

Condition Assessment of Structures

Suyog Ramrao Dhawade¹, Prof. Mayur A. Banarase², Dr. Prakash .S. Pajgade³

¹Student of Master in Structural Engineering, ²Assistant Professor ³Professor Department of Civil Engineering,

Prof. Ram Meghe Institute of Technology and Research, Badnera – Amravati - India

_____***_____

Abstract – The assessment plays a very important role in the maintenance and monitoring of the structure, which keep the structure to perform its functionality throughout their useful life without any interference. The condition assessment is the process of getting information and data about the existing condition of the structure. The main objective of the paper is to give the idea about the assessment of the various structures such as public building, residential building, water tank and the results which is obtained from assessment, with reference to that we can decide the methods of repair, rehabilitation, strengthening, retrofitting which helps the structure for resistance against lateral forces and wind forces, and various adverse condition. On the other hand it also deals with the explanation of different methods to adopt for monitoring of existing structure. The assessment strategy classified on the basis of types of structures, their functional uses, life span, the degree of deterioration, and their economical preservation, to signify the use of methods on the structure which is having issues regarding the functionality and adverse effects on the metabolism of the structure.

Key Words: Condition Assessment, structural monitoring, repair, rehabilitation, strengthening, retrofitting

1. INTRODUCTION

The country development depends upon the growth and smooth functioning of infrastructure. The building, bridges, tunnels, flyover, water tank has specific function to perform in their life span. For smooth functionality of these structures, the assessment plays a vital role to keep it in useful state. The paper explains the methods of assessment and their application in the case study to rectify the present strength and defects of existing structural elements, and suggesting the immediate remedies if required. The case study includes the non- destructive testing such as visual inspection, rebound hammer test, ultrasonic pulse velocity test, carbonation of concrete, etc. The investigation of the structure gives the condition score to decide about the remedial methodology such as repair, rehabilitation, strengthening, retrofitting. The remedies help us to enable the structure to counterattack the earthquake forces deterioration due to aging, chemical forces, settlement of foundation due to variable rise in water table, etc. The technique of strengthening helps the structure to uphold for decades.

2. Case study

2.1 Condition Assessment of Public Building at Chandur Railway

2.1.1 Report of assessment

1)	Name of project	: Chintamani Complex (Chandur Railway)
2)	Date of assessment	: 1-01-2022
3)	Name of client	: Mr. Hariom Sharma
4)	Type of structure	: Public building (Frame structure)
5)	Life span	: 20 years.
6)	Use of building	: Commercial building (shops of retailing products)
7)	Future requirement	: Construction of two new story (G+3) and assessment of existing structural elements
		and earthquake resistant design

- 8) Requirements of clients
 - No additional increase in sizes of beams
 - Comparative analysis of various strengthening techniques

٠

FRONT SIDE

Figure 1: Floor Plan of Chintamani Complex at Chandur Railway

2.1.2 Non-destructive testing adopted at site

Type of building – Reinforced concrete framed building

1. Visual inspection

a) Observation of cracks in beams – The cracks at the ground floor slab beam of building.

Types

- 1) Flexural crack These cracks are formed at bottom of middle span below N.A of the beam where flexural stresses are maximum.
- 2) Shear cracks When the shear reinforcement at corners are at large spacing.

Remedies

- 1) Minor cracks: Repair by injecting epoxy resins and finish it by repair mortar (polymer modified mortar)
- 2) Flexural cracks and shear cracks: Repair by injection of low viscous grout and strengthening by F.R.P wrapping.

Figure 2: Existing condition of beam

b) Observation of cracks in column – Cracks at ground storey and first storey.

Types

- 1. Diagonal cracks Load carrying capacity of column is inadequate and reinforcement is insufficient.
- 2. Horizontal cracks Moment of resistance inadequate and main reinforcement not in position.

Remedies

- 1) Diagonal cracks and horizontal cracks: The column is R.C.C jacketed and cracks are grouted and levelled and rebar solution is applied for shear connectors.
- c) Cracks in slab At ground floor slab

Types

- 1) Thermal cracks Variation due to thermal changes
- 2) Spalling of plaster slab Cracks formed due to excess moisture, corrosion of reinforcement due to inadequate cover or weathering.

