

CONTRACT MANAGEMENT WITH BLOCKCHAIN

ABHISHEK OJHA, VAIBHAV MANI TRIPATHI, AMEESH RAI BHATT, MANAN MISHRA Dr Umesh Kumar Pandey ,CS Department , United Institute of Technology, Prayagraj, Uttar Pradesh , India

ABSTRACT

The new frame of Blockchain and other Distributed Ledger Technologies (DLT), has empowered smart contract applications and has expanded research represented considerable authority in brilliant agreement. Smart Contracts are computerized securities that are dispersed, decentralized and require no outsider. Smart Contracts fill in as an extraordinary option for conventional securities/marks. With the utilization of customary SDLC models and the idea of square permanence these agreements are presented. With these qualities of permanence, decentralized nature, cost-time adequacy, there is no necessity of outsider as we are attempting to make this smart contract as an option in contrast to conventional money contracts. The offering system is by and large utilized by state run administrations and organizations to get labor and products from assembling adventures along with specialist co-ops. In any case, e-offering being the most utilized procurement usual methodology, there are different security suggestions present. Blockchain innovation can be utilized to address these security insinuation as it intensely centers around the decentralization of data and is secured by encryption, unsegregated with undeniable square based design for exchanging the board. Here we have examined on how smart contract gets that dependence on ethereum blockchain and how they can be utilized to plan a circulated e-offering framework. We have isolated the task in four areas which are as per the following (i)Tender creation and distributing process, (ii)Bidding process on the delicate, (iii)Evaluation and arranging the bid, (iv)Selecting the Winning bid. Different calculations are utilized to help through each cycle. The security challenges connected with security and realness are assessed then they are placed into correlation with the ongoing offering process. The chief target of this paper is to incorporate an unprejudiced, straightforward and open offering plan.

Keywords: Blockchain, Impartial and Open Tendering Scheme, ethereum, e-tender.

I. Introduction

Smart contracts are self-executing contracts in which the items in the purchaser dealer arrangement are recorded straightforwardly into lines of code. In Blockchain, Smart Contracts assume an extremely fundamental part, it assists with making the exchanges occurring more free from even a hint of harm and capacity in a coordinated way. Furthermore, in addition to that, it assists different parts with loving applications running on these stages be considerably more open and secure. Utilizing it makes the exchanges recognizable, straightforward, and irreversible. Current E-Tendering frameworks are not fair and open" implying that the data isn't imparted to all partners. The data is delivered on 'however they see fit' for instance - when an organization is chosen as a victor of an agreement, different organizations that bid on a similar delicate are not advised of why their bid was dismissed and why a specific organization was chosen as a champ. An organization can demand this data yet it is a drawn-out course of getting this information. Despite the fact that examining these records is conceivable, assessing the reports needs time. Aside from not being straightforward, security is likewise a significant issue for these entryways prompting extortion and control of information put away in a unified data set. Assuming a programmer gets hold of this unified information base, offers can be spilled to contenders prompting major monetary and vital misfortunes for a business. Blockchain innovation can be utilized to address these security suggestions as it intensely centers around the decentralization of data and is gotten by encryption incorporated with irrefutable square based engineering for exchange the executives. Thus, Blockchain and Smart Contract can be utilized as a straightforward, decentralized and got offering structure that will work with bidders' oversight on entryway works and see all the exercises did by the delicate entrance.

II. LITERATURE SURVEY

S.	Journal	Authors	Title	Outcomes
NO	Туре			
	with			
	Year			
1	IEEE	Wang, Wenbo,	A review on	They give a methodical
	Access,	etal.	agreement	vision of the association of
	2019		instruments and	blockchain networks
			mining technique the	
			board in blockchain	
			networks.	
	IDDD	A 1 1		XX7 1 · 1 1 1
2	IEEE	Ambegaonker,	Efficient approach	Working on web-based
	,2018	Ajeenkkya, Utkarsh	for Tendering by	framework for offering
		Gautam, and	acquainting Blockchain with keep	however it isn't secure as it
		Radha Krishna	-	ought to be on the grounds that offering has secret
		Rambola	Reliability	information which
		Kumoon	Rendonity	shouldn't be spilled and
				Blockchain tackles that
				issue productively.
				····· L-······

International Journal of Scientific Research in Engineering and Management (IJSREM)Volume: 06 Issue: 05 | May - 2022Impact Factor: 7.185ISSN: 2582-3930

3	IEEE,	Zheng,	Zibin,	An outline of	They give an outline of
	2017	etal		blockchain	blockchain architecture
				innovation:	right off the bat and
				Architecture,	analyze some ordinary
				agreement, and future	agreement calculations
				trends	used in different
					blockchains.

