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Estimating the reliability function of the two parameter Weibull distribution is a critical task in various fields, 

providing essential insights into product longevity and optimizing maintenance strategies. Due to its adaptable 

parameters namely scale parameter α and shape parameter β, the Weibull distribution models diverse failure 

behaviours, from early-life defects to wear-out periods. By evaluating reliability at key time phases namely early 

life (t < 0.1α), useful life (0.1α ≤ t ≤ α), and end-of-life (t > α), this estimation process supports quality control, 

operational forecasting, and end-of-life planning. Such reliability assessments help minimize operational 

disruptions, improve cost management, and support strategic planning across industries where dependability and 

lifecycle management are essential, such as in manufacturing, healthcare, and technology sectors. Although it holds 

practical significance, the estimation of confidence interval (CI) for the reliability function of two parameter Weibull 

distribution has been relatively underexplored in the literature. This paper presents a new approach for constructing 

CI for the reliability function of the Weibull distribution using the generalized variable (GV) technique, applicable 

to both complete samples and type II singly right-censored samples. The empirical evaluation of this method 

indicates that it provides coverage probabilities that are closely aligned with the nominal level, even when dealing 

with small uncensored samples (as small as 5) and censored samples where the proportion of censored observations 

can reach 70%. In comparison, traditional methods for the Weibull distribution tend to yield less reliable or widely 

varied coverage probabilities for complete samples. The findings are demonstrated through practical examples. 

Keywords: Reliability, Confidence interval, Generalized Variable approach, Censoring. 

 

1 Introduction 

The two-parameter Weibull distribution has a wide range of applications across nearly all scientific disciplines. It 

is frequently employed to model data from various fields, including biology, environmental science, health, physical 

sciences, and social sciences. Additionally, this distribution is commonly used in meteorology and hydrology, 

establishing itself as a fundamental tool in reliability theory for analysing time-dependent failure data. Key 

references that underscore its relevance include works by Grace and Eagleson (1966), Crow (1982), Nathan and 

McMahon (1990), Selker and Haith (1990), Power (1992), Jiang et al. (1997), Duan et al. (1998), Jandhyala et al. 

(1999), Seshadri (1999), Aksoy (2000), Lun and Lam (2000), Seguro and Lambert (2000), Talkner and Weber 

(2000), Clarke (2002), Heo et al. (2001), Tan et al. (2007), Yang et al. (2007), Krishnamoorthy and Lin (2010), 

Kulkarni and Powar (2011), Jamdade and Jamdade (2012), J.I. McCool (2012) and Powar and Kulkarni (2015, 

among many others.  

A continuous random variable (RV) X is said to follow a Weibull distribution with scale parameter α and shape 

parameter β if its probability density function (pdf) is given by, 

 

 𝑓𝑋(𝑥; 𝛼, 𝛽) =
𝛽

𝛼
 (

𝑥

𝛼
)

𝛽−1
𝑒𝑥𝑝 (− (

𝑥

𝛼
)

𝛽
) ; 𝑥 > 0, 𝛼 > 0, 𝛽 > 0. 
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We denote it as X → Weibull (α, β). The reliability function at t, R(t), for Weibull (α, β) distribution is,  

𝑅(𝑡, 𝛼, 𝛽) = 𝑒𝑥𝑝 (− (
𝑡

𝛼
)

𝛽

) ; 𝑡 > 0, 𝛼 > 0, 𝛽 > 0. 

The estimation of CI for 𝑅(𝑡, 𝛼, 𝛽) plays a crucial role in understanding product longevity and optimizing 

maintenance strategies. For example, when assessing the reliability of light bulbs through Weibull (α, β) 

distribution, we can use a scale parameter, α, of 2000 hours and a shape parameter, β, of 1.5, which signifies a wear-

out failure mode.  

