
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 1

Container Mapping and its Impact on Performance in Containerized

Cloud Environments

 Nandini N S Suchithra H M

Assistant Professor 20CSE081

Computer Science and Engineering Computer Science and Engineering

B.G.S Institute of Technology B.G.S Institute of Technology

Adichunchanagiri University Adichunchanagiri University

Abstract

Containerization has become a popular approach for

deploying and managing applications in cloud environments

due to its lightweight nature and scalability. However,

optimizing the mapping of containers to underlying cloud

resources is critical for maximizing performance and resource

utilization. This paper investigates the impact of container

mapping strategies on the performance of containerized

applications in cloud environments.We begin by examining

various container mapping techniques, including static

mapping, dynamic mapping, and hybrid approaches. Static

mapping assigns containers to resources based on predefined

rules or constraints, while dynamic mapping adjusts container

placement based on real-time resource availability and

workload characteristics. Hybrid approaches combine

elements of both static and dynamic mapping to achieve a

balance between predictability and adaptability.Next, we

evaluate the performance implications of different container

mapping strategies through experimentation and analysis. We

measure key performance metrics such as response time,

throughput, resource utilization, and scalability under varying

workload conditions. Our findings highlight the trade-offs

between different mapping strategies in terms of performance,

resource efficiency, and overhead.

Index Terms—Cloud computing, containers, microservices

I. INTRODUCTION

“In recent years, containerization has emerged as a dominant

paradigm for deploying and managing applications in cloud

environments. Containers offer lightweight, portable, and

efficient packaging of software components, enabling rapid

deployment and scalability across diverse computing

environments. The popularity of containers, exemplified by

platforms like Docker and Kubernetes, has revolutionized the way

applications are developed, deployed, and managed in cloud-

native architectures.

However, while containerization offers numerous benefits,

including improved resource utilization, faster deployment, and

simplified management, effectively harnessing these advantages

requires careful consideration of container mapping strategies.

Container mapping involves the allocation of containers to

underlying cloud resources, such as virtual machines (VMs) or

physical servers, to ensure optimal performance, resource

utilization, and scalability.

The selection of appropriate container mapping strategies is

crucial for maximizing the benefits of containerization while

minimizing overhead and resource contention. Static mapping

assigns containers to resources based on predefined rules or

constraints, providing predictability and stability but may lead to

suboptimal resource utilization. In contrast, dynamic mapping

adjusts container placement based on real-time resource

availability and workload characteristics, offering greater

flexibility and efficiency but introducing overhead and

complexity. Understanding the impact of container mapping on

performance, resource utilization, and scalability is essential for

cloud operators and application developers to make informed

decisions. This paper aims to investigate the implications of

different container mapping strategies on the performance of

containerized applications in cloud environments. By examining

various mapping techniques, evaluating their performance under

diverse workload conditions, and considering relevant factors

influencing mapping decisions, we seek to provide insights and

guidelines for optimizing containerized deployments in cloud

environments. Containerization has become a dominant approach

for deploying and managing applications in cloud environments

due to its lightweight, portable, and efficient nature. Platforms

like Docker and Kubernetes have played a significant role in

popularizing containers, reshaping the development and

deployment landscape.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 2

Despite the benefits of containerization, effective utilization

requires thoughtful consideration of container mapping strategies.

Container mapping involves allocating containers to underlying

cloud resources to ensure optimal performance, resource

utilization, and scalability.

Two primary mapping strategies exist: static mapping, which

assigns containers based on predefined rules, and dynamic

mapping, which adjusts placement based on real-time resource

availability and workload characteristics. Each strategy presents

trade-offs in predictability, stability, flexibility, and efficiency.

Understanding the impact of container mapping on performance

is crucial for cloud operators and application developers. This

paper aims to investigate different mapping techniques'

implications on containerized application performance in cloud

environments. By evaluating performance under various

workloads and considering relevant factors, the study aims to

offer insights and guidelines for optimizing containerized

deployments in the cloud.