International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 06 Issue: 05 | May - 2022

Impact Factor: 7.185

ISSN: 2582-3930

S.	Journal	Authors	Title	Outcomes
NO	Туре			
	withyear			
4	Edward Elgar Publishin g, 2016	Pilkington, Marc	Blockchain technology: principles and applications. Research handbook on computerized transformations	It uncover the principal elements of decentralized public record stages
5	2016 Conferen ce	L. Luu, DH. Chu, H. Olickel, P. Saxena, and A. Hobor	Making smart contracts smarter	They present a few new security issues in which an enemy can control smart contract execution to acquire benefit.
6	Journal, 2017	Cachin, Christian, and Marko Vukolić	Blockchain consensus protocols in the wild	Discusses the method involved with surveying and acquiring trust in the versatility of an agreement conventions presented to flaws and ill- disposed hubs.

Technologies Use	ed							
Hardware Configuration								
Processor :	Intel®	Core i5-7200 or above						
RAM	:	8GB						
System :	64bit C	DS, x64 processor						
SSD/HDD	:	128GB						
Software Configuration								
Operating Syste	m		: Windows7/8/10					
Application Server			: Xampp					
Front End			: HTML, CSS					
Scripts			: Javascript					
Database			: MySQL					
Technologies			: Python 3.9+					
IDE			: PyCharm					

Existing System

The unchanging nature and got information process isn't there in customary frameworks. Since customary agreements were not secure and could be altered effectively consequently brought about claims. Dangers and ignorance that are concealed in the desk work bring about defects in the current framework. Formal lawful agreements are generally utilized in some certifiable applications, going from information sharing frameworks to complex monetary exchanges. In existing frameworks no manual check will get all mistakes, and deficient arrangements that outcomes in claims . Conventional agreements need actual mark, they are costly and are not cost-time compelling. Conventional Contracts require an outsider for validation and are variable by anybody, need manual installment and require manual presence. Thus, Traditional Contracts have different issues related with them.

Proposed Solution

In this we have proposed an answer for every one of the current blunders that are there with the ongoing framework. We have taken a stab at connecting the bidders record to the Tender Officer's account. We have protected the Tender data with hash keys. This large number of qualities will

empower the future users(bidders) to save their time, cash while applying for tenders. This will expand the proficiency and administration for bidders and tender's officials.

Feature Extraction

When a condition is met, the agreement is executed promptly in light of the fact that savvy contracts are carefully mechanized, there is no desk work to process and no time spent accommodating mistakes that frequently results from physically filling in archives.

Trust and transparency because there is no third party involved, and in light of the fact that encoded records of exchanges are shared across members, there is compelling reason need to address whether data has been changed for individual advantage.

Security Blockchain exchange records are scrambled, which makes them extremely difficult to hack. In addition, in light of the fact that each record is associated with the past and resulting records on an appropriated record, programmers would need to modify the whole chain to change a solitary record.

Smart contracts eliminate the need for intermediaries to handle transactions.

APPLICATIONS OF SMART TENDERS

Smart Tenders can be utilized in different fields which are referenced underneath:

- Monetary Tenders
- Supply Chain Management/ Inventory network Management
- Trading Activity/ Exchanging Activity
- Insurance/Protection
- Escrow
- Mortgage Systems/Contract System
- Finance Services
- Hospital Management
- ➢ Infrastructure

Smart Contract Platforms

Different blockchain platforms (e.g., Ethereum, Bitcoin and NXT) can be used to create and deploy smart contracts.

• Bitcoin: - It is a public blockchain network that can be used to process cryptocurrency transactions, but it only has a small compute capacity. Bitcoin makes use of a bytecode scripting language that is built on stacks.

• NXT: - NXT is a public blockchain platform with smart contract models.

• Ethereum: - Ethereum is a public blockchain platform that uses a Turing-complete programming language to support advanced and customizable smart contracts. Withdrawal caps, loops, financial contracts, and gambling markets are all possible on the Ethereum network. Ethereum smart contracts use a stack-based bytecode language to write their code, which is then executed by the Ethereum Virtual Machine (EVM).

