-This access is 

recommend 

only for data 

owners; 

however individual 

registration holders 

should have 

additional rights and 

responsibilities to 

protect certain private 

information. 

Approach 

proposed in  

-In a public-key 

cryptosystem, 

there is no 

Public-key 

cryptosystems 
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[34, 35 ] requirement for 

exchanging keys, 

thereby resolving 

the key 

distribution 

challenge. 

-Private keys are 

on necessary to be 

transmitted or 

disclosed to any 

party. 

-Capable of 

Offering reputable 

digital signatures. 

characterized by 

lengthy execution 

times 

Moez et al -Anonymity With 

commutative 

cryptography  

-Increase security 

with Asymmetric 

cryptography 

Lack of data 

Integrity between 

Sites vulnerability 

To transmitting 

false information in 

the event of 

a malicious site 

Kantarcioglan

d Clifton 

Incorporating 

Cryptographic 

techniques to 

minimize the 

information 

shared while 

adding a bit 

more to the 

mining task 

Very successful 

Disinformation 

malicious websites 

Wong et al Robust 

security 

minimal data 

transformation 

expense. 

-Secure 

Encryption 

Method 

leveraging 

substitution 

Directly applying 

one-ton item 

mapping isn't 

feasible since it 

essentially 

represents a one-to 

one item mapping 

Cipher 

techniques. 

-Reduction of 

resource 

requirements 

toa minimum 

Chang et al - Safety 

- Security  

- Reliability 

Communication 

Complexity grows 

exponentially with 

the number of sites. 

 

III. IMPLEMENTATIONS 

CRYPTOGRAPHY TECHNIQUES 

 IN THIS SECTION, WE PROVIDE THE DEfiNITION OF SOME 

NOTATIONS THAT RELY ON THE CRYPTOGRAPHY AND SECURE 

COMMUNICATION USED IN OUR WORK. 

3.1  Homomorphic Encryption 

Homomorphic encryption systems have the potential to 

perform operations on data that are encrypted but do not 

have to be decrypted. Such a method helps ensure secure 

aggregation, thus allowing for direct data aggregation on 

encrypted data. For example, by applying aggregation 

functions such as summation or average on encrypted data, 

one can greatly reduce the burden of work placed upon 

network nodes. During this process, information is encrypted 

and sent to the main center. The information acquired is 

encoded on the last page. After that, the data is decrypted by 

the original sender in the encoded form. This is a kind of 

encryption system called homomorphic encryption. It 

involves additions and multiplications on encrypted data 

without the keyholder having access to unencrypted data. An 

example should be given concerning the way multiplicatively 

homomorphic calculations occur: decryption is simply a 

multiplication of plain text values corresponding to each 

other multiplied encrypted text together. When some parties 

don’t have decryption keys and others want to work on a 

group of ciphertexts, these systems are very useful. Here 

comes a description of elliptic curve cryptography also 

known as ECC in conjunction with its signature schemes. 

3.2 Elliptic Curve Cryptography 

Elliptic Curve Cryptography (ECC) is a public key 

encryption technique based on elliptic curve theory that 

makes it easier to generate cryptographic keys that are 
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quicker, smaller, and more effective. ECC makes use of the 

characteristics of elliptic curve equations, in contrast to the 

traditional method that depends on huge prime number 

products for key generation. 

This approach works in unison with Diffie-Hellman and 

RSA, two more public key encryption techniques. According 

to certain research, ECC can provide a security level 

comparable to a 164-bit key, whereas other systems require a 

1024-bit key to provide a comparable level of protection. 

ECC is becoming more and more popular for mobile apps 

because of its primary benefit of establishing comparable 

security levels with less processing power and battery 

resource consumption. 

3.3  Signature Scheme 

With its foundation in elliptic curve theory, Elliptic Curve 

Cryptography (ECC) is a public key encryption technique 

that makes it easier to generate cryptographic keys that are 

quicker, smaller, and more effective. Using the 

characteristics of elliptic curve equations, ECC generates 

keys differently than the traditional method, which depends 

on huge prime number products. Other public key encryption 

techniques like RSA and Diffie-Hellman are easily integrated 

with this technology. In contrast to other systems that require 

a 1024-bit key for comparable security assurance, some 

research indicates that ECC can reach a security level 

equivalent to a 164-bit key. The main reason ECC is 

becoming more and more popular for mobile apps is that it 

provides equivalent security levels with less computational 

overhead and battery usage. 

