

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48599 | Page 1

Constraint-Driven Timetabling with Real-Time Updates: Design and

Implementation

Appu H P

Dept. of Computer Science and Engg.

Malnad College of Engineering

Hassan, India

appuhp9844@gmail.com

Aathish Shetty

Bhuvan M

Dept. of Computer Science and Engg.

Malnad College of Engineering

Hassan, India

bhuvanmuralidhara1@gmail.com

Bindu Prasad G S

Dept. of Computer Science and Engg.

Malnad College of Engineering

Hassan, India

binduprasad728@gmail.com

B Uma

Dept. of Computer Science and Engg.

Malnad College of Engineering

Hassan, India

aathishshetty65@gmail.com

Dept. of Computer Science and Engg.

Malnad College of Engineering

Hassan, India

bu@mcehassan.ac.in

Abstract—The management of academic timetables presents
a significant operational challenge for educational institutions
worldwide. This paper presents an innovative scheduling system
that transforms timetable generation from a time-consuming
manual process to an automated, real-time solution. Our ap-
proach formulates the scheduling problem as a constraint sat-
isfaction challenge, implementing Google’s OR-Tools CP-SAT
solver to generate conflict-free timetables that honor essential
constraints such as faculty availability, classroom allocation, and
curriculum requirements. The system’s distinguishing feature is
its integration of Firebase for continuous data synchronization,
allowing immediate reflection of scheduling changes—including
class cancellations, extra sessions, and teacher swapping—across
all user platforms. Built on a modular C4 architecture, the system
provides distinct interfaces for administrators, faculty, and
students through Flutter-based applications that function
consistently across device types. Empirical evaluation reveals
dramatic efficiency improvements with schedule creation time
substantially decreased compared to manual methods, while
update propagation occurs almost instantaneously. By combining
deterministic constraint resolution with cloud-based real-time
capabilities, our implementation creates a responsive academic
scheduling ecosystem that significantly enhances institutional
operations while improving the experience for all educational
stakeholders.

Index Terms—Academic Timetabling, Constraint Program-
ming, Real-Time Synchronization, Firebase, OR-Tools, Flutter,
CP-SAT, Educational Technology.

I. INTRODUCTION

Academic timetable creation represents one of the most

challenging operational tasks in educational institutions. The

inherent complexity arises from the need to coordinate mul-

tiple interdependent elements—courses, teachers, classrooms,

and student sections—while adhering to various scheduling

rules and preferences. Traditional timetabling approaches typi-

cally rely on manual processes that are not only labor-intensive

but also prone to errors, conflicts, and inefficiencies.

A. The Scheduling Challenge

The timetabling problem is fundamentally a resource allo-

cation challenge with multiple constraints. Educational insti-

tutions must schedule classes to optimize resource utilization

while ensuring quality of education and stakeholder satisfac-

tion. In practice, this means balancing competing objectives:

minimizing idle time, maintaining pedagogical quality, and

accommodating various preferences and restrictions.

The emergence of modern computational techniques has

created new opportunities to address these challenges. In par-

ticular, constraint programming offers a powerful framework

for expressing and solving complex scheduling problems, while

cloud-based technologies enable dynamic updates and real-

time communication that were previously impossible in

traditional systems.

B. Computational Complexity

The academic timetabling problem belongs to the class of

NP-hard problems, characterized by exponentially growing

solution spaces as the problem size increases. For example,

scheduling even a modest department with 10 teachers, 5

sections, 6 time slots per day, and 6 days per week creates

a search space with potential combinations that exceed 1030

possibilities. This computational complexity makes exhaustive

search methods impractical and necessitates specialized con-

straint satisfaction techniques.

C. Toward Dynamic Scheduling

Beyond the initial generation of feasible schedules, educa-

tional institutions require systems that can adapt to daily oper-

ational changes. Teacher absences, class swaps, rescheduling

requests, and the need for extra sessions demand a timetabling

system that can dynamically adjust while maintaining the

integrity of the overall schedule. This paper presents a solution

that addresses both the initial timetable generation challenge

http://www.ijsrem.com/
mailto:appuhp9844@gmail.com
mailto:bhuvanmuralidhara1@gmail.com
mailto:binduprasad728@gmail.com
mailto:aathishshetty65@gmail.com
mailto:bu@mcehassan.ac.in

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48599 | Page 2

and the ongoing need for real-time adaptability in day-to-day

academic operations.

scheduling constraints, though it lacked mechanisms for real-

time adjustments.