RELATED WORK

Smart contracts have built-in accountability and forge resistance, making it easier to execute contractual agreements. Smart contracts are useful in a variety of applications due to their distinguishing characteristics. There is a plethora of smart contract solutions on the market, each with its own set of distinguishing features that are best suited to particular applications.

• Wang et al. presented a detailed overview of blockchain-powered smart contracts, highlighting the smart contracts' unique problems as well as future developments.

• Wright et al. discussed the advantages and disadvantages of emerging decentralized technology, as well as the need for the expansion of a new subset of law known as Lex Cryptographia, to regulate blockchain-based smart contract-based entities under legal theory.

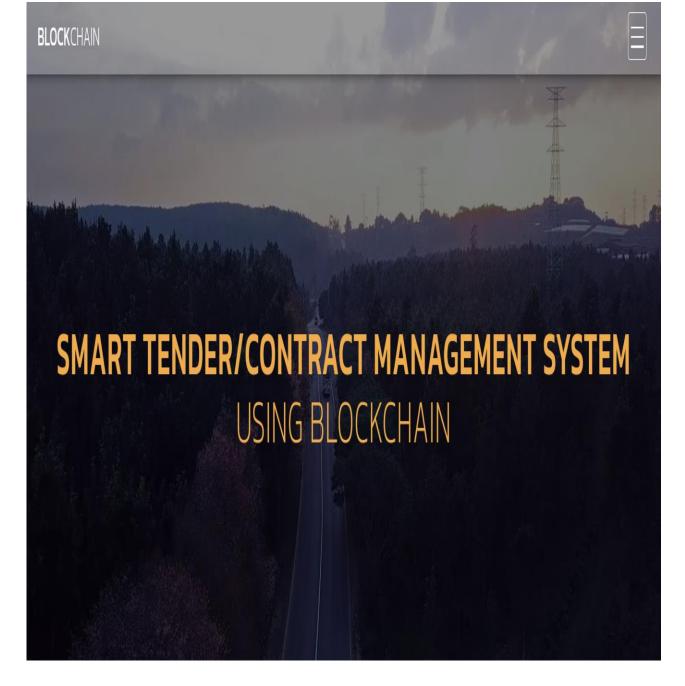
• Aggrawal et al. provided a detailed in-depth study in the sense of smart communities, as well as a comparison to previous surveys.

• Wust et al. critically studied the applicability of blockchain for a specific application situation, suggesting a formal framework for determining the appropriate technological solutions, and evaluating it with some real-world examples.

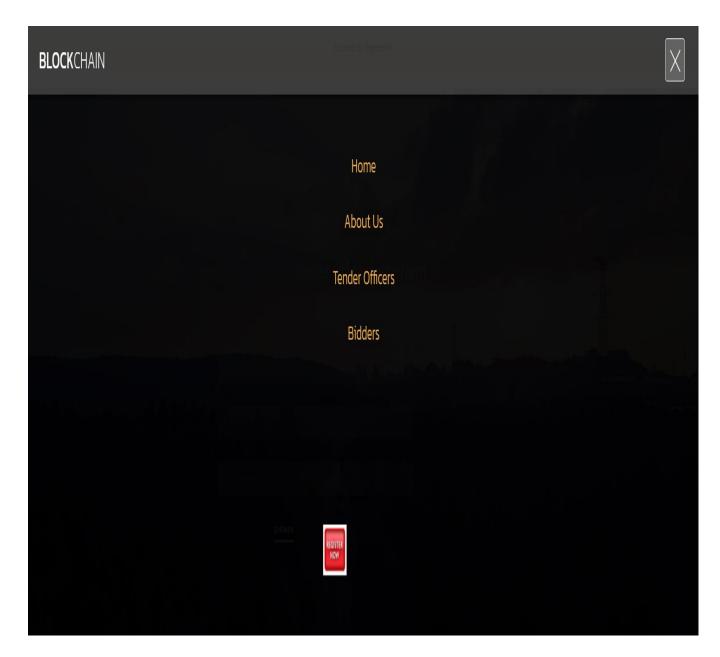
• Clack et al. investigated the design landscape of possible formats for storing and transmitting smart legal agreements in conjunction with blockchain technology, with a focus on the financial services sector.

