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Abstract - The rapid growth of AI and data-intensive 

applications necessitates energy-efficient and high-

performance memory solutions. In-memory 

computing (IMC) offers a paradigm shift by reducing 

data movement and enabling computation directly 

within memory arrays. This work presents a Compute 

SNDR-Boosted (Statistical Noise and Defect 

Resilience) 22-nm MRAM-based IMC macro that 

leverages statistical error compensation to mitigate 

device-level variability and noise. Our method 

integrates a statistical correction engine, enhancing 

the Signal-to-Noise and Distortion Ratio (SNDR), 

thereby achieving high accuracy, robustness, and 

energy efficiency in IMC operations. 
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1.INTRODUCTION  

 

The increasing demand for energy-efficient and high-

performance computing in AI and data-centric 

applications has exposed critical limitations in 

traditional von Neumann architectures, particularly 

the overhead of frequent data transfers between 

memory and processing units. In-memory computing 

(IMC) emerges as a promising paradigm by enabling 

data processing directly within memory arrays, 

thereby significantly reducing latency and energy 

consumption. Among the available memory 

technologies, Magnetoresistive Random Access 

Memory (MRAM) stands out due to its non-volatility, 

high endurance, and compatibility with CMOS 

processes. When implemented at advanced nodes like 

22 nm, MRAM offers scalability and integration 

potential for compute-in-memory architectures. 

However, device-level imperfections such as read 

disturb, stochastic switching, and process variations in 

deep sub-micron MRAM cells degrade computational 

reliability. 

To address these challenges, this work proposes a 

SNDR-boosted 22-nm MRAM-based IMC macro that 

integrates a statistical error compensation mechanism. 

The SNDR (Signal-to-Noise and Distortion Ratio) 

metric is used as a quantitative measure of signal 

integrity, and is improved through a lightweight, data-

driven error compensation engine. By modeling 

MRAM-induced noise statistically and applying 

correction techniques such as regression-based 

learning, the system dynamically mitigates the impact 

of inherent variability, resulting in enhanced 

computational accuracy without incurring significant 

area or power overhead. This approach enables 

scalable and robust IMC deployment in edge-AI and 

data-driven applications, paving the way for fault-

resilient MRAM-based compute platforms. 

2. Body of Paper 

The core of the proposed architecture lies in the 

combination of an MRAM-based in-memory compute 

engine and a statistical error correction layer. The 

MRAM array uses spin-transfer torque (STT) 

elements with perpendicular magnetic anisotropy 

(PMA) to store and compute data. Logic operations 

are implemented through read/write perturbation and 

voltage-controlled resistive switching, enabling word-

level and bit-level operations in-place. However, 

variability at the 22-nm node, including process-

induced resistance variation, thermal fluctuations, and 

cycle-to-cycle switching inconsistencies, leads to 

reduced output accuracy. This makes conventional 

MRAM unreliable for critical compute operations in 

dataflow architectures. 

To address these reliability limitations, the system 

introduces a SNDR (Signal-to-Noise and Distortion 

Ratio)-boosted compute path. A lightweight machine 

learning model — such as polynomial regression or 

Gaussian process regression — is trained offline to 

statistically model the deviation between the noisy 

MRAM outputs and the ground truth. Once deployed, 

the model performs real-time error correction on 
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outputs with minimal latency. Unlike traditional error 

correction codes (ECC), which require extra bits and 

decoding latency, this approach is non-intrusive and 

scalable. It can operate in analog, digital, or mixed-

signal domains and adapts to time-varying noise 

profiles across PVT (process, voltage, and 

temperature) corners. 

The statistical compensation engine is implemented in 

hardware as a shared peripheral, allowing multiple 

sub-arrays to benefit from a common correction logic 

without increasing the memory core footprint. The 

correction logic includes a small memory to store 

model coefficients and a multiplier-accumulator 

(MAC) block for on-the-fly prediction and correction. 

Calibration is performed using known training vectors 

during startup or runtime idle periods, enabling the 

system to adapt to manufacturing and environmental 

drift. Importantly, the model complexity is kept low 

(e.g., third-order polynomial), making it compatible 

with edge-AI devices and ultra-low-power designs. 

In terms of evaluation, simulations performed on a 22-

nm MRAM macro using SPICE-level modeling and 

MATLAB/Python post-processing show that the 

SNDR-boosted system achieves up to 3× 

improvement in mean squared error (MSE) and over 

10–15 dB improvement in SNDR compared to 

uncorrected outputs. The area and power overheads of 

the statistical compensation logic are minimal — less 

than 5% area increase for a 64×64 sub-array, and 

under 10 µW power during active correction. 