This analysis identifies three significant time periods for reliability evaluation: early life, useful life, and wear-out 

phases. In the early life stage (t < 200 hours), the model anticipates that failures primarily result from manufacturing 

defects, leading to a reliability function value of 𝑅(100,2000,1.5) ≈ 0.9889. This indicates that roughly 98.89% of 

light bulbs are expected to function successfully during the first 100 hours. 

As the bulbs transition into the useful life phase (200 ≤ t ≤ 2000 hours), they show minimal risk of failure, with a 

reliability function value of 𝑅(1000,2000,1.5) ≈ 0.7022. This suggests that about 70.22% of bulbs are likely to 

remain operational beyond 1000 hours. 

However, during the wear-out period (t > 2000 hours), the likelihood of failure begins to rise as the bulbs approach 

the end of their lifespan. In this phase, only 15.93% of bulbs are expected to last beyond 3000 hours, as indicated 

by 𝑅(3000,2000,1.5) ≈ 0.1593. 

These results emphasize the significance of reliability estimation across various time intervals, offering important 

insights for effective product lifecycle management, maintenance planning, and cost optimization strategies for 

lighting systems. 

In various life-testing and reliability studies, researchers often encounter difficulties in collecting complete data on 

failure times for all experimental units. For example, in clinical trials, limited funding may result in participants 

discontinuing their involvement in the study. In industrial experiments, units may experience unexpected failures, 

or they might be deliberately removed before failure to save time and reduce costs. The data gathered from such 

experiments are classified as censored data. Among the different types of censoring, Type-I and Type-II censoring 

are the most commonly recognized. 

Type-I censoring occurs when the duration of the experiment T is fixed, while the number of failures is variable. 

On the other hand, Type-II censoring involves a predetermined number of failures, referred to as r, with the duration 

of the experiment being variable. The GV method presented in this article is applicable to Type-II singly right-

censored samples, as the pivotal quantities for the maximum likelihood estimators (MLEs) are still valid in this 

scenario. 

Although the Weibull distribution is widely used across various fields, the estimation of CI for its reliability has 

been relatively underexplored in the literature, especially in the context of small sample sizes.  

Yang et al. (2007) proposed a method for constructing a CI for 𝑅(𝑡, 𝛼, 𝛽) by recognizing that a Weibull RV raised 

to the power of its shape parameter β acts as an Exponential RV with a mean 𝛼𝛽. This initial CI is referred to as the 

naive CI. To enhance the performance of the naive CI, especially regarding coverage probabilities for small sample 

sizes, the authors derived an analytical adjustment, leading to what they termed the analytically adjusted naive 

(AAN) CI for 𝑅(𝑡, 𝛼, 𝛽). 

When the shape parameter β is unknown, they suggested using estimators from maximum likelihood (ML) and 

modified maximum likelihood (MML) methods. Their results demonstrated that the MML-based CI consistently 
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outperformed the one based on ML. Therefore, in our comparative analysis, we chose to employ the MML-based 

CI for our evaluation.  

The empirical analysis presented in this article highlights notable inconsistencies between the estimated coverage 

probabilities and the nominal coverage probabilities of existing methods for CI estimation of 𝑅(𝑡, 𝛼, 𝛽). These 

inconsistencies are particularly evident for various values of t when working with uncensored samples, especially 

under small sample sizes. This situation is frequently encountered in healthcare research, where factors such as the 

high costs of laboratory testing for contaminant levels often limit sample sizes. 

Since regulatory requirements may necessitate the estimation of reliability at larger values of t using small to 

moderate sample sizes, addressing this challenge is essential. Therefore, the aim of this article is to introduce a 

method for estimating CI for the reliability of the widely used Weibull distribution. Our proposed method seeks to 

ensure that the coverage probabilities are closely aligned with nominal values, even when dealing with small sample 

sizes and across both uncensored and censored data scenarios for all values of t. 