• Chen et al. proposed an agent model for contract execution over a network of decentralized nodes and public ledger, to prevent users from manipulating smart contract execution by applying principles of game theory and agent based analysis.

• Sousa et al. designed, implemented, and evaluated a BFT ordering service for HLF on top of the BFT-Smart state machine replication/consensus library, implementing also optimizations for widearea deployment with good results.

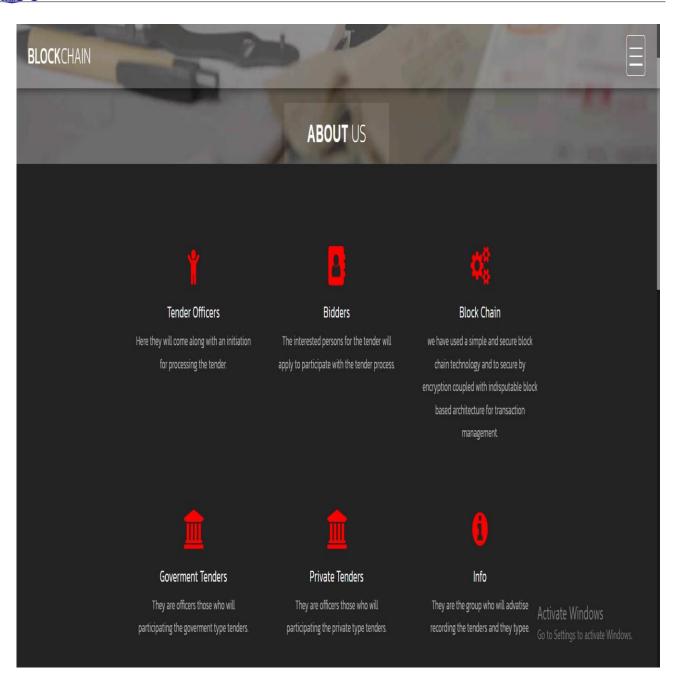

SCOPE

There are two further research directions, which are as follows - The Smart Contract can be made more secure by using more complex cryptographic algorithms for eg. SHA-256 to encrypt its confidential contents. The use of blockchain is explored further in other government services.

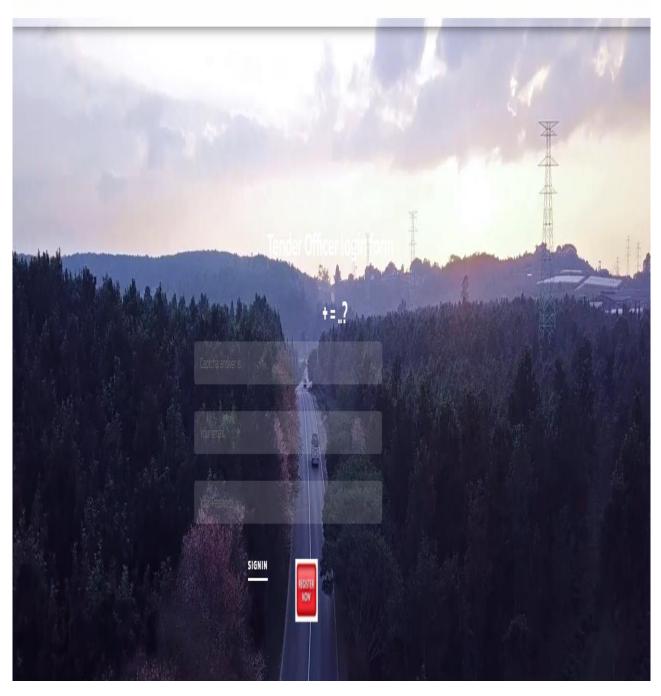


nternational Journal of Scientific Research in Engineering and Management (IJSREM)Volume: 06 Issue: 05 | May - 2022Impact Factor: 7.185ISSN: 2582-3930