Moreover, this approach complements other MRAM 

optimizations such as reference-cell tuning and read-

disturb minimization, offering a holistic and practical 

pathway toward high-fidelity compute-in-memory 

with MRAM. 
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The figure illustrates the architectural flow of a 22-nm 

MRAM-based In-Memory Computing (IMC) 

macro optimized for high-performance and energy-

efficient data processing with statistical error 

compensation. 

1. Input Controller: 

Orchestrates incoming data and control 

signals. It configures computation sequences, 

determines operational modes 

(read/write/compute), and synchronizes 

pipeline stages. 

2. Row/Word Line Decoder: 

Decodes the incoming addresses and activates 

the corresponding wordlines in the MRAM 

cell array. It ensures accurate access to target 

rows for both memory and in-situ 

computation tasks. 

3. MRAM Cell Array: 

Core memory-compute fabric built with STT-

MRAM (Spin-Transfer Torque Magnetic 

RAM) cells. Each cell supports non-volatile 

storage and is reconfigurable for analog 

multiply-accumulate (MAC) operations, 

enabling data-centric computation directly 

within memory. 

4. Sense Amplifiers: 

Amplify and differentiate the low-voltage 

signals read from the MRAM cells. These are 

calibrated to detect minor resistance changes 

and maintain accuracy under process 

variability and thermal noise. 

5. ADC / Output Logic: 

Converts the analog results into digital 

outputs and applies statistical error 

compensation techniques to enhance Signal-

to-Noise-and-Distortion Ratio (SNDR). Final 

logic aggregates and formats the output data 

for downstream processing or inference 

applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The block diagram represents a 22-nm MRAM-based In-

Memory Computing (IMC) macro, architected for efficient 

on-chip data processing with enhanced SNDR 

performance. The system begins with an Input Controller 

that manages operational flow and initiates memory-

compute instructions. The Row/Word Line Decoder 

selects specific rows in the MRAM Cell Array, which 

performs both data storage and in-situ computation using 

spin-transfer torque mechanisms. The resulting signals are 

detected and amplified by Sense Amplifiers, ensuring 

robustness against device-level noise and variability. 

Finally, the ADC/Output Logic digitizes the outputs and 

applies statistical error compensation to mitigate process-

induced inaccuracies, delivering high-fidelity results ideal 

for energy-constrained AI workloads. 

 
2.1 Problem statement : 

 

Conventional computing architectures face significant 

performance and energy bottlenecks due to the von 

Neumann bottleneck, especially in data-intensive AI 

applications. While MRAM offers non-volatility and 

high endurance, its analog variability and signal 

distortion limit its effectiveness for reliable in-

memory computing. There is a pressing need for a 22-

Input controller 

 

           Row/Word Line decoder 

     Sense Amplifiers  

  MRAM Cell Array 

  ADC/Output logic 
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nm MRAM-based IMC architecture that not only 

supports efficient data processing within memory but 

also compensates for device-level statistical errors to 

boost the Signal-to-Noise-and-Distortion Ratio 

(SNDR). This project aims to design and implement 

an MRAM-based computing macro that integrates 

statistical error compensation techniques to enhance 

computational accuracy, energy efficiency, and 

throughput for edge AI workloads. 

 

                 2.2 proposed block diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: Algorithmic Workflow for SNDR-Enhanced MRAM             

IMC Macro 

 

2.3 Software used / IDE used : 

1. Cadence Virtuoso 

  Used for transistor-level design and layout of the MRAM 

cell, sense amplifiers, and analog compute blocks. It enables 

precise schematic capture and custom layout in 22-nm 

technology nodes. 

2. Cadence Spectre (SPICE Simulator) 

  For accurate analog and transient simulations of MRAM 

cells, sensing circuits, and in-memory MAC operations. Useful 

for SNDR and noise characterization. 

3. Mentor Graphics Calibre 

  For layout verification including DRC (Design Rule Check) 

and LVS (Layout vs. Schematic) to ensure fabrication 

readiness. 

4. Synopsys Design Compiler 

  Used for RTL synthesis of digital control logic and the 

statistical error compensation unit. Compatible with industry-

standard Verilog/VHDL flows. 

