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ARTICLE INFO  ABSTRACT  

In addition to disease identification, recent advancements aim to provide actionable advice to farmers by recommending 

fertilizers or supplements specific to the identified condition. This review not only surveys CNN models for tomato disease 

classification but also presents an outlook on their integration into intelligent decision-support systems. We also examine 

the challenges faced in real-world implementations and propose practical solutions to overcome these limitations for 

widespread deployment. 

Tomato is one of the most cultivated and consumed vegetables globally, but it is highly susceptible to a variety of plant 

diseases, which significantly impact yield and quality. Traditional methods of disease detection are labor-intensive and 

prone to human error. With the advancement in artificial intelligence, particularly deep learning, Convolutional Neural 

Networks (CNNs) have shown great promise in automated plant disease detection using image data. This review explores 

the methodologies of using CNNs for tomato plant disease classification via leaf images and discusses how such systems 

can be extended to recommend suitable supplements or treatments. It critically evaluates existing models, identifies gaps 

in current research, and proposes future directions for building scalable, real-time systems for farmers and agricultures.   
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Introduction:   

Tomatoes are vital to global agriculture but are vulnerable to diseases like Early Blight, Late Blight, and Leaf Mold. Early 

detection is crucial for minimizing crop loss and improving food security. Traditional approaches involve manual 

inspection by experts, which is often not feasible for large-scale or smallholder farms. With the integration of computer 

vision and deep learning, particularly CNNs, image-based disease detection has become increasingly accurate and 

efficient. The objective of this review is to examine the application of CNNs in tomato leaf disease detection and discuss 

how this system can be enhanced to recommend supplements or treatments based on disease classification. 

Tomato Plant diseases are among the leading causes of agricultural losses, contributing to significant economic setbacks 

and reductions in global food supply.  
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According to the Food and Agriculture Organization (FAO), plant diseases can reduce crop yields by up to 40% annually. 

This makes effective disease detection and management a critical priority for researchers, farmers, and policymakers . 

Traditional detection methods involve manual inspection by trained professionals, which can be costly, time-consuming, 

and susceptible to human error. These methods often fail to scale for large agricultural fields or address the needs of 

resource-limited regions. To bridge this gap, artificial intelligence (AI), particularly ML and DL, has emerged as a 

promising solution .Machine learning algorithms can identify patterns in data and classify plant diseases based on features 

extracted from images. Among these, CNNs have shown exceptional potential in image classification tasks, owing to their 

ability to learn hierarchical representations. Other models, such as SVMs and KNNs, have been widely used for disease 

classification due to their simplicity and efficiency.This review paper consolidates findings from eight research studies, 

providing insights into the strengths and limitations of existing methodologies. It further discusses future directions to 

improve the scalability and real-world applicability of AI-based plant disease detection systems.     

Methodology Analysis:   

The methodology adopted in this study consists of a systematic eight-step approach, beginning with dataset preparation 

and concluding with model visualization and saving. The entire pipeline was developed using PyTorch and related 

libraries to build and evaluate a robust Convolutional Neural Network (CNN) for image classification, particularly 

focused on disease detection in plant leaf images. 

1. Dataset Preparation 

 

Since image datasets often vary in size, orientation, and color distribution, preprocessing was essential to ensure 

uniformity and consistency. The dataset was organized using the ImageFolder utility from torchvision, which 

automatically assigns class labels based on folder names. To standardize input dimensions, transformations such as 

resizing and center cropping were applied. Additionally, the images were converted to tensors using the ToTensor 

transform, enabling them to be processed by the PyTorch model. These preprocessing steps help reduce data 

inconsistencies and improve model convergence during training. 

2. Data Splitting Strategy 

 

A data splitting strategy was implemented to assess the model’s generalization ability. The dataset was divided into three 

subsets: training (70%), validation (15%), and testing (15%). Random shuffling ensured a balanced distribution of 

class labels across all three sets, thereby reducing sampling bias and avoiding data leakage. The training set was used to 

train the model, the validation set for hyperparameter tuning and overfitting detection, and the test set to evaluate the final 

performance of the trained model on unseen data. 