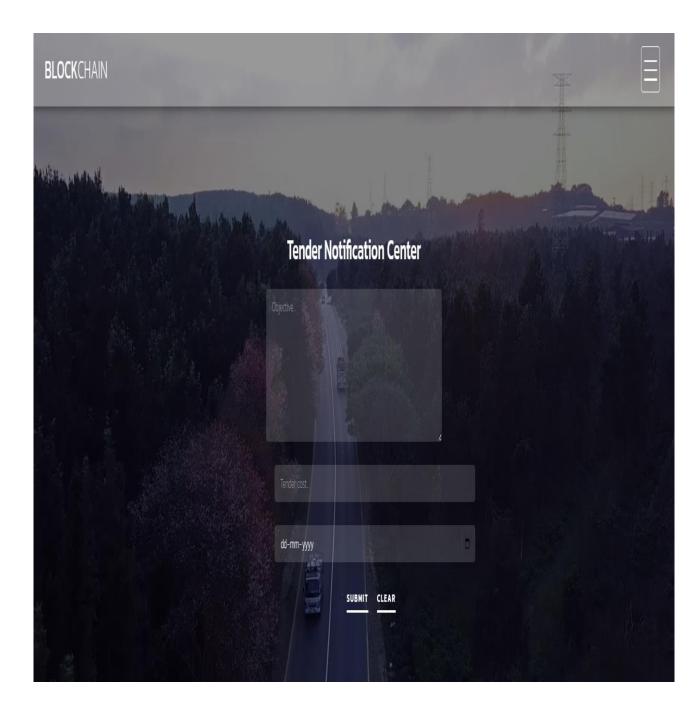
IMPLEMENTATION SCREENSHOTS



International Journal of Scientific Research in Engineering and Management (IJSREM)Volume: 06 Issue: 05 | May - 2022Impact Factor: 7.185ISSN: 2582-3930

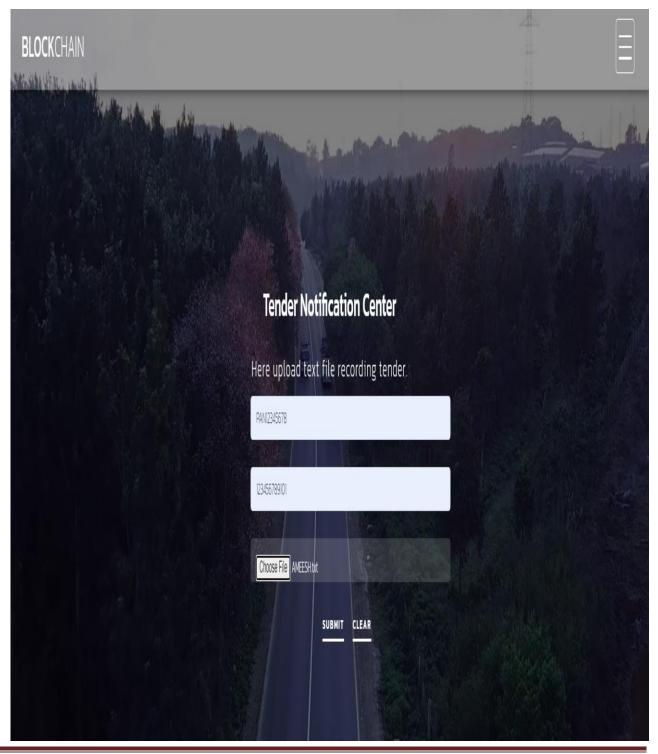


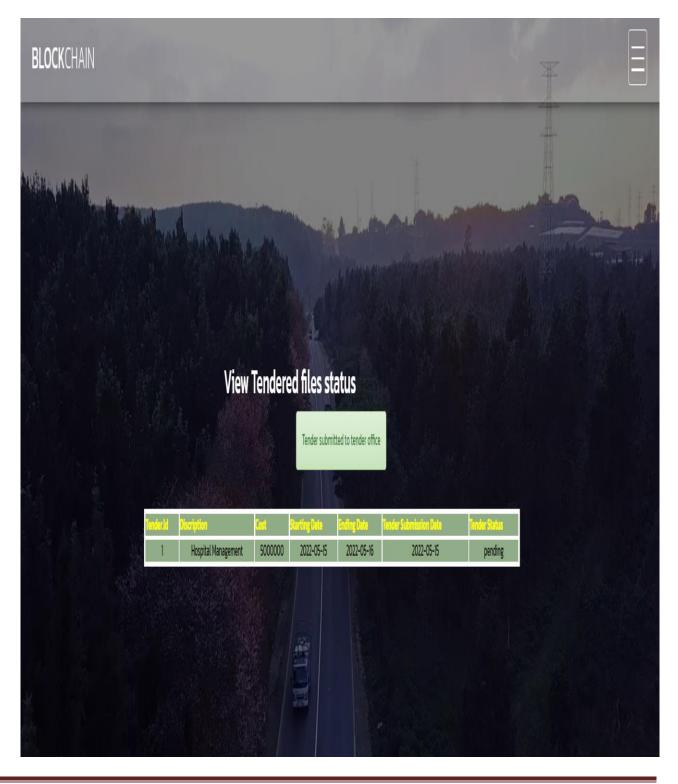
Officer Registration	form
	Antionka Windowa
SIGNUP	Activate Windows Go to Settings to activate Windows.
	Your name. Your email. Your Password. Confirm Password. Your address.

