

### **CONNECTION BETWEEN SPECIAL PYTHAGOREAN TRIANGLES AND**

### **DISARIUM NUMBER**

### G.Janaki<sup>1</sup> and P. Sangeetha<sup>2</sup>

<sup>1</sup>Associate Professor, PG and Research and Department of Mathematics, Cauvery College for Women (Autonomous), Bharathidasan University, Tiruchirappalli.

<sup>2</sup> Assistant Professor, PG and Research and Department of Mathematics, Cauvery College for Women (Autonomous), Bharathidasan University, Tiruchirappalli.

E mail ID: 1 janakikarun@rediffmail.com and 2 psangeethashree@cauverycollege.ac.in

\_\_\_\_\_\_\*\*\*\_\_\_\_\_

**Abstract** - We present Special Pythagorean Triangles in connection with the Disarium numbers. Also we present the number of primitive and non-primitive Pythagorean triangles and some special cases are also discussed. A few interesting results are obtained.

Key Words: Pythagorean Triangles, Disarium Number.

### **1.INTRODUCTION**

Mathematics is the language of patterns and relationships, and is used to describe anything that can be quantified. Number theory is one of the largest and oldest branches of Mathematics. The main goal of Number theory is to discover interesting and unexpected relationships. It is devoted primarily to the study of natural numbers and integers. In Number theory, Pythagorean triangles have been a matter of interest to various mathematicians. For an extensive variety of fascinating problems one may refer [1-5]. Apart from the polygonal numbers we have some more fascinating patterns of numbers namely Jarasandha numbers, Nasty numbers and Dhuruva numbers. These numbers have been presented in [6-9]. In [10-11], special Pythagorean triangles connected with Polygonal numbers and Nasty numbers are obtained. Recently in [12-13], special Pythagorean triangles in connection with Hardy Ramanujan number 1729 and Jarasandha Numbers are obtained. In this communication, we present Special Pythagorean Triangles in connection with the Disarium numbers. Also we present the number of primitive and nonprimitive Pythagorean triangles and some special cases are also discussed. A few interesting relations between the numbers and some special number patterns are presented.

### 2. Basic Definitions:

### **Definition 1**

The ternary quadratic Diophantine equation given by  $x^2 + y^2 = z^2$  is known as **Pythagorean** equation where x, y and z are natural numbers. The above equation is also referred to as Pythagorean triangle and denote it by T(x, y, z) Also, in Pythagorean triangle  $T(x, y, z): x^2 + y^2 = z^2$ , x and y are called its legs and z its hypotenuse.

### **Definition 2**

Most cited solution of the Pythagorean equation is  $x = m^2 - n^2$ , y = 2mn,  $z = m^2 + n^2$  where

m > n > 0. This solution is called **primitive**, if m, n are of opposite parity and gcd(m, n) = 1.

### **Definition 3**

A number will be called **"DISARIUM"** if sum of its digits powered with their respective positions equal to the original number.

#### 3. METHOD OF ANALYSIS:

#### Special pythagorean triangles

**Case 1:** When m,n are of Disarium number,we get 28 pythagorean triangles.

| Table 1: Pythagorean Trian | gles with m and n of Disarium |
|----------------------------|-------------------------------|
| Number                     |                               |

| т    | n   | $x^2$              | $y^2$              | $z^2 = x^2 + y^2$  |
|------|-----|--------------------|--------------------|--------------------|
| 135  | 89  | 10617241           | 57744090           | 683613316          |
| 175  | 89  | 6<br>51547161<br>6 | 0<br>97032250<br>0 | 1485794116         |
| 518  | 89  | 67809722<br>409    | 85015776<br>16     | 76311300025        |
| 598  | 89  | 12227820<br>0489   | 11330325<br>136    | 133608525625       |
| 1306 | 89  | 28822362<br>21225  | 54041371<br>024    | 2936277592249      |
| 1676 | 89  | 78459091<br>13025  | 88999595<br>584    | 7934908708609      |
| 2427 | 89  | 34602723<br>878464 | 18662918<br>4036   | 3478935306250<br>0 |
| 175  | 135 | 15376000<br>0      | 21344400<br>00     | 2102222500         |
| 518  | 135 | 62549509<br>801    | 19560819<br>600    | 71998305625        |
| 598  | 135 | 11517810<br>5641   | 26069331<br>600    | 141247437241       |
| 1306 | 135 | 28473558           | 12434086           | 2971696747321      |