This article focuses on the statistical challenge of estimating a CI for the reliability function of the Weibull 

distribution, using the GV approach pioneered by Tsui and Weerahandi (1989) and further refined by Weerahandi 

(1993). For a detailed exploration of the GV approach and its diverse applications, we recommend the texts by 

Weerahandi (1995, 2004). Furthermore, Hannig et al. (2006) offer insightful examples that illustrate the practical 

use of the GV approach. This methodology enables the creation of a generalized pivotal quantity (GPQ), which is 

essential for deriving CIs for various parametric functions of interest. 

Unlike traditional pivotal quantities, a GPQ is constructed from observed statistics and random variables, and does 

not rely on unknown parameters. A key benefit of the GV approach is its capability to directly derive a GPQ for a 

function of parameters by substituting the GPQs corresponding to the individual parameters (Krishnamoorthy et al. 

(2009)). The objective of this article is to introduce a GV approach for formulating two-sided CI for the reliability 

function of any distribution that has GPQs for its parameters. We assess the performance of the proposed method 

for the Weibull distribution through numerical simulations involving both uncensored and Type-II singly right-

censored samples.  

The organization of this paper is as follows: Section 2 provides an overview of the essential preliminaries related 

to GPQ and introduces the proposed method. Section 3 details the construction of CI for the reliability function of 

the Weibull distribution. Section 4 reviews current methods in the literature for estimating CIs for Weibull reliability 

function, comparing these with the proposed approach through simulation studies focusing on CI coverage 

probabilities. Section 5 examines the applications of the proposed CI method, and Section 6 presents concluding 

remarks. 

2 Confidence Interval Based on GPQ Methodology:  

A GPQ, denoted as 𝐺𝜃 for a parameter θ, is defined as a RV 𝑇𝜃(𝑋; 𝑥), where X is a RV with a distribution dependent 

on the parameter of interest θ and an additional nuisance parameter δ. The observed value of X is represented by 𝑥,  

and 𝑇𝜃(𝑋; 𝑥) adheres to the following two conditions. 

1. The value of 𝐺𝜃 = 𝑇𝜃(𝑋; 𝑥) at 𝑋 = 𝑥, is free from the nuisance parameter δ. For most of the cases, 𝐺𝜃 =

𝜃.  

2. The distribution of 𝐺𝜃 = 𝑇𝜃(𝑋; 𝑥) for given 𝑋 = 𝑥 is free from any unknown parameters. 

 

2.1 The proposed CI for a population reliability: 

Consider a random sample  𝑋1, 𝑋2, … , 𝑋𝑛 of size n from a distribution with pdf 𝑓𝑋(𝑥; 𝜃), where 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑘) 

is a vector of unknown parameters. It is assumed that a GPQ is available for each component of 𝜃 ∈ 𝛩 ⊆  ℜ𝑘  , with 
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the vector of GPQs denoted as                                             𝐺𝜃 = (𝐺𝜃1
, 𝐺𝜃2

, … , 𝐺𝜃𝑘
). Let 𝑅(𝑡, 𝜃) be the reliability 

function of X. Although 𝑅(𝑡, 𝜃) may not always have a closed-form expression, it can be numerically determined 

for specific values of t and θ. A GPQ for 𝑅(𝑡, 𝜃) can be expressed as: 

𝐺𝑅𝑡
= 𝑅(𝑡, 𝐺𝜃)     (1) 

where 𝐺𝑅𝑡
 has a distribution independent of 𝜃. Thus, a two-sided CI for 𝑅(𝑡, 𝜃) at a confidence level of 

(1−α)×100%, based on the GPQ 𝐺𝑅𝑡
, can be constructed by the following process: 

1. For observed data 𝑥 and maximum likelihood estimates (or other equivariant estimators)  𝜃0̂ of 𝜃, repeat 

the following steps N times (for example, N=100,000): 

i. Calculate GPQs 𝐺𝜃 = (𝐺𝜃1
, 𝐺𝜃2

, … , 𝐺𝜃𝑘
) for 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑘), potentially using the method 

suggested by Iyer and Patterson (2002). 

ii. Calculate 𝐺𝑅𝑡
using the expression (1) above. 