Ď urisˇ [2] approached the timetable problem through a
II. PROBLEM STATEMENT

Timetable management in educational institutions is com-

plex and involves balancing faculty availability and curricu-

lum constraints. Manual and static scheduling methods often

cause conflicts, inefficiencies, and lack real-time adaptability.

Existing systems fail to handle dynamic changes like absences

or class swaps promptly. Therefore, an automated, real-time,

conflict-free timetable generation system is essential to en-

hance flexibility, accuracy, and operational efficiency.

A. Key Challenges

The academic scheduling domain presents several intercon-

nected challenges that require systematic resolution:

• Faculty Scheduling Conflicts: Ensuring instructors are

not simultaneously assigned to multiple sections, which

requires careful tracking of all teaching assignments

across the timetable.

• Infrastructure Constraints: Optimizing the allocation of

limited physical resources, particularly when classroom

and laboratory availability creates bottlenecks in the

scheduling process.

• Curriculum Adherence: Guaranteeing that each course

receives its designated number of sessions per week

according to program requirements and accreditation

standards.

• Specialized Session Requirements: Accommodating

practical laboratory work that requires uninterrupted

blocks of consecutive periods while ensuring appropriate

facility availability.

• Schedule Efficiency: Minimizing fragmentation in daily

schedules by reducing isolated free periods that create

inefficient use of time for both students and faculty.

• Responsive Adaptation: Developing mechanisms that al-

low for seamless handling of unexpected changes includ-

ing faculty absences, class swaps, and impromptu session

additions without compromising schedule integrity.

These multifaceted challenges necessitate a comprehensive

solution that integrates sophisticated constraint programming

for initial timetable creation with agile update capabilities

for ongoing schedule management throughout the academic

period.

tree-based search algorithm within the Constraint Satisfac- tion

Problem (CSP) framework. His work included constraint

validation tools that improved the theoretical understanding of

timetable scheduling, but did not address implementation

concerns for real-world dynamic scheduling environments.

Khodadadi [3] introduced the Dynamic Arithmetic Opti-

mization Algorithm (DAOA), which demonstrated improved

exploration and exploitation capabilities in optimization prob-

lems. While not directly applied to timetabling, this approach

offers insights into handling complex dynamic behaviors rel-

evant to academic scheduling.

Coviello [4] focused on train timetabling using the ATMO

tool, which optimizes multiple conflicting objectives such as

travel time and timetable stability. The application of Multi-

Objective Ant Colony Optimization (MOACO) with Mixed In-

teger Linear Programming (MILP) to generate Pareto-optimal

solutions provides valuable methodological insights, though in

a different domain.

More recent work by Kumar et al. [5] explored machine

learning approaches for automated timetable generation, while

Maneesha et al. [6] investigated genetic algorithms for this

purpose. Ambhore et al. [7] developed an automatic timetable

generator focusing on user interface aspects, and Kavade et al.

[8] integrated AI techniques in their smart timetable system.

While these approaches have advanced the field, most

existing solutions focus primarily on the initial generation

of timetables rather than providing mechanisms for real-time

updates and synchronization. Our work extends the state of the

art by integrating constraint-driven timetable generation with a

real-time update framework, addressing both the initial

scheduling problem and the operational challenges of dynamic

schedule management.

IV. SYSTEM ARCHITECTURE

Our system employs a modular architecture based on the C4

model, which provides a hierarchical view of the soft- ware

architecture from different levels of abstraction. This approach

allows for clear separation of concerns, facilitates maintenance,

and supports scalability.

III. RELATED WORK

Academic timetabling has received significant attention

within the operations research and artificial intelligence com-

munities. Various approaches have been proposed to address its

complexity.

El-Sakka [1] investigated the university course timetable

problem at the Community College of the University of

Sharjah, formulating it as a multidimensional constraint satis-

faction problem. The proposed CLP/OPL model demonstrated

efficiency in optimizing resource allocation while satisfying

A. C4 Model Overview

At the system context level, we identify three primary

user types—administrators, teachers, and students—each with

distinct interactions with the timetable system. Administrators

provide input parameters, generate timetables, and manage

changes. Teachers view personal schedules and can request

modifications, while students access class schedules and re-

ceive notifications about changes.