Remedies

- 1) Thermal cracks: The cracks are repaired by low viscous grout.
- 2) Pilling of plaster: Proper adhesive are provided on the exposed surface for proper bond with cement and high viscosity epoxy resin used for surface coating is provided on the surface.

d) Observation for corrosion of Reinforcement

- Column The ground storey level column has been corroded due to insufficient clear cover and faulty workmanship while placing concrete.
 Remedies- The R.C jacketing to be done to all ground and first floor column.
- Beam- The longitudinal reinforcement of front side beam on ground and first storey has affected by corrosion due to insufficient cover and inadequate confining reinforcement. Remedies- The F.R.P jacketing to be done to all ground and first floor column.
- Slab The slab reinforcement corroded due to direct contact of moisture and other acidic components which caused because of insufficient cover and voids in the concrete.
 Remedies- Remove the dust and pilled part from the slab, the exposed bars are coated with polymer and adhesive are applied to the exposed surface for proper bond with cement, after some time level it with thin mortar.

2. Rebound hammer test

A. Ground floor north direction column (from fig no 2.1.1)

Table 1: Rebound Numbers of Ground floor North direction column

Column 1 st	Column 2 nd	Column 3 rd	Column 4 th
18	28	32	22
32	29	35	35
44	36	22	34
31	38	25	25
36	32	35	36
26	32	25	34
Avg-31	Avg-32	Avg-30	Avg-31

Location	Approximate Compressive strength	Quality of concrete depends on rebound value (IS 13311:1992) Part2
1 st column	22 N/mm ²	30 to 40 (Good concrete)
2 nd column	22.5 N/mm ²	30 to 40 (Good concrete)
3 rd column	20 N/mm ²	30 to 40 (Good concrete)
4 th column	22 N/mm ²	30 to 40 (Good concrete)

Table 2: Approximate Comprehensive of Ground floor North direction column

E. The interior column of the building (From fig no 2.1.1)

18 th Column	19 th Column	20 th Column	21 st Column	22 nd Column	23 rd Column
28	25	38	22	30	32
30	22	32	35	38	36
32	30	28	42	32	28
36	35	30	36	35	36
32	36	28	28	32	28
30	32	32	30	30	30
Avg-31	Avg-30	Avg-31	Avg-32	Avg-33	Avg-32

Table 3: Rebound Numbers of the interior column of the building

Table 4: Approximate Compressive Strength of the interior column of the building

Location	Approximate Compressive	Quality of concrete depends
	strength	on rebound value
		(IS 13311:1992) Part2
18th column	22N/mm ²	30 to 40 (Good concrete)
19th column	20 N/mm ²	30 to 40 (Good concrete)
20 th Column	22 N/mm ²	30 to 40 (Good concrete)
21th column	22.5 N/mm ²	30 to 40 (Good concrete)
22th column	24 N/mm ²	30 to 40 (Good concrete)
23th column	22.5 N/mm ²	30 to 40 (Good concrete)

International Journal of Scientific Research in Engineering and Management (IJSREM)

Impact Factor: 7.185

ISSN: 2582-3930

Graph2: Relation between comprehensive strength and rebound number of the interior column of the building

Figure 3: Process of using Rebound hammer

3. Ultrasonic pulse velocity test:

- 1) Velocity- Travel length / Time.
- 2) The ultrasonic pulse velocity measures the time of travel of ultrasonic pulses which is passing through the concrete.
- 3) The equipment use was PUNDIT (Portable ultrasonic non-destructive digital indicating tester).
- 4) The direct transmission of ultrasonic pulse velocity test is adopted.
- A. Pulse velocity for concrete:

 Table 5: Pulse velocity for concrete of various columns

Sr.no	Location	Size	Pulse velocity	Concrete condition					
C1	Front elevation exterior column.	230x450	3535 m/s	Questionable					
C20	Intermediate column at ground storey.	230x450	3413 m/s	Questionable					
C21	Intermediate column at first storey.	230x450	4476 m/s	Good					
C15	Front column west side of building at first storey.	230x450	4285 m/s	Good					
C11	Front column on south west side of building at ground storey.	230x450	3362 m/s	Questionable					
C3	Front column on north side of building at ground storey	230x450	4583 m/s	Good					

Table 0. I disc velocity of concrete and its compressive strength									
Sr.no	Length	Pulse velocity	Classification	Compressive strength (IS 13311:1992) Part1 (table no:2)					
C1	0.45 m	3.5km/sec	Medium	20 TO 25 N/mm ²					
C20	0.45 m	3.4km/sec	Medium	20 TO 25 N/mm ²					
C21	0.45 m	4.47 km/sec	Very good	30 TO 35 N/mm ²					
C15	0.45 m	4.28 km/sec	Very good	30 TO 35 N/mm ²					
C11	0.45 m	3.3km/sec	Medium	20 TO 25 N/mm ²					
C3	0.45 m	4.58 km/sec	Very good	30 TO 35 N/mm ²					

B. In-situ quality criteria of concrete:

Table 6: Pulse velocity of concrete and its compressive strength

Figure 4: Process of using Ultrasonic pulse velocity test

4. Carbonation test:

- 1. 1% phenolphthalein solution sprayed on exposed fresh surface.
- 2. Unaffected by carbon dioxide having surface colour pink.
- 3. Coloured surface represents there is still Ca (OH)2 present in it.
- 4. The depth of carbonation can be determined as:
- d = coloured surface to the edge of specimen.
- 5. The carbonation depth is approximately equal to square root of time

1mm for 1 year, 3mm for 9 years.

Figure 5 Phenolphthalein solutions on concrete surface

5. Rebar locator:

- 1) Rebar locator is used for locating the number of bars in particular column and beam.
- 2) It also helps to determine the diameter of bars and clear cover.
- 3) With the help of rebar we can get the clear idea about existing reinforcement of structure without destructive testing.

Figure 6: Position of reinforcement in the column

After the load calculation the structure is design for earthquake Zone 3

Figure 7:3D View of RC Frame of building at Chandur Railway

2.1.3 After the design in STAADPRO the beam which are having less moment of resistance than required are F.R.P jacketed

Sr. No	Floor	Beam No	Dimension	M.R Of Existing	M.R Required	M.R By 1893:2002 by	Number Of Wrap	M.R Of Wrap Beam
				Beam	-	RCC Jacketing		-
1	Ground Floor	B12	230x380mm	61.02 KN-m	65 KN-m	108.50 KN-m (300x450mm)	1	69.39 KN-M
2	Ground Floor	B4	230x380mm	61.02 KN-m	65 KN-m	108.50 KN-m (300x450mm)	1	69.39 KN-M
3	1 st Floor	BT4	230x300mm	37.54 KN-m	41.56 KN- m	88.17 KN-m (300x380mm)	1	48.90KN-M
4	1 st Floor	BT6	230x300mm	37.54 KN-m	41.56 KN- m	88.17 KN-m (300x380mm)	1	48.90KN-M
5	1 st Floor	BT8	230x300mm	37.54 KN-m	41.56 KN- m	88.17 KN-m (300x380mm)	1	48.90KN-M
6	1 st floor	BT21	230x300mm	28.31KN-m	32.53 KN- m	88.17 KN-m (300x380mm)	1	35.77KN-M
7	1 st floor	BT22	230x300mm	28.31KN-m	32.53 KN- m	88.17 KN-m (300x380mm)	1	35.77KN-M
8	1 st floor	BT25	230x300mm	28.31KN-m	32.53 KN- m	88.17 KN-m (300x380mm)	1	35.77KN-M

Table No. 7: FRP Jacketing to the beam

2.1.3 After the design in STAADPRO the column which are having less reinforcement than required are R.C.C jacketed

Table No.	8: R.C	Jacketing	to	the	column
-----------	--------	-----------	----	-----	--------