2. The (100×α/2)th and 100×(1−α/2)th, 0 ≤ α ≤1,  percentiles of the generated N values of 𝐺𝑅𝑡
 serve as the 

lower (L) and upper (U) bounds of the two-sided (1−α)×100% CI for 𝑅(𝑡, 𝜃), denoted as [L,U]. This 

interval will be referred to as a "Generalized Confidence Interval (GCI)" for 𝑅(𝑡, 𝜃).  

GPQ-based inference is known to produce exact results; see, for example, Roy and Bose (2009). 

3 The proposed CI for 𝑹(𝒕, 𝜶, 𝜷) of Weibull (α, β) distribution:  

For a complete sample, the MLE �̂� for 𝛽 is the solution to the equation: 

1

�̂�
−

∑ 𝑥𝑖
�̂� 𝑙𝑜𝑔(𝑥𝑖)𝑛

𝑖=1

∑ 𝑥𝑖
�̂�𝑛

𝑖=1

+
1

𝑛
∑ 𝑙𝑜𝑔(𝑥𝑖)𝑛

𝑖=1 = 0  (2) 

with �̂� = (∑ 𝑥𝑖
�̂� /𝑛𝑛

𝑖=1 )
1/�̂�

. 

For a Type-II singly right-censored sample, in which we observe only the smallest r observations, 𝑥(1) ≤ 𝑥(2) ≤

⋯ ≤ 𝑥(𝑟), the MLE for 𝛽 is found by solving the equation: 

1

�̂�
−

∑ 𝑥𝑖𝑢
�̂� 𝑙𝑜𝑔(𝑥𝑖𝑢)𝑛

𝑖=1

∑ 𝑥𝑖𝑢
�̂�𝑛

𝑖=1

+
1

𝑟
∑ 𝑙𝑜𝑔(𝑥𝑖𝑢)𝑟

𝑖=1 = 0  (3) 

and �̂� = (∑ 𝑥𝑖𝑢
�̂� /𝑛𝑛

𝑖=1 )
1/�̂�

.  

Here, 𝑥𝑖𝑢 = 𝑥(𝑖) denotes the observed values in ordered form for i =1, 2,…,r and 𝑥𝑖𝑢 = 𝑥(𝑟) for i=r+1,…,n. The 

Newton–Raphson method can be applied to iteratively solve the equations (2) and (3), and softwares such as R and 

MINITAB provides tools to estimate these parameters directly. 

3.1 GPQs for parameters 𝜶, 𝜷, and 𝑹(𝒕, 𝜶, 𝜷): 

Krishnamoorthy et al. (2009) introduced GPQs for parameters 𝛼 and 𝛽 as follows. Let 𝛼0̂ and 𝛽0̂ denote the 

observed values of the MLEs �̂� and �̂�, respectively. Then, the GPQs for 𝛼 and 𝛽 can be defined by: 

𝐺𝛼 = 𝛼0̂  (
𝛼

�̂�
)

�̂�/𝛽0̂
= 𝛼0̂ (

1

�̃�
)

�̃�/𝛽0̂
   (4) 
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and 

𝐺𝛽 =
𝛽

�̂�
 𝛽0̂ =

𝛽0̂

�̃�
    (5) 

where �̃�  and �̃�  represent the MLEs of 𝛼 and 𝛽 based on a censored or uncensored sample from a Weibull (1,1) 

distribution. Using equation (1), the GPQ for 𝑅(𝑡, 𝛼, 𝛽) can be expressed as:  

 𝐺𝑅𝑡
= 𝑅(𝑡, 𝐺𝛼, 𝐺𝛽) =  𝑒𝑥𝑝 (− (

𝑡

𝐺𝛼
)

𝐺𝛽
) = 𝑒𝑥𝑝 (− (

𝑡(�̃�)�̃�/𝛽0̂

𝛼0̂
)

𝛽0̂
�̃�

) (6) 

To compute a two-sided (1−α)100% GCI for 𝑅(𝑡, 𝛼, 𝛽) with t > 0, based on a complete sample, the following 

algorithm can be used. This method also applies to Type-II singly right-censored samples, using the relevant MLEs 

and GPQs. 