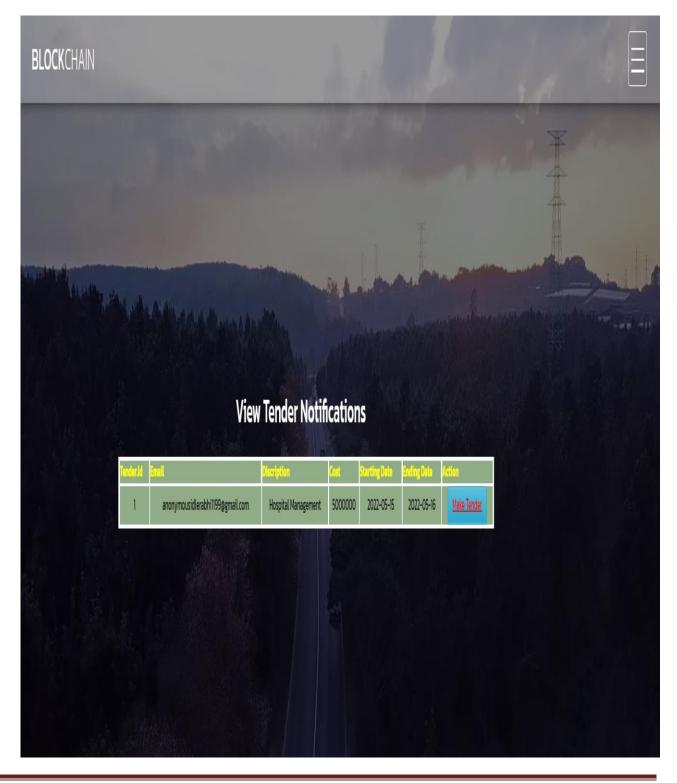


BLOCKCHAIN

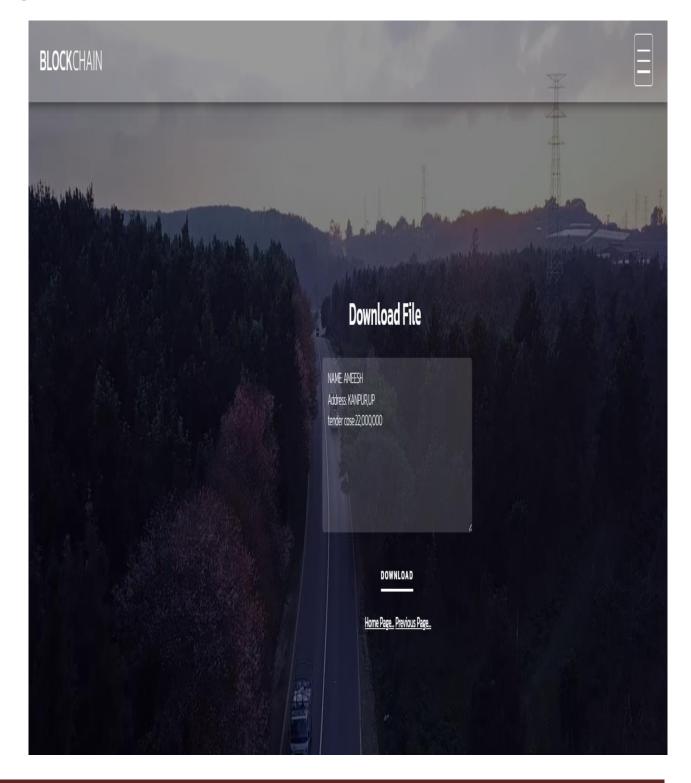
Successfully Registered



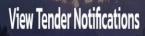


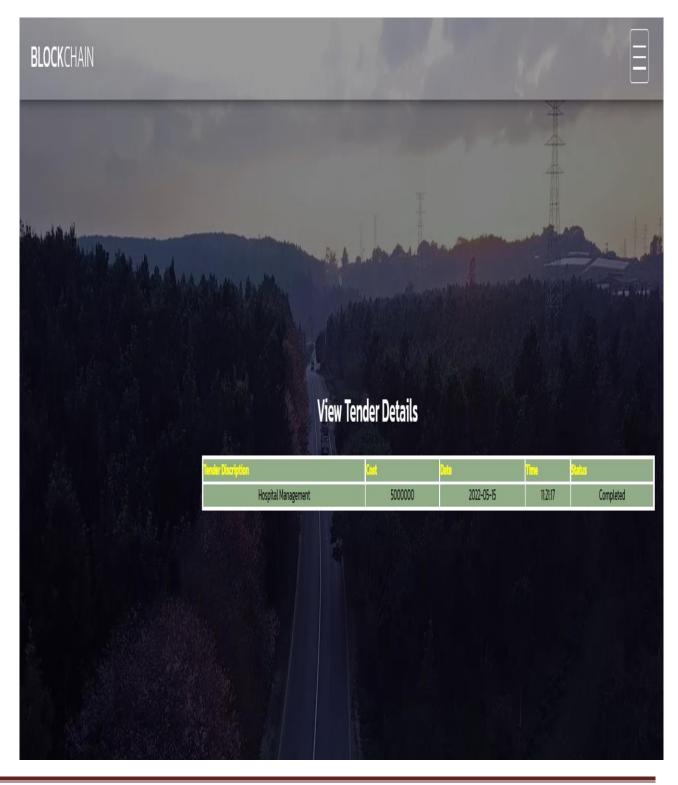






I





Tend	9 1 0	<mark>si</mark> (Bidder Email	Ran No	Aadhaar No	Healt	Hesh2	Date	Action (Action
1	5	000000	anonymousidlerabhi1199@gmail.com	PAN12345678	123456789101	5cb4697164ea2751171350e77ade5a0fcf810d64	a732bbe059c0b782463c791553876cb4d44fe483	2022- 05-15	<u>View Bidder Info</u>	<u>Finalised</u>
2	2	2478900	anonymousidlerabhi1199@gmail.com	PAN12345677	123456789103	683ae962bb1d601aeec86c6920ef9b239e5f3086	60705481145cee026c2e5ba17c321a8511e0db75	2022- 05-15	<u>View Bidder Info</u>	<u>Finalised</u>
3	N	000000	anonymousidlerabhi1199@gmail.com	PAN12345669	123456789102	1fd91775fded5203d3546de4273252af8898e428	7c7cea2e6abbecd6090abe174246668ef0846ff6	2022- 05-15	View Bidder Info	<u>Finalised</u>
4	125	5000000	anonymousidlerabhi1199@gmail.com	PAN12345679	123456789169	88d20fc0fcde30d82b1b3218010b88090eaa922a	Oce977bd372b861978401c4e476f5449b9d38c34	2022- 05-15	<u>View Bidder Info</u>	<u>Finalised</u>