Column No	n Existing		Existing	Stirrung	Requi	red	Required	Stirrung	Actual Steel	No Of Bar
110	L	B	steer	Details	L	B	steer	Details	Kequireu	
1	230	450	905	<u>6 mm @150mm</u>	380	600	1824	8mm-130mm	919	16X4,12x2
2	230	450	905	<u>6 mm @150mm</u>	380	600	1606	8mm-130mm	701	12x6
3	230	450	905	<u>6 mm @150mm</u>	380	600	1606	8mm-130mm	701	12x6
4	230	450	905	<u>6 mm @150mm</u>	380	600	1824	8mm-130mm	919	16X4,12x2
5	230	450	905	<u>6 mm @150mm</u>	380	600	1824	8mm-130mm	919	16X4,12x2
6	230	450	905	<u>6 mm @150mm</u>	380	600	1538	8mm-130mm	633	12x6
7	230	450	905	<u>6 mm @150mm</u>	380	600	1824	8mm-130mm	919	16X4,12x2
8	230	450	905	<u>6 mm @150mm</u>	380	600	2371	8mm-130mm	1466	16X6,12x2
9	230	450	905	<u>6 mm @150mm</u>	380	600	1824	8mm-130mm	919	16X4,12x2
10	230	450	1131	6 mm @150mm	380	600	1824	8mm-130mm	693	12x6

2.2 Condition assessment of residential building at Amravati city

5.2.1 Report of assessment

- 1) Name of project : Om Niwas (Amravati).
- 2) Date of assessment : 15-02-2022
- 3) Name of client : Mr. Shubham Rithe
- 4) Type of structure : Frame Structure
- 5) Life span
- 6) Use of building : Residential Building
- Future requirement : Assessment of the existing structural element and design according to is 1893-2016 for Zone 3 and rectify defects if any.
- 8) Requirements of clients:
 - No additional increase of size for upper stories.
 - Economical techniques for strengthening.
 - No use of destructive equipment while assessing the structure.

: 15 Years.

Figure 9: Floor Plan of Residential Building in Amravati city

5.2.2 Non-destructive testing adopted at site

Type of building - reinforced concrete framed building

Description of assessment items:

1. Visual inspection

A. Observation of cracks in beams – The cracks at the first and second story of building.

Types

1) Flexural crack – These cracks are formed at bottom of middle span below N.A of the beam where flexural stresses are maximum.

Remedies

- 1) Minor cracks: Repair by injecting epoxy resins and finish it by repair mortar (polymer modified mortar)
- 2) Flexural cracks and shear cracks: Repair by injection of low viscous grout and strengthening by F.R.P wrapping

Figure 10: Flexural Cracks in the Beam

B) Observation of cracks in column – Cracks at ground storey and first storey

Types-

1) Horizontal cracks - Moment of resistance inadequate and main reinforcement not in position.

Remedies-

1) Horizontal cracks: The column is R.C.C jacketed and cracks are grouted and levelled and rebar solution is applied for shear connectors.

C. Observation of cracks in slab - at ground floor slab

Types-

1) Thermal cracks: Variation due to temperature changes

Remedies-

1) Thermal cracks : The cracks are repaired by low viscous grout

D. Observation for corrosion of Reinforcement -

1) **Column** – the ground and first storey level column has been corroded due t0 insufficient clear cover and faulty workmanship while placing concrete.

Remedies: The R.C.C jacketing to be done to all ground and first floor column.

2) **Beam-** the longitudinal reinforcement of east sided beam on first and third story has affected by corrosion due to insufficient cover and inadequate confining reinforcement.

Remedies: The F.R.P. jacketing to be done to all ground and first floor column.

