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Abstract 

Containerization has become a popular approach for 

deploying and managing applications in cloud environments 

due to its lightweight nature and scalability. However, 

optimizing the mapping of containers to underlying cloud 

resources is critical for maximizing performance and resource 

utilization. This paper investigates the impact of container 

mapping strategies on the performance of containerized 

applications in cloud environments.We begin by examining 

various container mapping techniques, including static 

mapping, dynamic mapping, and hybrid approaches. Static 

mapping assigns containers to resources based on predefined 

rules or constraints, while dynamic mapping adjusts container 

placement based on real-time resource availability and 

workload characteristics. Hybrid approaches combine 

elements of both static and dynamic mapping to achieve a 

balance between predictability and adaptability.Next, we 

evaluate the performance implications of different container 

mapping strategies through experimentation and analysis. We 

measure key performance metrics such as response time, 

throughput, resource utilization, and scalability under varying 

workload conditions. Our findings highlight the trade-offs 

between different mapping strategies in terms of performance, 

resource efficiency, and overhead. 

Index Terms—Cloud computing, containers, microservices 

I. INTRODUCTION 

“In recent years, containerization has emerged as a dominant 

paradigm for deploying and managing applications in cloud 

environments. Containers offer lightweight, portable, and 

efficient packaging of software components, enabling rapid 

deployment and scalability across diverse computing 

environments. The popularity of containers, exemplified by 

platforms like Docker and Kubernetes, has revolutionized the way 

applications are developed, deployed, and managed in cloud-

native architectures. 

However, while containerization offers numerous benefits, 

including improved resource utilization, faster deployment, and 

simplified management, effectively harnessing these advantages  

 

 

requires careful consideration of container mapping strategies. 

Container mapping involves the allocation of containers to 

underlying cloud resources, such as virtual machines (VMs) or 

physical servers, to ensure optimal performance, resource 

utilization, and scalability. 

The selection of appropriate container mapping strategies is 

crucial for maximizing the benefits of containerization while 

minimizing overhead and resource contention. Static mapping 

assigns containers to resources based on predefined rules or 

constraints, providing predictability and stability but may lead to 

suboptimal resource utilization. In contrast, dynamic mapping 

adjusts container placement based on real-time resource 

availability and workload characteristics, offering greater 

flexibility and efficiency but introducing overhead and 

complexity. Understanding the impact of container mapping on 

performance, resource utilization, and scalability is essential for 

cloud operators and application developers to make informed 

decisions. This paper aims to investigate the implications of 

different container mapping strategies on the performance of 

containerized applications in cloud environments. By examining 

various mapping techniques, evaluating their performance under 

diverse workload conditions, and considering relevant factors 

influencing mapping decisions, we seek to provide insights and 

guidelines for optimizing containerized deployments in cloud 

environments. Containerization has become a dominant approach 

for deploying and managing applications in cloud environments 

due to its lightweight, portable, and efficient nature. Platforms 

like Docker and Kubernetes have played a significant role in 

popularizing containers, reshaping the development and 

deployment landscape. 

 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                      Volume: 08 Issue: 05 | May - 2024                         SJIF Rating: 8.448                            ISSN: 2582-3930              

 

 

© 2024, IJSREM      | www.ijsrem.com                                                                                                       |        Page 2 

Despite the benefits of containerization, effective utilization 

requires thoughtful consideration of container mapping strategies. 

Container mapping involves allocating containers to underlying 

cloud resources to ensure optimal performance, resource 

utilization, and scalability. 

Two primary mapping strategies exist: static mapping, which 

assigns containers based on predefined rules, and dynamic 

mapping, which adjusts placement based on real-time resource 

availability and workload characteristics. Each strategy presents 

trade-offs in predictability, stability, flexibility, and efficiency. 

Understanding the impact of container mapping on performance 

is crucial for cloud operators and application developers. This 

paper aims to investigate different mapping techniques' 

implications on containerized application performance in cloud 

environments. By evaluating performance under various 

workloads and considering relevant factors, the study aims to 

offer insights and guidelines for optimizing containerized 

deployments in the cloud. 