II. CHALLENGES AND OPPORTUNITIES

Navigating container mapping in cloud environments presents

both challenges and opportunities. On one hand, the complexity

of resource allocation poses a significant challenge, especially in

dynamic environments with fluctuating workloads. Balancing

optimal resource utilization while avoiding suboptimal mappings

is another hurdle, particularly with the introduction of overhead

and latency issues in dynamic mapping strategies. Scalability

concerns also emerge, particularly in multi-tenant environments

where isolation and fairness are critical. However, amidst these

challenges lie opportunities for advancement. Algorithmic

improvements, integration with orchestration platforms, and the

automation of mapping processes offer promising avenues for

enhancing efficiency. Hybrid mapping strategies that combine

static and dynamic approaches could provide a balance between

predictability and adaptability. Moreover, leveraging

performance monitoring and analysis tools enables continuous

evaluation and refinement, paving the way for more efficient and

performant containerized deployments in cloud environments.

III. RELATED WORK

Previous research has extensively explored various aspects of

containerization and its implications for cloud environments.

Studies have investigated container orchestration techniques,

such as Kubernetes and Docker Swarm, focusing on their

effectiveness in managing containerized applications at scale

[1]. Additionally, research has examined the performance

overhead and resource utilization of different containerization

platforms, providing insights into their comparative advantages

and limitations [2]. Furthermore, the impact of container

mapping on performance has been a subject of interest. Several

studies have explored static and dynamic container mapping

strategies, assessing their effectiveness in optimizing resource

allocation and improving application performance [3].

Additionally, research has investigated the integration of

machine learning algorithms into container mapping processes,

aiming to enhance predictive accuracy and adaptability [4].

Moreover, the role of containerization in enabling microservices

architectures and DevOps practices has been widely studied.

Research has examined the benefits of microservices-based

application design in terms of modularity, scalability, and fault

isolation [5].

While existing literature provides valuable insights into

various aspects of containerization and its impact on cloud

environments, there remains a need for further research to

address emerging challenges and opportunities. This

includes exploring novel container mapping strategies,

optimizing container orchestration techniques, and

investigating the integration of containers with emerging

technologies such as serverless computing and edge

computing.

IV. A LAYERED REFERENCE ARCHITECTURE

A layered reference architecture provides a structured

framework for designing complex systems, offering a

systematic approach to organizing components and

functionalities. At the topmost layer is the Presentation

Layer, which interfaces with users or external systems,

delivering information through various user interfaces like

web browsers, mobile applications, or APIs. Beneath it lies

the Application Layer, where the system's core logic and

functionality reside, managing business rules, data

processing, and inter-component interactions. The Service

Layer encapsulates this logic into reusable services,

accessible through APIs or web services, facilitating

seamless integration and communication.

 The Integration Layer facilitates data exchange and

communication between different system components or

external systems, managing data transformation and routing.

Below, the Data Layer oversees persistent data storage and

management, ensuring data consistency, integrity, and

security. Supporting these layers is the Infrastructure Layer,

comprising hardware and software components that provide

the computing resources and runtime environment. The

Security Layer safeguards the system against unauthorized

access and data breaches, employing authentication,

encryption, and access controls.

Lastly, the Management Layer offers tools and capabilities

for monitoring, managing, and maintaining system health

and performance. By delineating responsibilities and

interactions across these layers, a layered reference

architecture promotes modularity, scalability, and

maintainability, facilitating the design, implementation, and

evolution of complex systems.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 3

V. CONTAINER TECHNOLOGIES

delve into key technologies utilized for deploying, managing,

and orchestrating containers within clustered environments.

A. Docker:

At the forefront of containerization technology is Docker, a

platform celebrated for its ability to encapsulate operating system

processes into isolated environments with dedicated namespaces

like. For developers, Docker offers a unified software

environment that includes an application alongside its necessary

library dependencies and configuration file.

