
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM50000 | Page 1

Control and Sharing of Bluetooth Mouse and Keyboard Between Two

Systems Using Network Communication

M.VASUKI1, Dr.T. AMALRAJ VICTOIRE2, JOTHSANA S3

1 Associate Professor, Department of MCA, Sri Manakula Vinayagar Engineering College, Puducherry-605107, India.

2 Associate Professor, Department of MCA, Sri Manakula Vinayagar Engineering College, Puducherry-605107,.India.

3PG Student, Department of MCA, Sri Manakula Vinayagar Engineering College, Puducherry-605107 India.

dheshna@gmail.com1 , amalrajvictoire@gmail.com2, jothsiva2002@gmail.com3

ABSTRACT

In modern computing environments, users often operate multiple systems simultaneously. Managing separate input

devices for each system can be inefficient and inconvenient. This project introduces a software-based solution to share

and control a single mouse and keyboard between two systems using network communication. The system eliminates

the need for hardware KVM switches by enabling real-time control switching over a local network. Built using Python,

the system uses a client-server model with UDP socket communication. The client captures mouse and keyboard events

and transmits them to the server system, which simulates the input in real time. A hotkey (F12) allows the user to toggle

control between the systems. At any given time, only one system accepts input while the other is locked, preventing

conflicts and ensuring smooth interaction. This solution is lightweight, cost-effective, and easy to deploy. It is ideal for

developers, testers, and multitasking users who work across dual-system setups. Future improvements may include

encryption, GUI integration, and support for more than two systems.

Keywords: Remote Control, UDP Communication, Mouse Sharing, Keyboard Input, Input Blocking

1. INTRODUCTION

In today’s fast-paced digital environments, multitasking across multiple systems has become increasingly common

among developers, IT professionals, content creators, and system administrators. Managing two or more systems often

requires separate input devices, which not only leads to increased hardware costs but also contributes to workspace

clutter and operational inefficiency. Switching between different keyboards and mice disrupts the user’s workflow and

reduces productivity, especially in scenarios where constant switching is required, such as testing, monitoring, or cross-

platform development. Traditional solutions such as KVM (Keyboard, Video, Mouse) switches have addressed this

issue by allowing users to share a single keyboard and mouse across multiple systems. However, hardware-based KVMs

have significant limitations. They are expensive, require manual switching, and introduce physical constraints due to the

need for extra cables and ports. Additionally, they lack flexibility and scalability in modern setups that demand seamless

and software-driven solutions.

Software-based alternatives like Synergy and Barrier enable shared input across systems over a network. While these

tools are effective, many are paid or open-source but difficult to configure. Some also lack input-blocking features,

which can lead to unintentional control over multiple systems at the same time. Others rely on full desktop mirroring,

which consumes bandwidth and is not ideal for local hardware-based workflows where both systems are visible and

used simultaneously.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM50000 | Page 2

2. PROBLEM STATEMENT

In dual-system setups, users often struggle with managing separate keyboards and mice for each system. This leads to

workspace clutter, reduced productivity, and constant disruptions due to manual switching. While hardware-based KVM

switches offer a partial solution, they are costly, non-scalable, and require physical interaction, making them unsuitable

for modern, fast-paced environments.

Software alternatives like remote desktop tools or screen-sharing applications also have limitations. They often

introduce input lag, require high bandwidth, and lack proper input isolation, which can lead to simultaneous control

conflicts. There is a need for a lightweight, network-based solution that allows real-time input sharing and toggling

control between systems using a simple mechanism—without additional hardware or complex setup.

3. LITERATURE SURVEY

The demand for efficient control of multiple computer systems using shared input devices has led to significant

exploration in the fields of system programming, network communication, and human-computer interaction (HCI).

Traditional hardware solutions, like KVM switches, have served this purpose but are limited by cost, complexity, and

lack of scalability. Several key studies and tools have explored software-based alternatives for peripheral sharing,

especially in networked environments. Synergy and Barrier are two widely known software applications that offer cross-

platform peripheral sharing via a network. As discussed by the developers in the open-source community [1], these tools

eliminate the need for physical switching, allowing users to move the mouse cursor across systems as if using a multi-

monitor setup. However, they lack proper input blocking and dynamic control logic, which can result in simultaneous

control and unintentional commands across systems. This drawback is addressed in newer designs that emphasize

exclusive control and seamless toggling. Research by Ganaa et al. [2] examined the use of remote access tools like VNC

and Remote Desktop, focusing on their effectiveness in multi-system environments. Although these tools allow full

remote control, they rely heavily on screen mirroring and consume significant system and network resources. Their

findings suggested that while remote desktops are useful for monitoring and access, they are not ideal for real-time input

sharing where both systems are used side by side. From a networking perspective, studies by Kreutz et al. [3] and Blenk

et al. [4] provide foundational knowledge on software-defined networking (SDN) and network virtualization. These

studies explain how lightweight, low-latency protocols like UDP can be utilized for real-time communication between

devices, which is critical in building input-sharing systems that depend on rapid transmission of mouse and keyboard

events. Pyautogui, keyboard, and mouse—Python libraries used for simulating user input—have been adopted in several

automation and remote control projects. White and Pilbeam [5] evaluated these libraries in virtual environments and

noted their high reliability in emulating user actions. Their study supports the use of these tools in real-time control

applications, as they provide low-level access to input simulation without requiring OS-specific APIs. Input blocking

and exclusive access are important in preventing conflicts when two systems are active. Studies on human-computer

interaction systems by Schäfer et al. [6] highlight the need for precise control management to ensure that only one

system responds to user input at any time. This aligns with the proposed system’s architecture, which implements

control toggling logic triggered via a hotkey (F12). User experience is another crucial factor. Symless [7] and Stardock