Cloud-PPDM Approach to Ensure Privacy-

Preserving Data Mining 

This section dives into the core of our paper. We'll first 

define the problem we're addressing, followed by a detailed 

explanation of our Cloud-PPDM approach. Cloud-PPDM 

consists of two crucial components: 

Privacy-Preserving Frequent Pattern Extraction: This initial 

component utilizes our new Dist-CLOSE algorithm to extract 

frequent closed patterns while ensuring data privacy. 

Security Scheme for Dist-CLOSE: The second component 

provides a complementary security mechanism that works 

alongside Dist-CLOSE to further address privacy concerns. 

The specifics of this component are outlined in the 

Algorithm.  

Problem Statement 

In this setting, each participant (site) holds a private database 

of transactions. The goal is to find frequently closed item sets 

across these distributed databases without revealing any 

sensitive information. This includes: 

 

• The contents of transactions at other sites 

• The specific item sets discovered by other sites 

• The exact support values for items at other sites 

(unless this information can be inferred solely from 

a participant's data and the final result) 

The research community is particularly interested in 

leveraging homomorphic encryption and secure aggregate 

signature schemes to build a secure multi-party 

computation protocol for this task. 

Background 

Within this subsection, we introduce fundamental definitions 

pertinent to closed pattern mining, which form the 

foundation of our work. 

Basic Definition 1: (Extraction Context) 

An extraction context is represented as a triplet K = (O, I, R), 

where: 

O denotes a finite set of objects. 

I signify a finite set of items. 

R denotes a binary (incidence) relation, i.e., R ⊆ O × I. Each 

pair (o, i) ∈ R signifies that the object o ∈ O contains the 

item i ∈ I. 

Definition 2: (Closure Operator) 

Let K = (O, I, R) be a data mining context, with O as a set of 

transactions, I as a set of items, and R as a binary relation 

between transactions and items. For O ⊆ O and I ⊆ I, the 

closure operator is defined as follows: 

• f(O) = {i ∈ I | ∀o ∈ O, (o, i) ∈ R} 

• g(I) = {o ∈ O | ∀i ∈ I, (o, i) ∈ R} 

• According to the given context:  

All transactions in O share common items, which 

are associated with set O by f(O).  

The transactions associated with each item in I are 

associated with set I by g(I).  

These operators are called Galois closure operators: 

c ∘ f ∘ g and c₀ ∘ g ∘ f.  
In order to divide the power set of items into 

disjoint subsets known as equivalence classes, the 

closure operator c produces an equivalence relation 

on the set. Closed items are the largest element (in 

terms of the number of items) in each equivalency 

class, and they are described as follows:  

Definition #3: (Repeatedly closed) If and only if c(I) 

= I is an item I ⊆ I taken as closed. Supp(I), the 

symbol for the support of I, is equal to the number 

of objects in K that include I. If Supp(I) is more 

than or equal to a user-specified minimal support 

level, represented by Minsup, then I am considered 

frequent. Supp(I) divided by the total number of 

http://www.ijsrem.com/


           INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM) 

                      VOLUME: 09 ISSUE: 03 | MARCH - 2025                                       SJIF RATING: 8.586                                                     ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                       DOI: 10.55041/IJSREM42198                               |        Page 6 

objects in K, represented by |O|, is the frequency of 

I in K. 

 

Global Architecture 

The Cloud-PPDM facilitates the extraction of frequent closed 

patterns within a cloud environment while upholding privacy 

constraints through the utilization of our designed 

homomorphic encryption. In this regard, the Cloud-PPDM 

adheres to the general principle outlined in algorithms that 

generate frequent closed item sets, such as the CLOSE 

algorithm. 

The steps of the Cloud-PPDM are outlined as follows: 

1. Initialization: The communication protocol is initialized. 

2. Distribution of 1-item candidates: The master site, 

responsible for launching the mining task, distributes the 

list of 1-item candidates to the different sites. 

3. Local algorithm execution: Each site concurrently 

executes a local algorithm; generating their closures and 

supporting the communication protocol initiated to 

transmit the results to the master site. 

4. Aggregation of results: The master site receives the set 

of local closures and local supports of the candidate 

items. It calculates the global support by summing up 

local supports and computes the global closure by 

intersecting local closures. 

5. Generation of candidates of higher size: Using the 

aggregated information, the master site generates 

candidates of higher size. This process is repeated 

iteratively whenever higher-sized candidates can be 

generated. 