Steps of the Algorithm: 

1. Calculate the MLEs 𝛼0̂ and 𝛽0̂ for the parameters 𝛼 and 𝛽 from a sample 𝑥1, 𝑥2, … , 𝑥𝑛 of size n, assuming 

a Weibull (α, β) distribution. 

2. Given the values 𝛼0̂ and 𝛽0̂, repeat the following process N times (e.g., N=100,000): 

i. Generate n independent random values 𝑥111, 𝑥211, 𝑥311
, … , 𝑥𝑛11

 from a Weibull(1,1) distribution, 

then estimate �̃�  and �̃�, the MLEs for 𝛼 and 𝛽 from this generated data.    

ii. Use Equations (4) and (5) to compute the GPQs, 𝐺𝛼 and 𝐺𝛽. 

iii. Use Equation (6) to determine 𝐺𝑅𝑡
, the GPQ for 𝑅(𝑡, 𝛼, 𝛽).  

The (1−α)×100% GCI for 𝑅(𝑡, 𝛼, 𝛽) with t > 0 can be expressed as follows: 

[𝐺𝑅𝑡;𝛼/2,  𝐺𝑅𝑡;1−𝛼/2 ]   (7) 

where 𝐺𝑅𝑡;𝛼 represents the (100×α)th percentile of 𝐺𝑅𝑡
.  

4 A comparative study 

The two-parameter Weibull distribution is extensively used in manufacturing, healthcare, and technology sectors, 

with applications demonstrated in studies by Lun and Lam (2000), Krishnamoorthy and Lin (2010), and Jamdade 

and Jamdade (2012). This research conducts a comparative analysis of the proposed GCI with existing methods, 

focusing on complete sample cases.  

4.1Existing method 

Analytically adjusted naïve CI based on modified ML estimator (AANMML): 

Yang et al. (2007) introduced a two-sided (1−α)×100% CI for 𝑅(𝑡, 𝛼, 𝛽) by applying a Weibull-to-Exponential 

transformation. This interval is expressed as: 

[𝑒𝑥𝑝 (−
𝑡�̌�𝜒2𝑛,𝛼/2

2∗

2𝑆(�̌�)
) , 𝑒𝑥𝑝 (−

𝑡�̌�𝜒2𝑛,1−𝛼/2
2∗

2𝑆(�̌�)
)  ]  (8) 

where 𝑆(�̌�) = ∑ 𝑥𝑖
�̌�𝑛

𝑖=1  and �̌� is the MML estimate, determined by solving: 
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𝑛 − 2

�̌�
− (𝑛 ∑ 𝑋𝑖

�̌�

𝑛

𝑖=1

𝑙𝑜𝑔𝑋𝑖) (∑ 𝑋𝑖
�̌�

𝑛

𝑖=1

)

−1

+ ∑ 𝑙𝑜𝑔𝑋𝑖 = 0

𝑛

𝑖=1

 

Here, 𝜒2𝑛,𝛿
2∗ = 𝑐𝜒2𝑛,𝛿

2 − 2𝑛(𝑐 − 1) with 𝑐2 = 1 + 0.6079 (0.4226 − �̌�𝑙𝑜𝑔(𝑡/�̌�))
2
,                 �̌� = (

∑ 𝑋𝑖
�̌�𝑛

𝑖=1

𝑛
)

1/�̌�

and 

𝜒𝑛,𝛿
2  is the 𝛿th quantile of the chi-square distribution with n degrees of freedom. The adjusted CI based upon �̌� has 

been shown to consistently provide better precision than the standard MLE �̂�. 

4.2 Evaluation and comparison of the CIs:  

The following empirical analysis was carried out to evaluate the proposed method in comparison to existing one. 