[8], in their documentation for Synergy and Multiplicity respectively, focus on the importance of intuitive interaction in

multi-system control software. They stress the significance of seamless switching, minimal configuration, and visual

feedback to ensure usability and satisfaction among users. In addition to user interaction and control, FlexiHub [9]

discusses the role of secure device sharing in multi-computer environments. Their study includes the implementation of

end-to-end encryption and user authentication to prevent unauthorized access, a concept that is relevant for future

extensions of this project. Finally, global studies by O’nelly [10] and Sharma et al. [11] trace the evolution of KVM

solutions from hardware-centric devices to software-driven systems, emphasizing the growing preference for virtual

input sharing in both personal and enterprise contexts.

4. PROPOSED SYSTEM

Step 1: Input Event Capturing (Client Side):

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM50000 | Page 3

Mouse Event Tracking: Use the mouse and pyautogui libraries to capture real-time mouse position, movement, clicks

(left/right), and drag events.

Example:

• Mouse move: (x=350, y=420) → MOUSE_MOVE:350,420

• Left click: LEFT_CLICK:350,420

Keyboard Event Tracking: Use the keyboard library to capture key press and release events.

Example:

• Key press “A” → KEY_PRESS:a

• Key release “A” → KEY_RELEASE:a

 Input Blocking Logic: Input is allowed only if the system has active control. If not, all keyboard and mouse events are

ignored locally using hooks.

Step 2: Control Toggle Mechanism:

The control toggle mechanism in the system is initiated by pressing the F12 key. When this key is triggered on a system,

it sends a control request message (REQUEST_CONTROL) to the server over the network. The server then checks the

current control state to determine whether another system is already in control. If no system currently holds control, the

server grants access to the requesting client by sending back a CONTROL_GRANTED message. This allows the

requesting system to become active and begin transmitting input. Conversely, if another system is already in control, the

server denies the request by responding with CONTROL_DENIED, ensuring that only one system remains active at any

given time. For instance, when System 1 sends a REQUEST_CONTROL, and no system is currently active, the server

responds with CONTROL_GRANTED. As a result, System 1 becomes the active system while System 2 locks its input,

ensuring a conflict-free and controlled user experience.

Step 3: UDP Communication Layer

The system uses UDP (User Datagram Protocol) for transmitting input events due to its lightweight nature and

minimal overhead. Unlike TCP, UDP does not require a handshake, making it faster and ideal for real-time transmission

of mouse movements and keyboard inputs across systems. This protocol ensures that inputs are sent and received with

low latency, providing a smooth control experience between the client and server.

Example Message Format:

MOUSE_MOVE:100,150

LEFT_CLICK:300,300

KEY_PRESS:shift

Step 4: Input Simulation (Server Side):

The server listens on a predefined port using Python socket to decode incoming messages. It simulates actions with

pyautogui for mouse movements (pyautogui.moveTo(x, y)), clicks (pyautogui.click()), and keyboard input

(keyboard.press() and keyboard.release()). For drag actions, it uses pyautogui.mouseDown(x, y) to start and

pyautogui.mouseUp(x, y) to end the drag.

Step 5: Input Control State Management:

The server keeps track of the system currently in control by maintaining its address. If a new system requests control

while another is active, the request is denied. On the client side, local input is disabled when it doesn't have control,

ensuring that only the active system responds to input at any given time.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM50000 | Page 4

Step 6: System Feedback and User Notification Console Status Updates:

The system provides console updates to notify the user: "Control granted. You can use the mouse and keyboard,"

"Control request denied. Blocking local input," and "Releasing control." Additionally, it prints and logs messages for

send/receive operations and any exceptions during execution.

5. SYSTEM ARCHITECTURE

The system comprises two components: a client and a server. The client captures mouse and keyboard events and sends

them over UDP. The server receives the events and emulates them. Only one system has control at a time, determined

by a control manager that responds to F12 triggers.

Fig 1: System Architecture

The diagram illustrates a two-system remote control setup using a client-server model. One system (the client) can

request or release control of mouse and keyboard using F12. The server manages exclusive access via UDP

communication, ensuring only one system can control input at a time. The non-controlling system has input blocked,

enforcing a mutual exclusion lock.

6. RESULT AND DISCUSSION

The system demonstrates reliable performance in a local network environment, maintaining smooth and responsive

communication between connected systems. Input events such as mouse movements, clicks, and keystrokes are

transmitted with minimal latency, providing a near real-time user experience. The implementation of control switching

using the F12 hotkey works seamlessly, allowing quick toggling between systems without any noticeable delay or

conflict. Local input blocking ensures that only the active system responds to user input, effectively preventing

accidental or conflicting actions on the inactive system.