Algorithm 1 provides detailed specifications of our proposed 

approach, while Table 2 defines the notations used 

throughout Algorithm 1. 

Algorithm 1: Dist-CLOSE: Distributed Extraction of 

Frequent Closed Item-sets with Privacy Preserving 

 Input: n: Number of sites; K: Extraction context;  

Minsupp: Minimal threshold of support; 

 master: Boolean flag: Set to true if the current site is the 

master one, otherwise it is set to false; 

 Begin 

 Initialize(n); 

 If master then 

 FFC1.generators ←{ 1-itemsets };  

For (k ←1; FFCK .generators ≠ θ; k + +) do  

If master then  

Distribute(FFCk, n);  

Receive(FFCk); 

 FFCk ^L ← Gen-Local(F FCk);  

Communication Protocol (FFCk^L) 

 If master then  

FFCk^G ← Collect(FFCk^L)  

FF k ← Gen-global(FFCk ^G)  

FFCk+1 ← Gen-Generator FFk ; 

 Result; UK FFk 

 End 

Table 2: Definition of some notations used throughout 

Algorithm 1 

Notation  Definition  

FFCk Set of frequent closed item 

candidates of k-size 

FFk Set of frequent closed items of K-size 

FFC^G Set of global frequent closed itemset 

candidates k-size 

FFC^L Set of local frequent closed itemset 

candidates k-size 

 

The Gen-Local procedure accepts a unit of candidate k-

groups (FFCk) comprising the k-generator candidates of the 

k-th iteration as an argument. It computes the local support 

and closure of each generator. This procedure is executed 

across all sites. 

The Communication protocol procedure receives the set of 

candidates along with their closures and supports. 

Subsequently, the communication protocol is executed to 

transfer the results to the master site while ensuring privacy 

preservation. 

The Gen-Global procedure receives the set of FFCL obtained 

through the communication protocol execution. It computes 

the global support by summing up local support and 

determines the global closure by intersecting the previously 

received local closures. Subsequently, the master site can 

execute the Gen-Generator procedure to generate candidates 

of size k + 1, returning the set of these candidates. This 

http://www.ijsrem.com/
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process iterates until the Gen-Generator procedure produces 

an empty set. 

As a final step, the master site executes a procedure to 

generate a generic base of exact association rules based on 

the generated candidates and the specified minimum support 

threshold. 

 Communication Protocol  

Our aim is to extract frequent closed itemsets and 

simultaneously ensure their occurrence regularly through our 

approach goal is to maintain privacy across different sites 

through a communication protocol involving four 

procedures.  

1. Setup: the master creates( Svi, Sxi )using the keygen 

procedure for each site the approach presented in[ 9] 

involves setting Svi equal to vi and Sxi equal to xi resulting in 

MSpk procedure 2 of keygen is used to generate the MSsk 

keys it relies on a particular method for this purpose 

according to the approach suggested in [27] the public key of 

the master site MSpk is comprised of three components n,g, 

and k the secret key for the master site MSsk is represented 

as p, pg following this step si loads the public key of milk for 

every site i. 

2. Encrypt-Sign: the procedure known as the encrypt-

sign phase is initiated when the site makes a decision to 

transmit its data securely data it sensed to the next site si+1 

finally si transmits both encrypted data and ciphertext as a 

pair I hereby certify that part I (CI,∂I ) belongs to site si+1. 

3. Aggregate: the aggregate phase starts with the launch 

of the aggregate procedure following the site aggregator sn. 

4. Verify: all pairs of ciphertext, and signatures (CI,∂I ) 

have been collected previous phase. The verification process 

takes place at the aggregator site SN allows the master to 

retrieve and authenticate every sensory data initially the 

aggregate result is decrypted by the master using their private 

key furthermore the mapping from the point on the elliptic 

must be reversed by the master to validate the signature the 

master calculates a point on the curve by utilizing both the 

decrypted aggregate result and received signature if the value 

of k is an integer then the points x-coordinate is equivalent to 

r(x) and thus sources the data legitimacy is ensured by the 

master who verifies that all signatures are genuine inclusion 

of sites in the aggregate algorithm 2 outlines how we 

incorporate individual sites into the overall total protocol for 

communication. 

 For more detailed information, Algorithm 2 

provides a comprehensive breakdown of the communication 

protocol. 

1. Setup Phase 

   KeyGen procedure 1: 

      For a user, pick random x← Zp, and compute v=gx. The 

user's public key is v Є G1, and 

      the secret key is x Є Zp. 