Figure 1 illustrates the container-level architecture, which

defines the high-level technological components of the system.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48599 | Page 3

Fig. 1: Container-level architecture depicting the core system

components and their interactions.

B. Core Components

The system comprises four main containers:

• Admin Desktop Application: Developed using Flutter,

this container provides administrators with interfaces for

managing academic parameters, triggering timetable gen-

eration, and handling schedule modifications.

• Mobile Application: Also built with Flutter, this con-

tainer serves both teachers and students, offering person-

alized schedule views and real-time notifications.

• Backend Engine: Implemented using Python with OR-

Tools integration, this container processes constraint-

based timetable generation, validates changes, and man-

ages data consistency.

• Database: Utilizing Firebase Firestore, this NoSQL

database container stores all system data and enables real-

time synchronization across devices.

C. Component-Level Design

At the component level, specific elements within each

container handle specialized functions. The Admin Desktop

Application includes modules for teacher management, course

configuration, and timetable generation. The Mobile Appli-

cation contains separate interfaces for teachers and students,

along with notification components. The Backend Engine

incorporates the CP-SAT solver, data validation services, and

synchronization handlers.

D. Interaction Flow

The system follows a real-time interaction pattern where:

1) Administrators input parameters and trigger timetable

generation through the Desktop Application.

2) The Backend Engine processes these inputs using the

CP-SAT solver to generate a conflict-free timetable.

3) Generated timetables and subsequent changes are stored

in the Firebase Firestore database.

4) Real-time database listeners in the Mobile Application

immediately reflect changes to affected users.

5) Push notifications alert users to relevant schedule mod-

ifications.

This architecture ensures that all stakeholders have access to

the most current schedule information at all times, while

maintaining the integrity of the scheduling constraints.

V. CONSTRAINT FORMULATION

The timetable generation logic is formulated as a Constraint

Satisfaction Problem (CSP) and solved using the CP-SAT

solver from Google OR-Tools. The problem is defined using

the following mathematical model:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48599 | Page 4

A. Constraint Processing with OR-Tools

The implementation of these constraints in OR-Tools in-

volves translating the mathematical formulations into program-

matic constraints using the CP-SAT solver. The solver employs

several advanced techniques:

• Boolean Variable Creation: For each possible assign-
ment of teachers to slots and sections.

• Constraint Translation: Mathematical constraints are

expressed using the solver’s API functions such as Ad-

• dBoolOr, AddBoolAnd, and AddLinearConstraint.

• Conflict-Driven Clause Learning: The solver identifies

infeasible combinations of assignments and uses these

insights to guide the search process efficiently.

• Activity-Based Search: The solver prioritizes variables

that are involved in many constraints, accelerating the

discovery of conflicts and valid solutions.

• Objective Optimization: After finding a feasible solu-

tion, the solver iteratively improves it to minimize the

defined objective function.

This constraint programming approach ensures that gener-

ated timetables satisfy all specified requirements while op-

timizing for practical usability, specifically the compactness of

the schedule to minimize idle time for both students and faculty.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48599 | Page 5

VI. IMPLEMENTATION DETAILS

A. Backend Implementation

The core of our system is implemented using Google’s OR-

Tools CP-SAT solver in Python. The backend engine processes

input data about courses, teachers, sections, time slots, and

constraints to generate feasible timetables.

The constraint implementation follows this process:

1) Initialization: Create a CP-SAT model and define inte-

ger variables for each section-day-timeslot combination.

2) Constraint Addition: Systematically add all hard con-

straints to the model.

3) Objective Definition: Set the objective function to min-

imize idle periods.

4) Solve: Invoke the solver with appropriate parameters.

5) Solution Retrieval: Extract and structure the solution

for storage in Firebase.

B. Firebase Integration

Firebase Firestore serves as our real-time database, offering

several advantages:

• NoSQL Structure: Flexible document-oriented storage

that accommodates the complex relationships in academic

timetables.

• Real-time Synchronization: Built-in capabilities for in-
stant data propagation to all connected clients.

• Authentication: Secure access control for different user
types.