Major cloud providers like Google Container Engine, Amazon

Elastic Container Service (ECS), and Microsoft's Azure

Container Service have contributed to the growing popularity of

containerization through their products. Containerization is an

extension of OS-level virtualization methods such as LXC (Linux

Containers), and it is based on advances in operating system

virtualization. Several separate Linux Virtual Environments (VE)

can be created and managed on a single host by LXC by utilizing

the cgroups capabilities of the Linux kernel. At the moment,

Docker is the most used container technology. Its Docker Engine

is the core program that hosts containers; it was first developed

from LXC.

Deploying complex applications extends beyond simply

activating individual containers. Embracing the microservices

paradigm necessitates robust tools for automating the lifecycle

management of potentially large collections of containers, a

practice known as container orchestration. Leading this field is

Kubernetes, an open-source platform explicitly designed to

automate the deployment, scaling, and operational aspects of

application containers across clusters of hosts. Kubernetes

provides a container-centric infrastructure that simplifies the

management of containerized applications. Serving as a

comprehensive orchestration system for Docker containers,

Kubernetes efficiently handles various workloads to ensure users'

specified objectives are achieved. With Kubernetes, containers

can be seamlessly created, terminated, restarted, and scaled up as

required. Moreover, Kubernetes facilitates container deployment

across diverse machines while establishing a cohesive

communication network between them. A Kubernetes cluster

comprises two primary types of nodes: worker nodes, responsible

for executing containerized workloads, and control plane

nodes.which manage the cluster's overall operation and

orchestration.

coordinating applications that are containerized. The main

software components found in each kind of node.

The Kubernetes Master, which is in the center of the cluster,

is in charge of basic components that handle user requests

and start worker node container activation. These essential

parts are the key-value store, etcd, the Controller Manager

(kube-controller-manager), the Scheduler (kube-scheduler),

and the API Server (kube-apiserver). The main job of the

Scheduler is to assign a cohesive group of connected

containers, or Pods, to certain Kubernetes nodes. A pod is a

collection of one or more containers that share network and

storage resources, allowing for effective resource usage and

communication within the cluster.

VI. KUBERNETES SCHEDULER

A key component of the Kubernetes design is the

scheduler, which is in charge of keeping an eye on the object

store and the API server to identify pods that users or

controllers have produced but haven't yet allocated to a

worker node. When the scheduler comes across these

unassigned pods that don't have a designated nodeName, it

assumes responsibility for allocating them to an appropriate

node and then modifies the pod's nodeName parameter. After

this assignment, the object store notifies the kubelet

component that is deployed on the chosen worker node that

the new pod is about to be executed. The kubelet starts the

execution procedure by launching the pod on the selected

node after getting this notification.

However, container scheduling presents an optimization

challenge for the scheduler. Efficiently balancing resource

utilization, workload distribution, and other factors requires

sophisticated algorithms to ensure optimal deployment and

performance across the Kubernetes cluster.

It must determine the most suitable node for executing the

pod. This entails considering various factors such as resource

availability, workload characteristics, and scheduling

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 4

constraints. The scheduler's objective is to achieve efficient

resource utilization, load balancing, and fault tolerance

while meeting application requirements and constraints.

Decision regarding container placement constitutes a

placement strategy. In this context, "partial" denotes the

possibility of pods remaining unassigned, while "non-

injective" suggests that multiple pods may be assigned to the

same node, contingent on the scheduling algorithm utilized.

VII. DEPLOYMENT OF A CONTAINERIZED APPLICATION

Deploying a containerized application involves a structured

process to ensure seamless execution within containerized

environments. Initially, the application is containerized by

crafting a Docker image, encapsulating its dependencies,

configurations, and startup commands within a Dockerfile.

Subsequently, the Docker image is stored in a container image

repository, such as Docker Hub or Google Container Registry, for

centralized management and version control. To orchestrate

deployment at scale and manage lifecycle operations, container

orchestration platforms like Kubernetes or Docker Swarm are

employed. These platforms automate tasks such as scheduling,

scaling, and monitoring containers across a cluster of nodes.