Figure 11: Slab Plaster Pilling and Reinforcement Corroded

- 2. Rebound Hammer Test -
- A. The ground floor column in east direction front to the playground (from fig no 2.2.1)

Column 1 st	Column 2 nd	Column 3 rd	Column 4 th	Column 5 th
25	32	31	33	32
35	35	33	34	33
30	26	31	34	29
28	32	30	33	32
38	34	31	35	29
32	28	32	32	28
Avg-31	Avg-32	Avg-31	Avg-33	Avg-30

Fable 9: Rebound Hamme	the ground floor	column in east direction
------------------------	------------------	--------------------------

Table 10: According to the	e rebound numbers the	e approximate con	mpressive strength
		· ····································	I

Location	Approximate Compressive strength	Quality of concrete depends on rebound value (IS 13311:1992) Part2
1 st column	22 N/mm ²	30 to 40 (Good concrete)
2 nd column	23 N/mm ²	30 to 40 (Good concrete)
3 rd column	22 N/mm ²	30 to 40 (Good concrete)
4 th column	24 N/mm ²	30 to 40 (Good concrete)
5 th column	20 N/mm ²	30 to 40 (Good concrete)

Volume: 06 Issue: 06 | June - 2022

Impact Factor: 7.185

ISSN: 2582-3930

Graph 3: Relation between comprehensive strength and rebound number of

Ground floor column in east direction

Figure 12: Process of using Rebound Hammer

- 3. Ultrasonic Pulse velocity test
- A. Pulse Velocity for Concrete:

Table 11: Pulse Velocity of column

Sr. No	Location	Size	Pulse velocity	Concrete
C1	Front Elevation Exterior Column (East Side)	300x450mm	3435m/sec	Questionable
C11	Intermediate Column At Ground Storey	300x450mm	3416m/sec	Questionable
C12	Intermediate Column At First Storey	300x450mm	4142 m/sec	Good
C17	Side Column Of North Side Of Ground Floor	300x450mm	3932 m/sec	Good
C26	Side Column On North Side Of Third Floor	300x450mm	4032 m/sec	Good
C6	Side Column On South Side Of First Floor	300x450mm	3925 m/sec	Good
C22	Side Column On South Side Of Second Floor	300x450mm	3425m/sec	Questionable
C24	Rare Column On West Side Of Ground Floor	300x450mm	3245m/sec	Questionable

B. Insitu quality criteria of concrete:

Sr. No.	Length	Pulse velocity	Classification	Compressive strength (IS 13311:1992) Part1
C1	0.45 m	3.435 KN/m	Medium	20 to 25 N/mm ²
C11	0.45 m	3.416KN/m	Medium	20 to 25 N/mm ²
C12	0.45 m	4.142 KN/m	Good	25 to 30 N/mm ²
C17	0.45 m	3.932 KN/m	Good	25 to 30 N/mm ²
C26	0.45 m	4.032 KN/m	Good	$25 \text{ to } 30 \text{ N/mm}^2$
C6	0.45 m	3.925 KN/m	Good	25 to 30 N/mm ²
C22	0.45 m	3.425 KN/m	Medium	20 to 25 N/mm ²
C24	0.45 m	3.245 KN/m	Medium	$20 \text{ to } 25 \text{ N/mm}^2$