The database schema organizes data into collections for users

and timetables, with careful attention to optimizing read

patterns for common queries.

C. Cross-Platform Applications

Both the admin desktop application and the mobile appli-

cations for teachers and students are built using Flutter, which

offers:

• Cross-Platform Compatibility: Single codebase for de-
ployment across Android, iOS, web, and desktop.

• Reactive UI: Widget-based architecture that efficiently
reflects data changes.

• Firebase SDK Integration: Native support for Firestore
listeners and Cloud Messaging.

• Material Design: Consistent and intuitive user interfaces.

D. Real-Time Update Mechanism

The real-time update mechanism follows this workflow:

1) A teacher initiates an action (e.g., class cancellation)

through the mobile app.

2) The request is validated and processed by the backend.

3) The change is committed to Firestore with appropriate

timestamps.

4) UI components in affected applications update automat-

ically.

5) Firebase Cloud Messaging sends push notifications to

relevant users.

This architecture ensures that changes propagate instantly

across the system, maintaining data consistency and keeping all

stakeholders informed.

VII. USER INTERFACE DESIGN

The user interface design focuses on providing intuitive,

role-specific experiences for administrators, teachers, and stu-

dents.

A. Admin Desktop Interface

The administrator interface includes:

• Dashboard: Overview of system status and recent activ-
ities.

• Configuration Panels: Interfaces for managing teachers,
courses, sections.

• Timetable Viewer: grid-based visualization of generated
schedules.

Fig. 2: Admin Desktop Interface showing the timetable man-

agement view with grid-based visualization and control op-

tions.

B. Teacher Mobile Interface

The teacher interface provides:

• Personal Schedule: Day and week views of assigned
classes.

• Section View: Timetables for taught sections.

• Class Management: Controls for cancellations, resched-
ules, and extra classes.

• Notifications: Alerts about schedule changes and ap-
provals.

• Profile: Personal information and preferences.

C. Student Mobile Interface

The student interface features:

• Section Timetable: Complete schedule for the student’s
section.

• Daily View: Today’s classes with timing details.

• Notifications: Alerts about cancellations, reschedules,
and extra classes.

• Profile: Academic information and settings.

All interfaces implement real-time updates, automatically

refreshing when the underlying data changes without requiring

manual intervention from users.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48599 | Page 6

(a) Student view with section
timetable

(b) Teacher view with personalized
timetable

VIII. SYSTEM EVALUATION

We evaluated the system along multiple dimensions, includ-

ing performance, usability, and operational impact.

A. Performance Metrics

• Timetable Generation Time: For the test case of three

sections and two classrooms, the system generates a

complete timetable in under 0.35 seconds, compared to

several hours or days with manual methods.

• Update Propagation Latency: Changes to the timetable

propagate to all connected devices in an average of 1.2

seconds, ensuring near-instantaneous communication of

schedule modifications.

• Constraint Satisfaction: All generated timetables suc-

cessfully satisfy 100% of the hard constraints, eliminating

schedule conflicts entirely.

B. Usability Assessment

Feedback from stakeholders highlighted several qualitative

improvements:

• Administrators reported significant reduction in time
spent on timetable management and scheduling tasks.

• Teachers expressed appreciation for the immediate noti-
fications about schedule changes and improved commu-

Fig. 3: Mobile Application Interface implementations for dif-

ferent user roles.

(a) Class cancellation interface (b) Extra class scheduling interface

Fig. 4: Teacher class management options for dynamic sched-

ule modifications.

• Students noted higher satisfaction with academic or-

ganization and schedule transparency compared to the

previous system.

C. Comparison with Traditional Methods

The system shows significant advantages over both manual

methods and static software solutions:

• Time Efficiency: Reduces timetable creation from days
to minutes.

• Error Elimination: Removes human errors through con-
straint validation.

• Adaptability: Enables real-time changes that would be
impractical with static systems.

• Communication: Automates notification of changes to
all stakeholders.

• Resource Optimization: Improves utilization of class-
rooms and faculty time.

These results demonstrate the effectiveness of combining

constraint programming with real-time technologies for aca-

demic scheduling.