Volume: 07 Issue: 06 | June - 2023

SJIF Rating: 8.176

ISSN: 2582-3930

|      |     | 82921    | 4400     |               |
|------|-----|----------|----------|---------------|
| 1676 | 135 | 77882911 | 20477435 | 7993065494401 |
|      |     | 44001    | 0400     |               |
| 2427 | 135 | 34481605 | 42940498 | 3491101037091 |
|      |     | 386816   | 4100     | 6             |
| 518  | 175 | 56500814 | 32869690 | 89370504601   |
|      |     | 601      | 000      |               |
| 598  | 175 | 10691526 | 43806490 | 150721756441  |
|      |     | 6441     | 000      |               |
| 1306 | 175 | 28091503 | 20894041 | 3014602260121 |
|      |     | 06704    | 0000     |               |
| 1676 | 175 | 77192342 | 34409956 | 8063333839201 |
|      |     | 79201    | 0000     |               |
| 2427 | 175 | 34336130 | 72156530 | 3505769627011 |
|      |     | 967616   | 2500     | 6             |
| 598  | 518 | 79709184 | 38381494 | 387318277801  |
|      |     | 00       | 2784     |               |
| 1306 | 518 | 20658657 | 18306522 | 3896518081600 |
|      |     | 85344    | 96256    |               |
| 1676 | 518 | 64549125 | 30148627 | 9408040966009 |
|      |     | 85104    | 04896    |               |
| 2427 | 518 | 31606940 | 63220665 | 3792900677440 |
|      |     | 220025   | 54384    | 9             |
| 1306 | 598 | 18171902 | 24397690 | 4256959297600 |
|      |     | 73024    | 24576    |               |
| 1676 | 598 | 60092246 | 40180042 | 1002722889640 |
|      |     | 82384    | 14016    | 0             |
| 2427 | 598 | 30611045 | 84256208 | 3903666677248 |
|      |     | 925625   | 46864    | 9             |
| 1676 | 130 | 12173591 | 19164362 | 2038172151054 |
|      | 6   | 55600    | 354944   | 4             |
| 2427 | 130 | 17511655 | 40187028 | 5769868428122 |
|      | 6   | 504249   | 776976   | 5             |
| 2427 | 167 | 94947363 | 66183171 | 7567790748302 |
|      | 6   | 10609    | 172416   | 5             |

Thus it is seen that there are 28 pythagorean triangles. Of these 28 pythagorean triangles, 18 is a primitive triangle and other 10 is non-primitive triangle.

**Case 2:** When x = 89 (2 digit Disarium number)

### Table 2: Pythagorean Triangles with x = 89 (2-digitDisarium Number)

| т  | п  | $x^2$ | $y^2$    | $z^2 = x^2 + y^2$ |
|----|----|-------|----------|-------------------|
| 45 | 44 | 7921  | 15681600 | 15689521          |

Thus it is seen that one pythagorean triangle is primitive.

ii) When x = 135 (3 digit Disarium number)

Table 3: Pythagorean Triangles with x = 135 (3digit Disarium Number)

| т  | п  | $x^2$ | $y^2$    | $z^2 = x^2 + y^2$ |
|----|----|-------|----------|-------------------|
| 68 | 67 | 18225 | 83028544 | 83046769          |
| 24 | 21 | 18225 | 1016064  | 1034289           |
| 12 | 3  | 18225 | 5184     | 23409             |
| 16 | 11 | 18225 | 123904   | 142129            |

Thus it is seen that there are 4 pythagorean triangles. Of these 4 pythagorean triangles, 2 is a primitive triangle and other 2 is non-primitive triangle.