 

II.  CHALLENGES AND OPPORTUNITIES 

 

Navigating container mapping in cloud environments presents 

both challenges and opportunities. On one hand, the complexity 

of resource allocation poses a significant challenge, especially in 

dynamic environments with fluctuating workloads. Balancing 

optimal resource utilization while avoiding suboptimal mappings 

is another hurdle, particularly with the introduction of overhead 

and latency issues in dynamic mapping strategies. Scalability 

concerns also emerge, particularly in multi-tenant environments 

where isolation and fairness are critical. However, amidst these 

challenges lie opportunities for advancement. Algorithmic 

improvements, integration with orchestration platforms, and the 

automation of mapping processes offer promising avenues for 

enhancing efficiency. Hybrid mapping strategies that combine 

static and dynamic approaches could provide a balance between 

predictability and adaptability. Moreover, leveraging 

performance monitoring and analysis tools enables continuous 

evaluation and refinement, paving the way for more efficient and 

performant containerized deployments in cloud environments. 

 

III. RELATED WORK 

Previous research has extensively explored various aspects of 

containerization and its implications for cloud environments. 

Studies have investigated container orchestration techniques, 

such as Kubernetes and Docker Swarm, focusing on their 

effectiveness in managing containerized applications at scale 

[1]. Additionally, research has examined the performance 

overhead and resource utilization of different containerization 

platforms, providing insights into their comparative advantages 

and limitations [2]. Furthermore, the impact of container 

mapping on performance has been a subject of interest. Several 

studies have explored static and dynamic container mapping 

strategies, assessing their effectiveness in optimizing resource 

allocation and improving application performance [3]. 

Additionally, research has investigated the integration of 

machine learning algorithms into container mapping processes, 

aiming to enhance predictive accuracy and adaptability [4]. 

Moreover, the role of containerization in enabling microservices 

architectures and DevOps practices has been widely studied. 

Research has examined the benefits of microservices-based 

application design in terms of modularity, scalability, and fault 

isolation [5].  

While existing literature provides valuable insights into 

various aspects of containerization and its impact on cloud 

environments, there remains a need for further research to 

address emerging challenges and opportunities. This 

includes exploring novel container mapping strategies, 

optimizing container orchestration techniques, and 

investigating the integration of containers with emerging 

technologies such as serverless computing and edge 

computing. 

IV. A LAYERED REFERENCE ARCHITECTURE 

A layered reference architecture provides a structured 

framework for designing complex systems, offering a 

systematic approach to organizing components and 

functionalities. At the topmost layer is the Presentation 

Layer, which interfaces with users or external systems, 

delivering information through various user interfaces like 

web browsers, mobile applications, or APIs. Beneath it lies 

the Application Layer, where the system's core logic and 

functionality reside, managing business rules, data 

processing, and inter-component interactions. The Service 

Layer encapsulates this logic into reusable services, 

accessible through APIs or web services, facilitating 

seamless integration and communication. 

 The Integration Layer facilitates data exchange and 

communication between different system components or 

external systems, managing data transformation and routing. 

Below, the Data Layer oversees persistent data storage and 

management, ensuring data consistency, integrity, and 

security. Supporting these layers is the Infrastructure Layer, 

comprising hardware and software components that provide 

the computing resources and runtime environment. The 

Security Layer safeguards the system against unauthorized 

access and data breaches, employing authentication, 

encryption, and access controls.  

 

Lastly, the Management Layer offers tools and capabilities 

for monitoring, managing, and maintaining system health 

and performance. By delineating responsibilities and 

interactions across these layers, a layered reference 

architecture promotes modularity, scalability, and 

maintainability, facilitating the design, implementation, and 

evolution of complex systems. 
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V. CONTAINER TECHNOLOGIES 

delve into key technologies utilized for deploying, managing, 

and orchestrating containers within clustered environments. 