IX. CHALLENGES AND LIMITATIONS

Despite the system’s successes, several challenges and lim-

itations were encountered:

A. Technical Challenges

• Connectivity Dependence: The real-time update mech-

anism requires stable internet connectivity for optimal

performance, though basic functionality is maintained

during offline periods.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48599 | Page 7

• Computational Complexity: The NP-hard nature of the

timetabling problem means that as the problem size

increases (more sections, teachers, or courses), generation

time grows exponentially, potentially requiring optimiza-

tion techniques for larger institutions.

• Cross-Platform Consistency: Maintaining UI consis-

tency across desktop, and mobile platforms required

careful design considerations and extensive testing.

B. Current Limitations

• Constraint Flexibility: The current implementation pri-

oritizes hard constraints, with limited support for soft

preferences like ”teacher prefers morning classes.”

• Scaling Scope: The system has been tested with three

sections and two classrooms; scaling to larger depart-

ments will require architectural adjustments.

• Conflict Resolution: While the system prevents schedul-

ing conflicts, it does not yet provide automated sugges-

tions for resolving infeasible constraints.

These challenges inform our future development roadmap.

X. CONCLUSION AND FUTURE WORK

This paper presented a constraint-driven timetabling system

with real-time update capabilities, demonstrating how modern

computational techniques and cloud technologies can trans-

form academic scheduling from a static, error-prone process to

a dynamic, responsive system. The integration of Google’s OR-

Tools CP-SAT solver with Firebase’s real-time synchro-

nization capabilities provides a robust solution to both the

initial timetable generation challenge and the ongoing need for

schedule adaptability.

The key contributions of this work include:

• A comprehensive constraint formulation that captures the
essential requirements of academic scheduling.

• A modular system architecture that separates concerns
and facilitates maintenance and scalability.

• An efficient real-time update mechanism that ensures all
stakeholders have access to current schedule information.

• Cross-platform applications that provide intuitive inter-
faces for administrators, teachers, and students.

Future work will focus on several enhancements:

• Scaling to Larger Institutions: Extending the system

to handle multiple departments and programs simultane-

ously.

• Enhanced Academic Features: Integrating course ma-

terial management, attendance tracking, and performance

analytics.

• Advanced Optimization: Implementing soft constraint

preferences and multi-objective optimization to balance

competing priorities.

• Machine Learning Integration: Incorporating predictive

analytics for intelligent suggestions and automatic adjust-

ment based on historical patterns.

These future directions will transform the system from a

scheduling tool into a comprehensive academic management

ecosystem, further enhancing the efficiency and effectiveness

of educational institutions.

REFERENCES

[1] T. El-Sakka, “University course timetable using constraint satisfaction
and optimization,” International Journal of Computing, vol. 4, no. 3,
2015.

[2] V. Dˇ urisˇ, “Algorithmic verification of constraint satisfaction method on
timetable problem,” Mathematics and Statistics, vol. 8, no. 6, pp. 728–
739, 2020.

[3] N. Khodadadi, V. Snasel, and S. Mirjalili, “Dynamic arithmetic op-
timization algorithm for truss optimization under natural frequency
constraints,” IEEE Access, vol. 10, pp. 16188–16208, 2022.

[4] N. Coviello, G. Medeossi, A. Nash, T. Nygreen, P. Pellegrini, and J.
Rodriguez, “Automatic generation of timetable with the ATMO tool,”
Technical report, 2021.

[5] P. Kumar, S. Sanakar, P. Kumar, S. M. Usman, and Vani, “Automated
Timetable Generator Using Machine Learning,” International Research
Journal of Modernization in Engineering Technology and Science, vol.
2, no. 8, Aug. 2020.

[6] G. Maneesha, T. Deepika, S. BhanuSri, N. R. Kumar, and P. S. Naga-
mani, “Automatic Time Table Generation Using Genetic Algorithm,”
Journal of Emerging Technologies and Innovative Research, Jul. 2021.

[7] S. Ambhore, P. Walke, R. Ghundgrudkar, A. Alone, and A. Khedkar,
“Automatic Timetable Generator,” International Journal of Research in
Engineering, Science and Management, vol. 3, no. 3, Mar. 2020.

[8] R. Kavade, S. Qureshi, N. Veer, V. Ugale, and P. Agrawal, “Smart Time
Table System Using AI and ML,” International Journal of Creative
Research Thoughts (IJCRT), vol. 11, no. 5, May 2023.

http://www.ijsrem.com/