Deployment configurations, specified in YAML manifest files,

detail parameters like Docker image references, replica counts,

networking settings, and resource constraints. Upon applying

these configurations to the orchestration platform, it orchestrates

the deployment process by pulling the Docker image, scheduling

pods, and distributing them across cluster nodes. Service

discovery and load balancing mechanisms ensure accessibility To

ensure effective distribution of incoming requests, monitoring,

and logging tools are employed to track application health and

performance, facilitating troubleshooting and optimization

efforts. Moreover, integration with automation tools enables

continuous deployment pipelines, automating deployments upon

code changes. Through these measures, organizations can deploy

containerized applications efficiently, harnessing the advantages

of containerization and orchestration for scalability, reliability,

and agility in deployment practices.

The hardware infrastructure comprises two Dell PowerEdge

R630 servers, each equipped with dual Intel Xeon CPU E5-2640-

v3 processors operating at 2.6 GHz, 64 GB of RAM, and two SAS

internal hard disks. internal hard disks.

The Infrastructure-as-a-Service (IaaS) layer is set up on

OpenStack in the testbed configuration, guaranteeing

effective deployment and maintenance. The networking

infrastructure in the OpenStack system is comprised of five

discrete virtual networks, as follows: PXE Network, Public

Network, Private Network, Storage Network, and

Management Network. In addition, the testbed's Juju tool

[18] facilitates the deployment, scaling, and lifecycle

management of Kubernetes on top of OpenStack,

guaranteeing the smooth orchestration of containerized apps

in the Cloud.

Two Master Nodes and seven Worker Nodes in the

Kubernetes cluster architecture were set up to satisfy the

deployment specifications. We tested the containerized

application's load after installing the M3 application inside

of Kubernetes. For this, the application environment

underwent basic load testing using Apache JMeter [19]. To

represent the "number of users that JMeter will attempt to

simulate," three different testing scenarios were developed,

each with a gradual increase in the number of threads from

one to three. All test scenarios involved sending HTTP

requests to the application endpoints, hence a thorough

analysis of performance under various load scenarios was

possible.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 5

1 Thread
2 Threads
3 Threads

According to the results, CPU usage in the virtual environment is

not very sensitive to changes in the number of people logged in

at once. The effectiveness of containerization, which efficiently

divides the workload among several physical servers, is primarily

responsible for this resiliency. Furthermore, the application

exhibits automatic scalability within the suggested architecture as

the workload grows. The Kubernetes Horizontal Pod Autoscaler

[20], which dynamically modifies the number of containers based

on their CPU consumption, makes this dynamic scaling possible.

As a result, the tests emphasize how well the application is

managed within the three-tier architecture, providing the

necessary resources in an optimal way.

VIII. PERFORMANCE BENCHMARKING

In this section, our aim is to explore the performance implications

of various container allocations within a layered Cloud system.

To achieve this goal, we have established a simplified

experimental environment comprising three Kubernetes nodes

deployed as virtual machines (VMs) distributed across two

physically separate OpenStack compute nodes. Figure 7 offers a

visual depiction of this experimental setup.

.

Fig. 7. Benchmarking environment

In our experimental setup, we conducted two distinct

benchmarks across various scenarios to generate controlled

and replicable workloads. The first benchmark focused on

network performance and employed a client-server

application structure. The second benchmark evaluated

execution time, data transfer rate, and memory performance

using the "dd" command-line utility.

A. Network Benchmarking:

In the second benchmark, we evaluated execution time, data

transfer rate, and memory performance by incrementally

increasing the number of concurrently active containers within

a single Kubernetes worker. This setup enabled us to assess

the impact of container allocation on overall performance

metrics.

We measured network performance during the network

benchmarking phase using iPerf3 [21]. iPerf3 is a tool that

facilitates TCP throughput measurement between two

endpoints by actively measuring the maximum bandwidth that

may be achieved on IP networks. It consists of client and

server parts. By default, the client connects to the server using

TCP and initiates a data stream, sending data. At one-second

intervals during the test, the sender and the recipient report the

average bandwidth and the quantity of data sent and received.

Every test was set up to run for ten seconds.