International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 06 Issue: 05 | May - 2022 **Impact Factor: 7.185** ISSN: 2582-3930 M Smart Tender/Contract Managerr 🗴 🕂 ٥ imail.google.com/mail/u/0/?tab=rm&logbl#sent/FMfcgzGpFzvBSNgNzBVFzHMDcwWbSpdH 4 C \rightarrow ۲ A \$ Π X II = M Gmail Q in:sent 0 63 ŧ ۵ P 0 Ø 1 of 40 < 6 Ī > 31 Compose Smart Tender/Contract Management System Using Blockchain ē Z ٨ 5,071 Inbox Starred ŧ vaibhavmani1998@gmail.com 10:57 PM (58 minutes ago) Ŷ Ø Thank-You for choosing our Smart Tender service. Congratulations on winning this Tender. Regards, Tender Officer. Snoozed 0 ≽ Sent 8 10:57 PM (58 minutes ago) 🖞 🔦 🚦 vaibhavmani1998@gmail.com ß Drafts to anonymousidlerabhi1199 * More ... V + Thank-You for choosing our Smart Tender service. Meet Congratulations on winning this Tender. New meeting Regards. Join a meeting Tender Officer. Hangouts Reply Forward v vaibhav -+ 5 deleted messages in this conversation. View messages or delete forever. No recent chats Start a new one > : 0 23:56 🖸 🐞 🔒 👰 🌛 40°C Haze \land 🖗 🦟 🕼 🐿 ENG Q Type here to search 0 Ë 0 19-05-2022