In this study, we set a significance level of α = 0.05. We generated 10,000 samples from the Weibull distribution, 

utilizing scale parameters α=0.5,1,2,…,6 and shape parameters β=0.3,0.5,1,5,7,9,10 and considering values of t 

such that reliability function takes the values 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99 across various sample sizes 

of n=5,15,25,50. The resulting lower and upper limits Li, and Ui  (i=1,2,…,10,000) for the two-sided CIs were 

computed using Equations (7) and (8). Finally, we calculated the coverage probability, which represents the 

proportion of intervals that included the true value of 𝑅(𝑡, 𝛼, 𝛽) for each confidence interval assessed.  

The main objective of this study is to evaluate the effectiveness of CI estimators for various sample sizes (n) and 

various values of t. We present boxplots that display the percentage of coverage probabilities for all combinations 

of n, α, β, and R(t) associated with the above CIs in Figures 1 and 2. The results highlight the superior performance 

of the proposed GV method when compared to existing method. Specifically, the boxplots indicate that the coverage 

probabilities from the GV method closely match the nominal level and are tightly concentrated. This outcome is 

anticipated, given that the conventional methods are often asymptotic or approximate. In contrast, the GV method, 

as noted in the findings of Roy and Bose (2009), is regarded as exact. To our knowledge, this proposed method is 

unique in its exactness, and we recommend its application in practical scenarios. 

For Type II censored samples, the proportion of censored observations, denoted as                               PC = 

𝑃(𝑋 > 𝑋(𝑟)), is selected at values of 0.3, 0.5, and 0.7. To ensure clarity and brevity, the results are illustrated 

through graphical representations in Figures 3 and 4 for the proportions PC=0.3, 0.5, 0.7. The visual data in Figures 

1 to 4 demonstrate that the proposed method consistently achieves coverage probabilities that are closely aligned 

with 0.95, even for small uncensored sample sizes, such as 5. This accuracy is preserved for censored samples, as 

long as the proportion of censored observations remains up to 0.70. 

5. Applications in Environmental Monitoring: Focus on Groundwater and Air Quality 

This section presents an analysis of two real-world datasets to illustrate how interval estimation of reliability, based 

on the commonly used Weibull distribution, can be applied in hydrology and environmental science. 

5.1 Analysis and Trends in Groundwater Contamination Levels 

Vinyl chloride ranks among the top fifty chemicals produced globally, with annual production nearly doubling over 

the last 20 years to an estimated 27 million tons. Due to its toxicity and carcinogenic nature, elevated vinyl chloride 

levels in water are linked to serious health risks such as cancer and liver damage, making it a critical contaminant 

in groundwater. This study examines vinyl chloride levels from cleanup-gradient monitoring wells. Previous 

research by Krishnamoorthy et al. (2009) found that these concentrations fit well with a Weibull distribution model. 

The vinyl chloride data, measured in micrograms per liter (µg/L), includes values: 5.1, 2.4, 0.4, 0.5, 2.5, 0.1, 6.8, 

1.2, 0.5, 0.6, 5.3, 2.3, 1.8, 1.2, 1.3, 1.1, 0.9, 3.2, 1.0, 0.9, 0.4, 0.6, 8.0, 0.4, 2.7, 0.2, 2.0, 0.2, 0.5, 0.8, 2.0, 2.9, 0.1, 

and 4.0. Using a Kolmogorov–Smirnov test, we found a two-tailed P value of 0.94, supporting the Weibull 

distribution model for this dataset. MLEs of the parameters for this data are �̂� = 1.89 and �̂� = 1.01. The U.S. 
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Environmental Protection Agency (USEPA) suggests a safe concentration range between 2.0 and 2.4 µg/L. Based 

on our confidence interval at 95%, the threshold of 2.4 µg/L is reached at 0.4142, indicating that approximately 

41% of the concentrations are likely to exceed this threshold, underscoring the importance of monitoring in these 

wells. 