Table 12: Approximate Compressive strength of column

Figure 13:Ultrasonic Pulse Velocity Test

4. Rebar locator:

Figure 14: Position of reinforcement in the column

After the load calculation the structure is design for earthquake Zone 3

Figure 15: 3D View of RC Frame of building at Amravati

2.1.3 After the design in STAADPRO the beam which are having less moment of resistance than required are F.R.P jacketed

Sr.No	Floor	Beam No	Dimensi on	M.R of Existing Beam	M.R By Required	M.R By R.C.C Jacketing	Number of Wrap	M.R By FRP Wrapping
1	Ground Floor	B21	300x380 mm	67.34 KN-m	72.52 KN-m	111.64 KN-m (380x450mm)	1	90.75 KN-m
2	Ground Floor	B18	300x380 mm	67.34 KN-m	72.52 KN-m	111.64 KN-m (380x450mm)	1	90.75 KN-m
3	1 st Floor	BS65	230x300 mm	37.56 KN-m	41.56 KN-m	88.17KN-m (300x380m)	1	47.63KN-m
4	1 st Floor	BS67	230x300 mm	37.56 KN-m	41.56 KN-m	88.17KN-m (300x380m)	1	47.63KN-m
5	1 st Floor	BS61	230x300 mm	60.25 KN-m	66.68 KN-m	111.64KN-m (380x450m)	1	76.86 KN-m
6	2 nd Floor	BT67	230x300 mm	37.56 KN-m	41.56 KN-m	88.17KN-m (300x380m)	1	47.63KN-m
7	2 nd Floor	BT61	300x380 mm	60.25 KN-m	66.68 KN-m	111.64KN-m (380x450mm)	1	76.86 KN-m
8	2 nd Floor	BT62	300x380 mm	60.25 KN-m	66.68 KN-m	111.64KN-m (380x450mm)	1	76.86 KN-m

Table No. 13: FRP Jacketing to the beam

COLUMN NO	EXIST COLU	FING UMN ZE	EXISTING STEEL	STIRRUPS DETILS	REQUI SIZ	RED E	REQUIRED STEEL	STIRRUPS DETILS	ACTUAL STEEL REQUIRED	NO OF BAR
	L	В			L	B				
C7	300	450	1068	<u>6 MM @</u> 150MM C/C	450	600	2380	8MM-130MM C/C	1312	16x4, 12X2
C8	300	450	1053	<u>6 MM @</u> 150MM C/C	450	600	2160	8MM-130MM C/C	1107	12x6
C10	300	450	1068	<u>6 MM @</u> 150MM C/C	450	600	2160	8MM-130MM C/C	1092	16x4, 12X2
C11	300	450	1353	<u>6 MM @</u> 150MM C/C	450	600	2160	8MM-130MM C/C	807	16X4
C12	300	450	1408	<u>6 MM @</u> 150MM C/C	450	600	2160	8MM-130MM C/C	752	16X4

2.1.3 After the design in STAADPRO the column which are having less reinforcement than required are R.C.C jacketed

5.3 Report of Assessment of Water Tank

5.3.1 Report of assessment

- 1) Name of project
- 2) Date of assessment
- 31-03-2022 :
- : Maharashtra Jeevan Pradhikaran, Subdivision, Achalpur

Elevated Service Reservoir (Wasni khurd).

- 3) Name of authority 4) Type of structure
- 5) Capacity of water tank :
- 7) Use of building

8) Future requirement

- 14 years. :
- Distribution of water throughout the village. :
- : Assessment of ESR and checks for resistant to lateral forces.
- 9) Requirements of authority
 - Only staging elements sizes should be revised, if any change in design.
 - After assessing the reservoir, if it fails then whole structure is constructed as a new.
 - No uses of destructive equipment while assessing the tank.

:

Figure 16: Plan and elevation of Water Tank

Ι

Water tank. :

:

- 6) Life span
- 20000 lit.

Volume: 06 Issue: 06 | June - 2022

Impact Factor: 7.185

ISSN: 2582-3930

2.3.2 Non-destructive testing adopted at site

Type of building – Reinforced concrete framed building

1. Visual inspection

a) Observation of cracks in beams – The cracks at the 1st level bracing.

Types

1) Shear cracks – When the shear reinforcement at corners are at large spacing.

Remedies

- 1) Minor cracks: Repair by injecting epoxy resins and finish it by repair mortar (polymer modified mortar)
- 2) Shear cracks: Repaired by epoxy mortar and finish it by rich mix.

b) Observation of cracks in column – Cracks at 2^{nd} and 3^{rd} level

Types

1. Diagonal cracks - Load carrying capacity of column is inadequate and reinforcement is insufficient.

2. Horizontal cracks - Moment of resistance inadequate and main reinforcement not in position.

Remedies

1) Diagonal cracks and horizontal cracks: The column cracks are filled by low viscous grout and then wrapping of fiber reinforced polymer around the column.

c) Observation of cracks in slab – At first floor slab

Types

1) Thermal cracks – Variation due to temperature changes.