   KeyGen procedure 2: 

      p and q are large primes 

      K, the bit length of prime p 

      n=p²q, the modulus g Є Z/nZ s.t. p|ordp2(g) 

      gp=g mod p² 

      Public-Key: (n,g,k), Secret Key: p, gp 

2. Encrypt-Sign 

   Encoding: m Є {0, 1, ..., 2k-2}, a message r Є Z/nZ, a 

random integer cᵢ = gm%rn mod n,  

   ciphertext 

   Signature 

      ∂ᵢ= xᵢ × hᵢ where hᵢ = xᵢ = H(∂ᵢ) 

3. Aggregate Phase 

   Aggregated Ciphertext:  

      C' = ∑n
i=1=1 ci 

   Aggregated Signature: 

      ∂'== ∑n
i=1 ∂ᵢ. 

   Send the aggregated result (C',∂') to the master 

4. Verify Phase 

   When receiving (C', ∂') from the aggregator site sn, the 

master can recover and verify each 

   sensing data via the following steps: 

   The decryption of C': 

      M'=L(cp-1 mod p²)L(gp-1
pmodp²)¯¹ mod p 

      Master obtains M' by decrypting C'. 

      Master obtains m' from M' through the reverse function 

map(): 

         m'=rmap(M')= m1 + m2 + ... + mn. 

      Master obtains each sensing data from m'. 

      The master site verifies each əi by checking whether the 

equation 
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         e(g,∂)= 𝚷k
i=1 e(vi, h(mi)) holds or not. 

 Evaluation 

This section dives into the evaluation of our Cloud-PPDM 

approach. Here's how it's structured: 

Security and Performance Assessment: This subsection 

details the methods we used to evaluate the security 

measures and assess the performance of Cloud-PPDM. 

Experimental Setup: This subsection provides specific details 

about the communication protocol used in our experiments 

and the characteristics of the datasets we employed to 

measure Cloud-PPDM's effectiveness. 

Results and Analysis: This subsection presents the 

experimental outcomes and our analysis of those results. 

Security Analysis 

This section demonstrates the effectiveness of our approach 

in upholding integrity. Data between all sites is ensured to be 

fresh and confidential. Data is vulnerable to exploitation by 

malicious adversaries that may breach confidentiality. To 

address potential risks to sensitive information, we mitigate 

them through the implementation of encryption measures in 

our approach. Additionally, To guarantee the integrity of all 

data transmissions, each message is only sent once. Each 

message is accompanied by a signature that has been 

calculated. Using the source's private key ensures that the 

report cannot be accessed by anyone else. When it is kept at 

other sites, it becomes forged. Ensuring the security of 

messages and data by utilizing Elliptic Curves. 

Confidentiality of data is ensured as each site comes 

equipped with a specific elliptic curve. A random number is 

generated throughout the network, while the master public 

key and parameters are constants. Generated with a fresh key 

(k) after certain time intervals, guaranteeing the validity of 

the signatures. Each site selects an additive and secure 

approach to prevent attacks at the beginning of every round. 

The private key is selected and used to compute the 

corresponding public key.  

The act of selecting a private key involves, 

This task is simple and involves selecting an integer in the 

elliptic curve's field by the website. Each round of processing 

requires a new set of public and private keys. Another site 

can be determined by a malicious site with just two 

signatures. The private key is responsible for signing a 

message, but if another message is signed using the same 

private key, it will be evident. The signature alone is not 

secure, but we enhance the security by signing the message 

with an additional level of protection. Afterward, the 

sentence is coded before transmission to the succeeding 

level. In case a website approves of it repeatedly. The private 

key can be determined by another site if messages are 

encrypted using the same key. The signature scheme is 

created in a way that allows an easy combination of all 

signatures. Arithmetic operation increases the workload of a 

master site significantly. The compact size makes it suitable 

for PPDM purposes. Data that has been exchanged is 

enhanced to function with homomorphic encryption and be 

aggregated. 

Time is up, it collects and processes the signatures. Once the 

aggregator acquires the data; they will combine it with both 

ciphertexts - namely, the digital signature and public keys. 

As a result of this process, only one set of exchanged data is 

sent to the master. 

The collection includes a single ciphertext that represents the 

total readings from all locations. Moreover, it gets a 

signature that corresponds to both the total of data and the 

sum. All sites' public keys are collected, so that the master 

can decrypt and authenticate the message. By adding up the 

signatures and public keys, we can obtain a total value. 