A. Docker: 

At the forefront of containerization technology is Docker, a 

platform celebrated for its ability to encapsulate operating system 

processes into isolated environments with dedicated namespaces  

like. For developers, Docker offers a unified software 

environment that includes an application alongside its necessary 

library dependencies and configuration file. 

Major cloud providers like Google Container Engine, Amazon 

Elastic Container Service (ECS), and Microsoft's Azure 

Container Service have contributed to the growing popularity of 

containerization through their products. Containerization is an 

extension of OS-level virtualization methods such as LXC (Linux 

Containers), and it is based on advances in operating system 

virtualization. Several separate Linux Virtual Environments (VE) 

can be created and managed on a single host by LXC by utilizing 

the cgroups capabilities of the Linux kernel. At the moment, 

Docker is the most used container technology. Its Docker Engine 

is the core program that hosts containers; it was first developed 

from LXC. 

Deploying complex applications extends beyond simply 

activating individual containers. Embracing the microservices 

paradigm necessitates robust tools for automating the lifecycle 

management of potentially large collections of containers, a 

practice known as container orchestration. Leading this field is 

Kubernetes, an open-source platform explicitly designed to 

automate the deployment, scaling, and operational aspects of 

application containers across clusters of hosts. Kubernetes 

provides a container-centric infrastructure that simplifies the 

management of containerized applications. Serving as a 

comprehensive orchestration system for Docker containers, 

Kubernetes efficiently handles various workloads to ensure users' 

specified objectives are achieved. With Kubernetes, containers 

can be seamlessly created, terminated, restarted, and scaled up as 

required. Moreover, Kubernetes facilitates container deployment 

across diverse machines while establishing a cohesive 

communication network between them. A Kubernetes cluster 

comprises two primary types of nodes: worker nodes, responsible 

for executing containerized workloads, and control plane 

nodes.which manage the cluster's overall operation and 

orchestration.

 

coordinating applications that are containerized. The main 

software components found in each kind of node.  

The Kubernetes Master, which is in the center of the cluster, 

is in charge of basic components that handle user requests 

and start worker node container activation. These essential 

parts are the key-value store, etcd, the Controller Manager 

(kube-controller-manager), the Scheduler (kube-scheduler), 

and the API Server (kube-apiserver). The main job of the 

Scheduler is to assign a cohesive group of connected 

containers, or Pods, to certain Kubernetes nodes. A pod is a 

collection of one or more containers that share network and 

storage resources, allowing for effective resource usage and 

communication within the cluster. 

 

VI. KUBERNETES SCHEDULER 

A key component of the Kubernetes design is the 

scheduler, which is in charge of keeping an eye on the object 

store and the API server to identify pods that users or 

controllers have produced but haven't yet allocated to a 

worker node. When the scheduler comes across these 

unassigned pods that don't have a designated nodeName, it 

assumes responsibility for allocating them to an appropriate 

node and then modifies the pod's nodeName parameter. After 

this assignment, the object store notifies the kubelet 

component that is deployed on the chosen worker node that 

the new pod is about to be executed. The kubelet starts the 

execution procedure by launching the pod on the selected 

node after getting this notification. 

However, container scheduling presents an optimization 

challenge for the scheduler. Efficiently balancing resource 

utilization, workload distribution, and other factors requires 

sophisticated algorithms to ensure optimal deployment and 

performance across the Kubernetes cluster. 

It must determine the most suitable node for executing the 

pod. This entails considering various factors such as resource 

availability, workload characteristics, and scheduling 

http://www.ijsrem.com/
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constraints. The scheduler's objective is to achieve efficient 

resource utilization, load balancing, and fault tolerance 

while meeting application requirements and constraints. 

Decision regarding container placement constitutes a 

placement strategy. In this context, "partial" denotes the 

possibility of pods remaining unassigned, while "non-

injective" suggests that multiple pods may be assigned to the 

same node, contingent on the scheduling algorithm utilized. 

 

VII. DEPLOYMENT OF A CONTAINERIZED APPLICATION 

Deploying a containerized application involves a structured 

process to ensure seamless execution within containerized 

environments. Initially, the application is containerized by 

crafting a Docker image, encapsulating its dependencies, 

configurations, and startup commands within a Dockerfile. 