 

5.1 Analysing Lead Concentration Data in Air Quality 

Lead, a soft and easily shaped metal, is present in the atmosphere as tiny particulate matter. Natural processes such 

as soil erosion, volcanic eruptions, sea spray, and wildfires introduce lead into the air, while human activities 

including smelting, mining, waste incineration, battery recycling, and lead product manufacturing also contribute 

significantly to airborne lead. When people breathe in or ingest lead-laden dust or fumes, it accumulates in the body 

and can cause symptoms like joint pain, muscle aches, anaemia, gastrointestinal distress, sleep disruption, 

concentration issues, headaches, and hypertension. Children exposed to lead can experience developmental 

challenges with motor skills, memory, and attention, as well as colic and stomach discomfort. Children, especially 

young ones, are particularly susceptible due to their developing bodies. For pregnant women, any lead exposure is 

concerning, as it can impact the foetus, leading to outcomes like premature birth, low birth weight, miscarriage, or 

even stillbirth. This underscores the importance of careful regulation of lead levels in air quality. 

In this study, lead concentrations in the air (measured in µg/m³) were sampled by the National Institute of 

Occupational Safety and Health (NIOSH) across 15 different areas of a facility, as part of a health hazard assessment 

(Krishnamoorthy & Mathew (2009)). Concentration levels recorded included values of 200, 120, 15, 7, 8, 6, 48, 61, 

380, 80, 29, 1000, 350, 1400, and 110. Using the Kolmogorov–Smirnov test, the data closely aligned with a Weibull 

distribution (P-value of 0.95), indicating its suitability as a model. MLEs for Weibull parameters were             �̂� =

176.6 and �̂� = 0.63  . The Occupational Safety and Health Administration (OSHA) designates 50 µg/m³ as the 

occupational exposure limit (OEL) for lead, which corresponds to an upper limit at a threshold level 0.8075 in this 

analysis. Findings indicate that around 81% of these sampled concentrations may surpass the threshold level with 

95% confidence, highlighting the need for ongoing air quality monitoring in workplace environments. 

6 Overall conclusion 

This article introduces a method for constructing confidence intervals (CIs) for the reliability function of a two-

parameter Weibull distribution using generalized variable approach. The method is applicable to both complete and 

Type-II censored data and is straightforward to implement. Simulation results demonstrate that the proposed CIs 

achieve coverage probabilities close to nominal values, even for small sample sizes down to 5 observations in 

uncensored cases and for Type-II right-censored samples with censoring levels up to 70%. Real-world datasets are 

analysed to illustrate the method's practical use in assessing health risks associated with environmental exposure to 

chemicals and microbes. 
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Fig.1 Box plots of simulated expected coverage probabilities (in percentage) for 95% CIs based upon GV, AANML 

and AANMML methods for sample sizes n=5,15 over the range of                    α = 0.5,1,2,…,6, β = 0.3,0.5,1,5,7,9,10 

and R(t) = 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99. 
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Fig.2 Box plots of simulated expected coverage probabilities (in percentage) for 95% CIs based upon GV, AANML 

and AANMML methods for sample sizes n=25,50 over the range of                 α = 0.5,1,2,…,6, β = 0.3,0.5,1,5,7,9,10 

and R(t) = 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99. 
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Fig.3 Box plots of simulated expected coverage probabilities (in percentage) for 95% GCI based upon GV method 

for various sample sizes n=5, 15 over the range of α = 0.5,1,2,…,6,                     β = 0.3,0.5,1,5,7,9,10 and R(t) = 

0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99 for Type-II censored samples with proportion of censoring (in percentage) 

PC= 30%, 50%, 70%. 
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Fig.4 Box plots of simulated expected coverage probabilities (in percentage) for 95% GCI based upon GV method 

for various sample sizes n=25, 50 over the range of α = 0.5,1,2,…,6,                     β = 0.3,0.5,1,5,7,9,10 and R(t) = 

0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99 for Type-II censored samples with proportion of censoring (in percentage) 

PC= 30%, 50%, 70%. 
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