Remedies

1) Temperature cracks: The cracks are repaired by low viscous grout and level it by putty.

d) Observation for corrosion of reinforcement -

Column – The 1st level column has been corroded due to insufficient clear cover and faulty workmanship while placing concrete.

Remedies

1. The R.C.C jacketing to be done to all ground column.

Figure 17: Shear cracks in the beam

2. Rebound hammer test -

A. The 1st level column in north direction column (from fig no.2.3.1)

Table 14: Rebound Numbers of 1st level column in north direction column

Column 1 st	Column 2 nd	Column 3 rd	Column 4 th
30	32	30	31
28	33	29	26
29	34	32	30
28	29	28	26
29	28	35	31
26	30	30	28
Avg-31	Avg-32	Avg-30	Avg-31

Table 15: Approximate Comprehensive of 1st level column in north direction column

11	1	
Location	Approximate Compressive strength	Quality of concrete depends on rebound value
1 st column	18 N/mm ²	20 to 30 (Good concrete)
2 nd column	22.5 N/mm ²	30 to 40 (Good concrete)
3 rd column	20 N/mm ²	30 to 40 (Good concrete)
4 th column	19 N/mm ²	20 to 30 (Good concrete)

Graph4: Relation between comprehensive strength and rebound number of 1st level column in north direction column

B. Bracing rebound number

Table 16: Rebound Numbers of the bracing						
CSB2	CTB1	CTB2				
35	30	28				
36	32	32				
33	28	30				
30	30	34				
Avg-33	Avg-30	Avg-31				
	CSB2 35 36 33 30 Avg-33 30 Avg-33 30 Avg-33 30	CSB2 CTB1 35 30 36 32 33 28 30 30 Avg-33 Avg-30				

 Table 17 : Approximate Compressive strength of the bracing

Location	Approximate	Quality of concrete depends on
	Compressive	rebound value
	strength	(IS 13311:1992) Part2
2 nd level bracing CSB1	24N/mm ²	30 to 40 (Good concrete)
2 nd level bracing CSB2	24N/mm ²	30 to 40 (Good concrete)
3 rd level bracing CTB1	20N/mm ²	30 to 40 (Good concrete)
3 rd level bracing CTB2	$22N/mm^2$	30 to 40 (Good concrete)

Graph5: Relation between comprehensive strength and rebound number of Bracing

Ι

Figure 18: Process of Rebound hammer test

3. Ultrasonic Pulse velocity test

A. Pulse Velocity for Concrete:

Table 18: Pulse velocity for concrete of various columns

Sr. No	Location	Size	Pulse velocity	Concrete condition
C1	1 st level column	230mm	3446m/sec	Questionable
C2	1 st level column	230mm	3986 m/sec	Good

B. In-situ quality criteria of concrete:

Table 19: In-sit	u quality criteria of	concrete
D-1		C

Sr.no	Radius	Pulse velocity	Classification	Compressive strength
C1	0.23m	3.446km/sec	Medium quality	20 to 25 N/mm ²
C2	0.23m	3.986km/sec	Good Quality	25 to 30 N/mm ²

Figure 19: Ultra sonic pulse velocity test

4. Rebar Locator:

Figure 20: Rebar locator After the load calculation the structure is design for earthquake Zone 3

Figure 21:3D of Water Tank

2.1.3 After the design in STAADPRO the column which are having less characteristics compressive strength than required are F.R.P jacketed

Fable No. 20	FRP jacketing	to the column	of 2 nd a	and 3rd level
--------------	----------------------	---------------	----------------------	---------------

Sr. No	Floor level	Column No	Column dimension Circular	fck By NDT	fck required	Number of wrap required	Confining pressure
1	2 nd Floor	CS1	Diameter 230mm	18N/mm ²	25 N/mm ²	2	26N/mm ²
2	2 nd Floor	CS 2	Diameter 230mm	18 N/mm ²	25 N/mm ²	2	26N/mm ²
3	2 nd Floor	CS 3	Diameter 230mm	18 N/mm^2	25 N/mm ²	2	26N/mm ²

r

2.1.3 After the design in STAADPRO the column which are having less reinforcement than required are R.C.C jacketed

Column No.	Existing Column size Diameter	Existing column steel	Stirrups details	Required size Diameter	Required steel	Stirrups details	Actual steel Required	No of bar
1	230	680	6 mm @150mm	380	1300	8mm-150mm	620	12x6
2	230	680	6 mm @150mm	380	1340	8mm-150mm	660	12x6