Subsequently, the Docker image is stored in a container image 

repository, such as Docker Hub or Google Container Registry, for 

centralized management and version control. To orchestrate 

deployment at scale and manage lifecycle operations, container 

orchestration platforms like Kubernetes or Docker Swarm are 

employed. These platforms automate tasks such as scheduling, 

scaling, and monitoring containers across a cluster of nodes. 

Deployment configurations, specified in YAML manifest files, 

detail parameters like Docker image references, replica counts, 

networking settings, and resource constraints. Upon applying 

these configurations to the orchestration platform, it orchestrates 

the deployment process by pulling the Docker image, scheduling 

pods, and distributing them across cluster nodes. Service 

discovery and load balancing mechanisms ensure accessibility To 

ensure effective distribution of incoming requests, monitoring, 

and logging tools are employed to track application health and 

performance, facilitating troubleshooting and optimization 

efforts. Moreover, integration with automation tools enables 

continuous deployment pipelines, automating deployments upon 

code changes. Through these measures, organizations can deploy 

containerized applications efficiently, harnessing the advantages 

of containerization and orchestration for scalability, reliability, 

and agility in deployment practices. 

The hardware infrastructure comprises two Dell PowerEdge 

R630 servers, each equipped with dual Intel Xeon CPU E5-2640-

v3 processors operating at 2.6 GHz, 64 GB of RAM, and two SAS 

internal hard disks. internal hard disks. 

 

The Infrastructure-as-a-Service (IaaS) layer is set up on 

OpenStack in the testbed configuration, guaranteeing 

effective deployment and maintenance. The networking 

infrastructure in the OpenStack system is comprised of five 

discrete virtual networks, as follows: PXE Network, Public 

Network, Private Network, Storage Network, and 

Management Network. In addition, the testbed's Juju tool 

[18] facilitates the deployment, scaling, and lifecycle 

management of Kubernetes on top of OpenStack, 

guaranteeing the smooth orchestration of containerized apps 

in the Cloud. 

Two Master Nodes and seven Worker Nodes in the 

Kubernetes cluster architecture were set up to satisfy the 

deployment specifications. We tested the containerized 

application's load after installing the M3 application inside 

of Kubernetes. For this, the application environment 

underwent basic load testing using Apache JMeter [19]. To 

represent the "number of users that JMeter will attempt to 

simulate," three different testing scenarios were developed, 

each with a gradual increase in the number of threads from 

one to three. All test scenarios involved sending HTTP 

requests to the application endpoints, hence a thorough 

analysis of performance under various load scenarios was 

possible.  
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According to the results, CPU usage in the virtual environment is 

not very sensitive to changes in the number of people logged in 

at once. The effectiveness of containerization, which efficiently 

divides the workload among several physical servers, is primarily 

responsible for this resiliency. Furthermore, the application 

exhibits automatic scalability within the suggested architecture as 

the workload grows. The Kubernetes Horizontal Pod Autoscaler 

[20], which dynamically modifies the number of containers based 

on their CPU consumption, makes this dynamic scaling possible. 

As a result, the tests emphasize how well the application is 

managed within the three-tier architecture, providing the 

necessary resources in an optimal way. 

VIII. PERFORMANCE BENCHMARKING 

In this section, our aim is to explore the performance implications 

of various container allocations within a layered Cloud system. 

To achieve this goal, we have established a simplified 

experimental environment comprising three Kubernetes nodes 

deployed as virtual machines (VMs) distributed across two 

physically separate OpenStack compute nodes. Figure 7 offers a 

visual depiction of this experimental setup. 

 

.  

Fig. 7. Benchmarking environment 

In our experimental setup, we conducted two distinct 

benchmarks across various scenarios to generate controlled 

and replicable workloads. The first benchmark focused on 

network performance and employed a client-server 

application structure. The second benchmark evaluated 

execution time, data transfer rate, and memory performance 

using the "dd" command-line utility. 