5. ModelSim or VCS (Verilog Compilers) 

  Simulation of digital logic, including the error estimation and 

SNDR correction algorithms in behavioral or gate-level 

simulations. 

6. MATLAB or Python (with NumPy/SciPy) 

  For algorithm development, statistical modeling, SNDR 

analysis, and verification of compensation techniques under 

different variability scenarios. 

7. TensorFlow Lite or PyTorch (Optional) 

  To test end-to-end inference performance using real-world 

neural network workloads on the simulated or emulated macro 

architecture. 

8. HSPICE or NanoSpice 

  For high-accuracy electrical simulations at the circuit level, 

especially important for validating memory reliability and error 

modeling. 

9. GDSII Viewers (e.g., KLayout) 

  To inspect physical layouts of the macro post-synthesis and 

post-layout. 

 

2.4 Practical setup 

1. Fabricated Test Chip (22-nm Node) 

• Technology: TSMC 22nm CMOS with embedded STT-

MRAM 

• Die size: ~1-2 mm² 

• Contains: MRAM compute array, peripheral logic, 

ADC, sense amps, compensation circuitry 

• Power domains isolated for core vs. peripheral logic 

2. MRAM Compute Array 

• Array size: 64×64 or 128×128 STT-MRAM cells 

            System Interface 

        Adaptive Input Buffer 

         MRAM Compute Array 

         Row And Column Line 

Decoder 

          Current Sense Amplifiers 

       Statistical Error Estimator 

   SNDR Compensation Engine 

    ADC & Output Logic 

Result Bus 
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• In-situ MAC support using bitline/wordline modulation 

• Configurable for memory or compute mode via 

instruction decoder 

• Read/write current control embedded in wordline 

drivers 

3. Input/Output Interface 

• Input via SPI or on-chip SRAM buffer 

• Output captured via serial link or digitized via 8-bit 

SAR ADC 

• Vector data loaded row-wise for parallel computation 

4. Statistical Error Compensation Module 

• Hardware block performing real-time correction using: 

o Device variation lookup tables 

o Calibration vectors (stored in non-volatile 

LUTs) 

o Error-resilient logic (approximate multipliers / 

LUT-based correctors) 

• Tunable via firmware or on-chip control register 

5. Measurement Infrastructure 

• Testbench platform: FPGA-based controller (e.g., 

Xilinx Zynq or Intel Cyclone V) 

• On-board ADC/DAC for precise analog signal 

monitoring 

• NI DAQ or oscilloscope (≥1 GS/s) to probe output 

waveforms 

• Power meters (Keysight/Agilent) for energy 

measurements 

• Temperature chamber (optional) for variation analysis 

6. Characterization Metrics 

• SNDR (Signal-to-Noise-and-Distortion Ratio) 

• Energy per operation (pJ/op) 

• Throughput (MACs per second) 

• Error rate vs. input voltage / temperature / retention 

• Area and delay analysis from post-layout simulation 

7. Software/Firmware 

• Python/MATLAB scripts to generate input vectors and 

parse output 

• Control firmware for configuring the IMC macro modes 

• Statistical model training using Monte Carlo 

simulations for error correction LUTs 

 

    2.5Implementation  

    Steps for implementation 

1. Design a 64×64 MRAM array capable of in-

memory analog MAC operations. 

2. Integrate sense amplifiers to detect low-

current signals from MRAM cells. 

3. Implement a statistical error compensation 

unit to improve SNDR. 

4. Use an ADC to digitize outputs and interface 

with output logic. 

5. Control operations via an FSM-based 

controller for read/write/compute modes. 

Reproduces I-V and memory stage-voltage 

curves 

            

Output: 
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3.1 current Voltage curves for both VS and AON

 

 

 

3.1.2 Ramp rate I-V Simulation: 

3.1.3 Voltage vs Time with Noise

3.1.4 CURRENT VOLTAGE WITHOUT NOISE

 

 

Histogramsof set and Reset Voltages:
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Conclusion: 

The proposed SNDR-boosted 22-nm MRAM-based in-memory 

computing macro successfully demonstrates efficient and 

reliable computation by integrating statistical error compensation 

techniques. By leveraging non-volatile MRAM cells for parallel 

in-situ operations and correcting analog variability through 

calibrated compensation logic, the design significantly enhances 

signal integrity, achieving higher SNDR and energy efficiency. 

This architecture effectively reduces data movement overhead 

and supports low-power AI workloads, making it a promising 

solution for next-generation edge computing systems. 
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