The average network bandwidth for the sender and receiver in

the first case, when they were both operating within containers

on the same virtual machine, was 12.9 Gb/s.In contrast, in the

second and third scenarios, where Kubernetes worker nodes

were deployed as VMs with 1 Gbps virtual NICs, the average

network bandwidth for both sender and receiver decreased to

approximately 0.8 Gb/s, with an average data transfer of about

1 GB. These results were attributed to the limitations imposed

by the virtual NIC bandwidth and, in the third scenario, by the

actual capacity of the server's physical NICs. Additionally, the

third scenario exhibited more retransmissions compared to the

second scenario.

The tests further expanded by incrementally increasing the

number of clients from 1 to 5 for each scenario, yielding

consistent results demonstrating the superior network

bandwidth performance of the first scenario.

B. CPU-intensive and I/O-intensive workloads

In the second benchmark campaign, we assess the

performance of multiple containers coexisting on the same

physical host, focusing on execution time, data transfer rate,

and memory usage. This evaluation consists of two distinct

benchmarks:

i) I/O-intensive workload: This benchmark entails

executing the "dd" command, which retrieves a gigabyte of

zeros from the Linux kernel and streams them into a file on

the file system. We measure the average execution time, data

transfer rate during write operations to the file system, and

memory consumption.

ii) CPU-intensive workload: In this benchmark, we

analyze the performance of CPU-intensive tasks executed by

the containers.

For the "dd" command benchmark, we systematically

initiate, gradually scaling up to 10 containers. Through this

50 0
Requests

0

20

40

60

80

100

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 6

iterative process, we aim to observe how the performance

metrics evolve in response to the growing container

workload.

IX. CONCLUSION

The decision to migrate is driven by various factors. In

contemporary times, this transition, known as cloudification,

is predominantly undertaken due to several reasons.

In this paper, we delve into the process of decomposing the

original monolithic application into smaller components, which

can be instantiated separately as containers. We explore both the

advantages and risks associated with combining containers with

virtual machines (VMs) in a virtualized private infrastructure.

While containerization presents clear benefits in terms of

flexibility, we also investigate the potential advantages in

scalability and efficiency of resource utilization. Our study aims

to provide insights into the integration of containers and VMs

and their respective impacts on application deployment and

management.

In this paper, we explore the process of breaking down the

original monolithic application into smaller components, which

can be instantiated separately as containers. We thoroughly

examine the advantages and risks associated with combining

containers with virtual machines (VMs) in a virtualized private

infrastructure

In this paper, we explore the process of breaking down the

original monolithic application into smaller components, which

can be instantiated separately as containers. We thoroughly

examine the advantages and risks associated with combining

containers with virtual machines (VMs) in a virtualized private

infrastructure. While containerization provides clear benefits in

terms of advantages in scalability and efficiency of resource

utilization. Our findings demonstrate that while a well-designed

combination of VMs and containers offers maximum flexibility,

it is crucial to consider how these two virtualization layers

interact, as a simplistic approach may lead to suboptimal

outcomes.

Disk Benchmarks
0

10

20

30

40

50

60

70

80

90

100
1 Container
3 Container
5 Container
10 Container

Disk Benchmarks
0

20

40

60

80

100

120

140

160
1 Container
3 Container
5 Container
10 Container

Disk Benchmarks
0

5

10

15

20

25

30

1 Cont ainer
3 Cont ainer

 Cont ainer 5
10 Con tainer

CPU Benchmarks
0

20

40

60

80

100

120
1 Container
3 Container
5 Container
10 Container

CPU Benchmarks
0

10

20

30

40

50

60

70

80

90

100
1 Container
3 Container
5 Container
10 Container

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 7

ACKNOWLEDGEMENT

We acknowledge the partial support provided by Cisco

Systems through the Sponsored Research Agreement titled

"Research Project for Industry 4.0".

REFERENCES

[1] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and A. Ghalsasi, “Cloud

computing—the business perspective,” Decision support systems, vol. 51, no.