Table No. 21 R.C.C jacketing to the column of level 1

Conclusion:

1. The assessment of public building is carried out to extend two floors above and to check the existing condition of structural elements, whether they are capable of resisting the lateral forces or other natural calamities. The R.C jacketing to the ground floor columns is recommended as per the design criteria because the load carrying capacity of the ground floor column is inadequate. The cross section of non-jacketed column is 230x450mm, after designing the column for R.C jacketing it is increased by 30-40%, now jacketed cross section is 450x600 mm. The beams of the ground and first floor fails while designing the structure for earthquake forces, the moment of resistance of the existing beams is less than required. The F.R.P jacketing is recommended to the beam which is having inadequate moment of resistance.

2. The residential building is assessed to enhance resistance against lateral forces and to check deterioration of structure. The building ground and first storey columns fails while designing the structure for lateral forces, because of inadequate cross section and lack of the reinforcement to carry the load of two floors above. The R.C jacketing to the ground floor and first floor columns is recommended as per the design criteria. The cross section of non-jacketed column is 300x450mm, after designing the column for R.C jacketing it is increased by 30-40%, now jacketed cross section is 450x600 mm.

3. The beams of the ground, first and second floors fails while designing the structure for lateral forces, the moment of resistance of the existing beams is less than required. The F.R.P jacketing is recommended to the beam which is having inadequate moment of resistance.

4. After the assessment of water tank, the 1^{st} level columns are affected by corrosion of reinforcement and diagonal cracks, the R.C jacketing technique is recommended to the 1^{st} level column. The F.R.P jacketing to the 2^{nd} and 3^{rd} level columns is recommended because of its inadequate compressive strength and F.R.P material lightweight, so that the additional dead load on the foundation should not exceed. The reservoir has no point of leakages and safe while designing the tank for earthquake forces. For minor damping water proofing is suggested to the tank.

References:

1. M. K. Lim and H. Cao, "Combining multiple NDT methods to improve testing effectiveness "Journal of Construction Engineering Volume 2013 Article ID 834572.

2. Adam B. Noel, Ahmed Badway "SHM Using Wireless Sensor Networks: A Comprehensive Survey" Ieee Communication Surveys And Surveys Volume 19 N No 3, 201.

3. Hearn, G. and Testa, B. R., "Modal Analysis for Damage Detection in Structures", J. Structural Engrg., 117-10, ASCE, 1991. 20. IS13945, Repair and Seismic Strengthing of Building – Guidelines, Bureau of Indian Standars, New Delhi.

4. T. P. Meikandaan, Dr. A. Ramachandra Murthy (2017), "Flexural Behaviour of RC Beam Wrapped with GFRP Sheets". International Journal of Civil Engineering and Technology (IJCIET) Volume 8, Issue 2, February 2017, pp. 452–469.

5. Consuelo Beschi, Alberto Meda and Paolo Riva, (ANIDIS RIVA-2011) "Beam-Column Joint Retrofitting with High Performance Fibre Reinforced Concrete Jacketing" ANIDIS BARIA 2011.

6. IS 13935:1993, Repair and Seismic Strengthening of Buildings—Guidelines, Bureau of Indian Standards, New Delhi, 1993.

7. IS 15988: 2013, Seismic Evaluation and Strengthening of Existing Reinforced Concrete Building - Guidelines, Bureau of Indian Standards, New Delhi.

8. IS 1893 (Part 1):2002, Criteria For Earthquake Resistant Design of Structures - Guidelines, Bureau of Indian Standards, New Delhi.

9. IS 10262:2009 Concrete Mix Proportioning - Guidelines, Bureau of Indian Standards, New Delhi.