Test Environment and Datasets 

All simulation processes on the AWS platform are 

implemented using Java. To showcase the effectiveness of 

our proposed approach, we will demonstrate it using the EC2 

cloud computing platform. Our approach involves the 

utilization of High-CPU Medium Instances containing 1.7 

GB memory and featuring 5 EC2 compute resources. Two 

virtual cores are specified, with each core having 2.5 EC2 

compute units and a local instance storage capacity of 320 

GB. We opt for a variety of datasets, both dense and sparse, 

that can be accommodated by 64-bit platforms' storage 

capabilities. One of the sparse datasets discovered on the 

UCI KDD machine learning repository is Mushroom [28].  

We connected 29 to Connect, C73D10K to 30, and 

T40I10D100K to 35 in our experimentation. Please refer to 

Table 3 for further information. The attributes of the dataset 

are being delineated. 

Table 3: UCI dataset Characteristics: nature, number of 

objects, average size of objects, and number of items 

 

 Result and analysis 

To evaluate the efficiency of our methodology, we carried 

out a comparative study on the processing time between 

Cloud-PPDM and the method described in [12], maintaining 

http://www.ijsrem.com/
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consistency across a range of datasets with differing 

characteristics. Our analysis began with the methodology 

outlined in [12] to measure the time taken for processing 

both dense and sparse datasets while adjusting the number of 

sites from three to five 

Fig.1 Execution time of Cloud-PPDM vs approach proposed 

in [12] 

 

In Figures 1 and 2, the vertical axis displays the execution 

time of Cloud-PPDM compared to the method proposed in 

[12], shown for both the Mushroom and Connect datasets. 

The horizontal axis illustrates changes in execution time 

based on the number of sites (P) for various minsup values, 

where P represents the number of sites. Examining Figure 1, 

for example, in the Mushroom dataset with a minimum of 

60% and three sites, Cloud-PPDM required 2,218 s 

compared to 3,494 s with the alternative approach. Similarly, 

in the Connect dataset with a minsup of 90% and four sites, 

Cloud-PPDM completed in 324,216 s while the other method 

took 453,415 s. Importantly, the total processing time rises 

linearly as mins up decreases, primarily due to increased 

computation time for generating frequent closed itemsets, 

which outweighs the time spent on communication and 

distribution management 

Execution time for C73D10K dataset Execution time for 

T40I10D100K dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: Execution time of cloud PPDM vs approach proposed 

in [12] respectively on C73D10K and T40I10D100K 

datasets. 

Figure 2 presents the comparison of execution times between 

Cloud-PPDM and the method proposed in [12] using the 

C73D10K and T40I10D100K datasets. It's clear that our 

approach consistently demonstrates shorter execution times 

across both datasets. For example, with three sites for the 

C73D10K dataset and a minimum of 80%, Cloud-PPDM 

required 197.614 s compared to 327,143 s with the 

alternative method. Similarly, with five sites for the 

T40I10D100K dataset and a minsup of 0.5%, Cloud-PPDM 

took 100.068 s versus 127.583 s with the other approach. 

Moreover, in the case of the T40I10D100K dataset, we 

observe execution time improvement as the number of sites 

increases. The communication cost of Cloud-PPDM is 

contingent upon the number of sites, following a complexity 

of O(n), where n represents the number of sites. In summary, 

our experimental analysis (Figures 1 and 2) underscores the 

superior efficiency of Cloud-PPDM in extracting frequent 

closed itemsets within a distributed setup while upholding 

data privacy compared to the method proposed in [12]. 

Conclusion 

In this paper, we present a novel secure method that 

complements the Dist-CLOSE algorithm by leveraging 

homomorphic encryption. This innovative approach 

facilitates secure and anonymous mining tasks while 

preserving the confidentiality of data sources during the 

extraction of frequent closed patterns in distributed 

environments such as cloud computing. Our method ensures 

individual security through efficient communication 

schemes. Extensive experimentation conducted on standard 

datasets validates the effectiveness and security of our 

proposed scheme, demonstrating enhancements in both 

runtime performance and security analysis. Our future 

research endeavors aim to enhance this approach by 

enhancing the autonomy of exchanged data between sites. 

We intend to empower the data itself with protective 

measures during the exchange, eliminating the necessity for 

verification calculations by the master site to ensure safety. 

This advancement holds promise for further enhancing the 

efficiency and security of distributed mining operations. 
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