iii) When x = 175 (3 digit Disarium number) Table 4: Pythagorean Triangles with x = 175 (3-digit Disarium Number)

| т  | п  | $x^2$ | $y^2$     | $z^2 = x^2 + y^2$ |
|----|----|-------|-----------|-------------------|
| 88 | 87 | 30625 | 234457344 | 234487969         |
| 20 | 15 | 30625 | 360000    | 390625            |
| 16 | 9  | 30625 | 82944     | 113569            |

Thus it is seen that there are 3 pythagorean triangles. Of these 3 triangles,2 is a primitive and other 1 is non-primitive triangle.

iv) When x = 518,598 and 1306, which is impossible as x is even.

v) when  $x = m^2 - n^2 = 2427$  (4 digit Disarium number)

#### Table 5: Pythagorean Triangles with x = 2427 (4digit Disarium Number)

| т    | п    | $x^2$   | $y^2$         | $z^2 = x^2 + y^2$ |
|------|------|---------|---------------|-------------------|
| 1214 | 1213 | 5890329 | 8673990986896 | 8673996877225     |
| 406  | 403  | 5890329 | 107083399696  | 107089290025      |

Thus it is seen that there are 2 Pythagorean triangles. Both the Pythagorean triangles are primitive.

**Case 3 :** When y = Disarium number, then y = 2mn.

i) Since we had taken only the Disarium numbers 89,135,175 & 2427. All these numbers are odd, so for y = Disarium number we get no Pythagorean triangles for these numbers.

ii) when y = 598 (3 digit Disarium number)

y = 2mn = 598

### Table 6: Pythagorean Triangles with x = 135 (3-digitDisarium Number)

| т    | п   | $x^2$      | $y^2$  | $z^2 = x^2 + y^2$ |  |  |
|------|-----|------------|--------|-------------------|--|--|
| 299  | 1   | 7992360000 | 357604 | 7992717604        |  |  |
| 23   | 13  | 129600     | 357604 | 487204            |  |  |
| TT1. | TTL |            |        |                   |  |  |

Thus it is seen that there are 2 Pythagorean triangles. Both the Pythagorean triangles are rimitive.

iii) when y = 518

### Table 7: Pythagorean Triangles with x = 518 (3digit Disarium Number)

| т   | n | $x^2$      | $y^2$  | $z^2 = x^2 + y^2$ |
|-----|---|------------|--------|-------------------|
| 259 | 1 | 4499726400 | 268324 | 4499994724        |
| 37  | 7 | 1742400    | 268324 | 2010724           |

Thus it is seen that there are 2 Pythagorean triangles. Both the Pythagorean triangles are primitive.

iv) when y=1306

## Table 8: Pythagorean Triangles with x = 1306 (4-digit Disarium Number)

| т                                                             | п | $x^2$        | $y^2$   | $z^2 = x^2 + y^2$ |  |
|---------------------------------------------------------------|---|--------------|---------|-------------------|--|
| 653                                                           | 1 | 181823782464 | 1705636 | 181825488100      |  |
| Thus it is seen that above Pythagorean triangle is primitive. |   |              |         |                   |  |



v) when y=1676

# Table 9: Pythagorean Triangles with x = 1676 (4-digit Disarium Number)

| m  | ı  | п | $x^2$        | $y^2$   | $z^2 = x^2 + y^2$ |
|----|----|---|--------------|---------|-------------------|
| 83 | 88 | 1 | 493145231049 | 2808976 | 493148040025      |
| 41 | 9  | 2 | 30821313600  | 2808976 | 30822015844       |

Thus it is seen that there are 2 Pythagorean triangles. Both the Pythagorean triangle is primitive.

**Case 4:** When  $z = m^2 + n^2$  Disarium number, then we get pythagorean triangles only for the Disarium number 89 and 1306

- a)  $z = m^2 + n^2 = 89$  we get one pythagorean triangle b)  $z = m^2 + n^2 = 1306$  we get one pythagorean
- b)  $z = m + n^{-} = 1306$  we get one pythagorean tiangle.