III. METHODOLOGY

The procedure has the following steps:

- (1) Open Xampp, MySQL, Pycharm parallelly.
- (2) In Xampp start MySQL and connect the the Database in MySQL then run the code in PyCharm.
- (3) In output click on the web address that is mentioned.
- (4) Copy the web address to another tab.
- (5) Then on the tabs that have opened on Chrome open Tenders Officers and Bidders from the drop down menu that available in both tabs simultaneously.
- (6) Click on Register Now button and sign in in both tabs.
- (7) Fill the Tender's and Bidder's information in respective fields.
- (8) Enter the ID information.
- (9) A hash key has been created protecting the information.
- (10) Finalize the tender and Open another tab in with the gmail of Admin account.
- (11) A mail is send to bidder from Tender Officer's account.

ALGORITHM

- The encryption process uses a set of specially derived keys called round keys. The data is to be encrypted. This array we call the state array.
- You take the following aes steps of encryption for a 128-bit block:
- Derive the set of round keys from the cipher key.
- Initialize the state array with the block data (plaintext).
- Add the initial round key to the starting state array.
- Perform nine rounds of state manipulation.
- Perform the tenth and final round of state manipulation.
- Copy the final state array out as the encrypted data (ciphertext).
- The reason that the rounds have been listed as "nine followed by a final tenth round" is because the tenth round involves a slightly different manipulation from the others.
- The block to be encrypted is just a sequence of 128 bits.

IV. CONCLUSION

When it comes to applications such as tender portals, where transparency and security are of preeminent significance, traditional innovations and configuration designs can't be utilized as they put a danger to these prerequisites. As examined before, there are numerous security necessities for an offering system that can't be settled just by involving a concentrated delicate entryway for making and offering on the agreements. The security necessities and transparency expected from this sort of utilization must be addressed by utilizing fair, open, decentralized innovation, for example, Blockchain based Smart Contracts. Here we examine, how a framework like this can be planned by referencing different cycles included and their fundamental execution.

ACKNOWLEDGEMENT

This is to express our earnest gratitude & extreme joy at being bestowed with an opportunity to get an informative and an interesting project on "CONTRACT MANAGEMENT WITH BLOCKCHAIN". We would like to thank all the people who have helped us in completion of the project. I would like to express my profound gratitude to my project guide Dr. Umesh Pandey and Mr. Amit Tiwari to whom we are extremely grateful for giving us the opportunity to work on such an interesting project. We are also thankful to DEPARTMENT OF CSE (UGI) for giving us the opportunity to work on the project.

V. REFERENCES

- [1] Wang, Wenbo, et al. "A survey on consensus mechanisms and mining strategy management in blockchain networks." IEEE Access 7 (2019): 22328-22370
- [2] Cachin, Christian, and Marko Vukolić. "Blockchain consensus protocols in the wild." arXiv preprint arXiv:1707.01873 (2017).
- [3] Pilkington, Marc. "Blockchain technology: principles and applications." Research handbook on digital transformations, Edward Elgar Publishing, 2016.
- [4] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, "Making smart contracts smarter," in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2016, pp. 254–269.
- [5] E. Ben Hamida, K. L. Brousmiche, H. Levard, and E. Thea, "Blockchain for Enterprise:

Overview, Opportunities and Challenges", Jul. 2017.

- [6] A. Lewis," A gentle introduction to smart contracts", 2016
- [7] G. Wood, "Ethereum: A secure decentralised generalised transaction ledger", 2014.
- [8] K. Christidis and M. Devetsikiotis, "Blockchains and smart contracts for the internet of things", 2016.
- [9] K. Wust, A. Gervais, "Do You Need a Blockchain?", 2018.
- [10] L. Chen, L. Xu, N. Shah, Z. Gao, Y. Lu, W. Shi, "Decentralized Execution of Smart Contracts: Agent Model Perspective and its Implications", 2017.