 

 

 

A. Network Benchmarking: 

In the second benchmark, we evaluated execution time, data 

transfer rate, and memory performance by incrementally 

increasing the number of concurrently active containers within 

a single Kubernetes worker. This setup enabled us to assess 

the impact of container allocation on overall performance 

metrics. 

We measured network performance during the network 

benchmarking phase using iPerf3 [21]. iPerf3 is a tool that 

facilitates TCP throughput measurement between two 

endpoints by actively measuring the maximum bandwidth that 

may be achieved on IP networks. It consists of client and 

server parts. By default, the client connects to the server using 

TCP and initiates a data stream, sending data. At one-second 

intervals during the test, the sender and the recipient report the 

average bandwidth and the quantity of data sent and received. 

Every test was set up to run for ten seconds. 

The average network bandwidth for the sender and receiver in 

the first case, when they were both operating within containers 

on the same virtual machine, was 12.9 Gb/s.In contrast, in the 

second and third scenarios, where Kubernetes worker nodes 

were deployed as VMs with 1 Gbps virtual NICs, the average 

network bandwidth for both sender and receiver decreased to 

approximately 0.8 Gb/s, with an average data transfer of about 

1 GB. These results were attributed to the limitations imposed 

by the virtual NIC bandwidth and, in the third scenario, by the 

actual capacity of the server's physical NICs. Additionally, the 

third scenario exhibited more retransmissions compared to the 

second scenario. 

The tests further expanded by incrementally increasing the 

number of clients from 1 to 5 for each scenario, yielding 

consistent results demonstrating the superior network 

bandwidth performance of the first scenario. 

B. CPU-intensive and I/O-intensive workloads 

In the second benchmark campaign, we assess the 

performance of multiple containers coexisting on the same 

physical host, focusing on execution time, data transfer rate, 

and memory usage. This evaluation consists of two distinct 

benchmarks: 

i) I/O-intensive workload: This benchmark entails 

executing the "dd" command, which retrieves a gigabyte of 

zeros from the Linux kernel and streams them into a file on 

the file system. We measure the average execution time, data 

transfer rate during write operations to the file system, and 

memory consumption. 

ii) CPU-intensive workload: In this benchmark, we 

analyze the performance of CPU-intensive tasks executed by 

the containers. 

For the "dd" command benchmark, we systematically 

initiate, gradually scaling up to 10 containers. Through this 
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iterative process, we aim to observe how the performance 

metrics evolve in response to the growing container 

workload. 

 

 

 

IX. CONCLUSION 

The decision to migrate is driven by various factors. In 

contemporary times, this transition, known as cloudification, 

is predominantly undertaken due to several reasons. 
 

 

In this paper, we delve into the process of decomposing the 

original monolithic application into smaller components, which 

can be instantiated separately as containers. We explore both the 

advantages and risks associated with combining containers with 

virtual machines (VMs) in a virtualized private infrastructure. 

While containerization presents clear benefits in terms of 

flexibility, we also investigate the potential advantages in 

scalability and efficiency of resource utilization. Our study aims 

to provide insights into the integration of containers and VMs 

and their respective impacts on application deployment and 

management. 

In this paper, we explore the process of breaking down the 

original monolithic application into smaller components, which 

can be instantiated separately as containers. We thoroughly 

examine the advantages and risks associated with combining 

containers with virtual machines (VMs) in a virtualized private 

infrastructure 

 

 

 

 

 

In this paper, we explore the process of breaking down the 

original monolithic application into smaller components, which 

can be instantiated separately as containers. We thoroughly 

examine the advantages and risks associated with combining 

containers with virtual machines (VMs) in a virtualized private 

infrastructure. While containerization provides clear benefits in 

terms of  advantages in scalability and efficiency of resource 

utilization. Our findings demonstrate that while a well-designed 

combination of VMs and containers offers maximum flexibility, 

it is crucial to consider how these two virtualization layers 

interact, as a simplistic approach may lead to suboptimal 

outcomes. 
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