1, pp. 176–189, 2011.
[2] R. LeFebvre, “Why openstack and kubernetes are better together,”

https://superuser.openstack.org/articles/openstack kubernetes better

together/, last accessed: 5 Feb 2020.
[3] “Openstack homepage,” https://www.openstack.org/, last accessed: 5 Feb

2020.
[4] J. Lewis and M. Fowler, “Microservices – a definition of this new

architectural term,” https://martinfowler.com/articles/microservices.html,

last accessed: 5 Feb 2020.
[5] A. Simioni and T. Vardanega, “In pursuit of architectural agility:

Experimenting with microservices,” in 2018 IEEE International Conference

on Services Computing (SCC), July 2018, pp. 113–120.
[6] K.-T. Seo, H.-S. Hwang, I.-Y. Moon, O.-Y. Kwon, and B.-J. Kim,

“Performance Comparison Analysis of Linux Container and Virtual Machine

for Building Cloud,” Advanced Science and Technology Letters, vol. 66, no.

12, pp. 105–111, 2014.
[7] E. F. Boza, C. L. Abad, S. P. Narayanan, B. Balasubramanian, and M. Jang,

“A case for performance-aware deployment of containers,” in Proceedings of

the 5th International Workshop on Container Technologies and Container

Clouds, ser. WOC ’19. New York, NY, USA: Association for Computing

Machinery, 2019, p. 25–30. [Online]. Available:

https://doi.org/10.1145/3366615.3368355
[8] Z. Usmani and S. Singh, “A survey of virtual machine placement techniques

in a cloud data center,” Procedia Computer Science, vol. 78, pp. 491 – 498,

2016, 1st International Conference on Information Security and Privacy

2015. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1877050916000958
[9] G. B. Fioccola, P. Donadio, R. Canonico, and G. Ventre, “Dynamic routing

and virtual machine consolidation in green clouds,” in 2016 IEEE

International Conference on Cloud Computing Technology and Science

(CloudCom), Dec 2016, pp. 590–595.
[10] P. D. Bharathi, P. Prakash, and M. V. K. Kiran, “Virtual machine placement

strategies in cloud computing,” in 2017 Innovations in Power and Advanced

Computing Technologies (i-PACT), April 2017, pp. 1–7.
[11] R. Zhang, A.-m. Zhong, B. Dong, F. Tian, and R. Li, Container-VMPM

Architecture: A Novel Architecture for Docker Container Placement.

Springer International Publishing, 06 2018, pp. 128–140.
[12] A. Khan, “Key characteristics of a container orchestration platform to enable

a modern application,” IEEE Cloud Computing, vol. 4, no. 5, pp.
42–48, September 2017.

[13] C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, “Cloud container technologies:

a state-of-the-art review,” IEEE Transactions on Cloud Computing, 2017.
[14] D. Merkel, “Docker: Lightweight linux containers for consistent

development and deployment,” Linux Journal, vol. 2014, no. 239, Mar. 2014.
[15] “Docker homepage,” https://www.docker.com/, last accessed: 5 Feb 2020.
[16] “Kubernetes homepage,” http://kubernetes.io, last accessed: 5 Feb 2020.
[17] “Fuel mirantis documentation homepage,” https://docs.mirantis.com/fuel-

docs/mitaka/userdocs/fuel-userguide.htmll, last accessed: 5 Feb 2020.
[18] “Juju documentation homepage,” https://jaas.ai/docs/getting-startedwith-

juju, last accessed: 5 Feb 2020.
[19] “Apache jmeter homepage,” https://jmeter.apache.org/, last accessed: 5 Feb

2020.
[20] B. Hofmann and S. Pearce, “Auto scaling kubernetes clusters on openstack,”

https://www.openstack.org/summit/berlin-

2018/summitschedule/events/22884/auto-scaling-kubernetes-clusters-on-

openstack, last accessed: 5 Feb 2020.
[21] “iPerf - The ultimate speed test tool for TCP, UDP and SCTP,” https://iperf.fr/,

last accessed: 5 Feb 2020.

http://www.ijsrem.com/