# Table 10: Pythagorean Triangles with z = 89 &1306 Disarium Numbers

| т  | п | $x^2$   | $y^2$  | $z^2 = x^2 + y^2$ |
|----|---|---------|--------|-------------------|
| 8  | 5 | 1521    | 6400   | 7921              |
| 35 | 9 | 1308736 | 396900 | 1705636           |

Thus it is seen that there are 2 Pythagorean triangles. Both the Pythagorean triangles are primitive.

#### Case 5.

Hypotenuse and one leg are consecutive and the other leg equals Disarium number .when hypotenuse and one leg are consecutive ,then either z = x+1 or z = y+1

i) If z = y + 1 we get

$$m^2 + n^2 = 2mn + 1$$

$$m^{2} + n^{2} - 2mn = 1$$
  
 $(m - n)^{2} = 1$   
 $m = n + 1$   
 $\therefore \quad x = 2n + 1, \ y = 2n^{2} + 2n, \ z = 2n^{2} + 2n + 1$ 

If z = x + 1 then we get  $2n^2 = 1$ 

Which gives n as irrational number, which is not possible.

Taking x=Disarium number and y,z are consecutive we have the following table.

## Table 11: Pythagorean Triangles with x = Disarium number, and z = y + 1

| т    | п    | $x^2$   | $y^2$         | $z^2 = x^2 + y^2$ |
|------|------|---------|---------------|-------------------|
| 45   | 44   | 7921    | 15681600      | 15689521          |
| 68   | 67   | 18225   | 83028544      | 83046769          |
| 88   | 87   | 30625   | 234457344     | 234487969         |
| 1214 | 1213 | 5890329 | 8673990986896 | 8673996877225     |

Thus it is seen that there are 4 Pythagorean triangles. These 4 Pythagorean triangles are non-primitive.

### 4. OBSERVATIONS

- (i) y + z;  $z y \& z^2 x^2$  are perfect square
- (ii) 12(x+z) is nasty number.

### 5. CONCLUSION

To conclude, one may search for the connections between the Pythagorean triangles and other Disarium numbers of higher order and other number patterns.

### REFERENCES

- 1. Sierpinski W. Pythagorean triangles, Dover publications, INC, New York, 2003.
- Gopalan MA, Vijayasankar A. Observations on a Pythagorean problem, Acta Ciencia Indica 2010; XXXVI M(4):517-520.
- Gopalan MA, Gnanam A, Janaki G. A Remarkable Pythagorean problem, Acta Ciencia Indica 2007; XXXIII M(4):1429-1434.
- 4. Gopalan MA, Gnanam A. Pythagorean triangles and Polygonal numbers. International Journal of Mathematical Sciences. 2010; 9(1-2):211-215.
- 5. Gopalan MA, Janaki G. Pythagorean triangle with perimeter as Pentagonal number. Antartica J. Math.2008; 5(2):15-18.
- 6. Kapur JN. Dhuruva numbers, Fascinating world of Mathematics and Mathematical sciences, Trust society, 1997, Vol. 17.
- 7. Bert Miller, Nasty numbers. The mathematics teacher 1980; 9(73):649.
- 8. Charles Bown K. Nasties are primitives, the mathematics teacher 1981; 9(74):502-504.
- 9. PSN Sastry. Jarasandha numbers, the mathematics teacher 2001; 37(3-4):9.
- 10. Gopalan MA, Janaki G. Pythagorean triangle with nasty number as a leg. Journal of applied Mathematical Analysis and Applications. 2008; 4(1-2):13-17.
- 11. Dr. Mita Darbari. A connection between Hardy-Ramanujan number and special Pythagorean triangle, Bulletin of society for Mathematical services and standards 2014; 3(2):71-73.
- 12. G Janaki, C Saranya. Connection between special Pythagorean triangles and Jarasandha numbers, International Journal of Multidisciplinary Research and Development,Volume 3; Issuse 3; March 2016; Page No. 236-239.
- 13. A Gowri Shankari and G Janaki, "Integer Right with Area/Perimeter as a Canada Numbers", Asian Journal of Science and Technology,, Vol 14, issue 02, 12399-12402, 2023.