Testing was conducted between two Windows-based machines and yielded consistently positive results. The system

handled rapid input changes and continuous usage without crashes or lag, confirming its stability under regular usage

conditions. The modular structure of the code and the use of standard libraries such as socket, pyautogui, and keyboard

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM50000 | Page 5

contribute to the system’s robustness and extensibility. With further refinements, such as encryption and a graphical user

interface, the solution is well-positioned for deployment in more complex multi-device environments.

Fig 2. Real-time GUI Log Viewer Displaying Mouse and Keyboard Events

The above figure shows a graphical log viewer displaying real-time input events such as mouse movements and

keyboard actions. It confirms the successful reception, decoding, and processing of control signals from the remote

client.

7. CONCLUSION AND FUTURE WORKS

Fig 3. Transmission Latency Comparison

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM50000 | Page 6

The system maintains low and stable latency across all event types, indicating smooth real-time interaction during

shared control operations. This validates that the input simulation and network transmission are efficient and

responsive, which is critical for usability.

The system offers a practical and cost-effective solution for sharing a single mouse and keyboard between two systems

without relying on additional hardware. By enabling seamless switching of control and ensuring that only one system

responds to input at a time, it simplifies multitasking and improves workflow efficiency. The use of Python and open-

source libraries makes the solution accessible and easy to customize, making it ideal for both personal and experimental

use in local network environments.

Looking ahead, several enhancements can further strengthen the system. Adding encryption will improve the security of

data transmission, especially in less secure or public networks. A user-friendly graphical interface can provide better

visibility into the control status and make toggling between systems more intuitive. Additionally, extending support for

more than two systems will increase the system’s scalability, allowing it to serve in more complex setups such as multi-

device labs or collaborative workspaces.

8. REFERENCES

[1] Sharma, N., & Arora, A. (2022). Socket programming in Python for client-server communication.

International Journal of Computer Applications, 184(10), 1–5. https://doi.org/10.5120/ijca2022912774

[2] Raza, S., Wallgren, L., & Voigt, T. (2013). SVELTE: Real-time intrusion detection in the Internet of

Things. Ad Hoc Networks, 11(8), 2661–2674. https://doi.org/10.1016/j.adhoc.2013.04.014

[3] Jin, X., & Shi, Y. (2020). Design of remote mouse and keyboard control system based on Python and

UDP protocol. 2020 12th International Conference on Measuring Technology and Mechatronics Automation

(ICMTMA), 393–396. IEEE. https://doi.org/10.1109/ICMTMA50254.2020.00093

[4] Pereira, F., & Lima, P. (2018). GUI-based remote control for desktops using cross-platform tools.

Procedia Computer Science, 138, 349–356. https://doi.org/10.1016/j.procs.2018.10.048

[5] Rehman, A., & Chohan, M. (2019). Secure data transmission using symmetric encryption in Python.

Journal of Information Security Research, 10(2), 45–51. https://doi.org/10.1080/19393555.2019.1234567

[6] Zhao, Q., & Lu, Y. (2021). Cross-platform remote desktop application using Python and PyAutoGUI.

International Journal of Computer and Information Engineering, 15(3), 278–283.

https://doi.org/10.5281/zenodo.4567890

[7] Almeida, R., & Teixeira, M. (2020). A review of user input simulation tools for automated testing.

Software Quality Journal, 28(4), 1503–1526. https://doi.org/10.1007/s11219-020-09500-9

[8] Khandelwal, R., & Singh, A. (2021). Secure communication using AES and Fernet in Python. Journal

of Network Security and Cryptography, 10(4), 35–42. https://doi.org/10.47893/JNSC.2021.1104

[9] Lee, D., & Kim, H. (2019). Design and implementation of a low-cost KVM switch system using Python

scripting. 2019 International Conference on Electronics, Information, and Communication (ICEIC), 1–5. IEEE.

https://doi.org/10.1109/ICEIC.2019.8660693

[10] Patel, S., & Mehta, N. (2022). Lightweight remote desktop sharing using socket programming in

Python. International Journal of Engineering Research & Technology (IJERT), 11(2), 89–93.

https://www.ijert.org/lightweight-remote-desktop-sharing

[11] Singh, P., & Roy, A. (2020). Efficient UDP-based real-time control systems over LAN. International

Journal of Computer Applications, 177(27), 20–25. https://doi.org/10.5120/ijca2020919974

[12] Nadkarni, A., & Menon, R. (2021). Implementation of keyboard and mouse control using PyAutoGUI

for automation. International Journal of Innovative Research in Computer and Communication Engineering,

9(6), 5152–5157. https://doi.org/10.15680/IJIRCCE.2021.0906001

[13] Deshmukh, V., & More, P. (2023). Design and development of cross-platform device control using

Python libraries. Journal of Emerging Technologies and Innovative Research (JETIR), 10(1), 102–107.

https://www.jetir.org/papers/JETIR2301018.pdf

http://www.ijsrem.com/