3. Model Design (CNN Architecture) 

 

A custom Convolutional Neural Network (CNN) was designed to effectively learn and extract spatial hierarchies from 

input images. The network began with multiple convolutional layers, each equipped with small filters to detect low-level 

features such as edges and textures. As the layers deepened, the model progressively learned more complex and abstract 

representations like shapes and patterns specific to plant diseases. After each convolution operation, a ReLU activation 

function was applied to introduce non-linearity, enabling the network to model complex patterns in the data. To further 
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enhance learning, batch normalization was used to stabilize and accelerate the training process by normalizing layer 

inputs, reducing internal covariate shift. 

To reduce the computational load and help the model focus on the most significant features, max pooling layers were 

used after certain convolutional blocks to downsample the feature maps. The output of the convolutional layers was 

eventually flattened and passed through fully connected layers to generate class probabilities. Dropout layers were 

integrated before the final output layer to prevent overfitting by randomly deactivating a portion of neurons during 

training, ensuring the model generalizes well to unseen data. This overall design allowed the CNN to progressively build 

a detailed understanding of the input images, from basic edges to complex disease indicators, while maintaining 

robustness and efficiency. 

4. Training Configuration 

The training configuration played a vital role in optimizing model performance. CrossEntropyLoss was chosen as the 

loss function because it is well-suited for multi-class classification problems. The Adam optimizer was used for its ability 

to adapt learning rates and handle noisy gradients effectively. Training was conducted over multiple epochs, with a fixed 

batch size chosen to balance GPU memory usage and learning stability. These parameters were carefully selected to 

achieve faster convergence and improved accuracy. 

5. Training Process 

The training process involved a typical deep learning workflow comprising forward propagation, loss calculation, 

backward propagation, and optimizer updates. During forward propagation, the model predicted output class 

probabilities for a batch of input images. These predictions were compared against true labels using the loss function. 

Backward propagation then calculated gradients of the loss with respect to model parameters, and the optimizer adjusted 

the weights accordingly. Validation loss was computed at the end of each epoch to monitor the model’s generalization 

and detect signs of overfitting. 

6. Model Evaluation 

Once training was completed, the model was evaluated using accuracy as the primary performance indicator. The model 

was switched to evaluation mode using model.eval(), which disabled dropout and batch normalization learning to ensure 

consistent behavior during inference. Performance was assessed on the training, validation, and test sets to verify how 

well the model fit the data and generalized to unseen inputs. 

Train Accuracy : 96.7 

Test Accuracy : 98.9 

Validation Accuracy : 98.7 

 

7. Model Saving and Visualization 

The trained model was then saved using torch.save() to preserve the learned weights for future inference, eliminating the 

need for retraining. Additionally, training and validation loss curves were plotted using matplotlib, providing insights 

into the learning behavior across epochs. These visualizations helped identify trends such as underfitting, overfitting, or 

the need for further training or regularization. 
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8. Libraries and Tools Used 

 

The implementation leveraged several essential Python libraries. PyTorch served as the core deep learning framework, 

while torchvision was used for image transformations and dataset management. Numerical operations were handled 

efficiently using NumPy, and visualization was done using matplotlib. The torchsummary library provided detailed 

layer-wise summaries of the CNN architecture. These tools collectively contributed to a simplified yet powerful 

development and evaluation workflow for the image classification model. 

 

Critical Insights:   

CNNs outperform traditional machine learning classifiers like SVM or KNN in terms of both accuracy and generalization. 

Light weight CNN models (e.g., Mobile Net) make real-time mobile-based detection feasible.Hybrid models combining 

CNNs with decision trees or recommendation engines enhance usability for non-experts. Transfer learning using pre-

trained models accelerates development and improves performance on smaller datasets.Accuracy: DL models consistently 

achieve high accuracy, with CNN-based architectures surpassing 95% in most cases. Scalability: Automated systems can 

be deployed over large agricultural fields, reducing dependency on manual inspection. Innovation: Advanced 

preprocessing techniques and feature exraction methods enhance model performance significantly.   

 

Limitations : 

 

Dataset Bias: Most datasets are collected in controlled environments and may not perform well in natural field conditions. 

Lighting and Noise: Variation in lighting, background clutter, or partial leaf images can reduce detection accuracy. Lack 

of Supplement Database: The current literature lacks integrated systems that map diseases to locally available or region-

specific treatments. Model Interpretability: CNNs are black-box models and often lack explainability, making users 

hesitant to trust the output. 

 

Opportunities :   

Field Deployment: Integration with mobile apps and drones for real-time, in-field disease surveillance. Multimodal Data 

Fusion: Combining leaf images with environmental data (humidity, temperature) to enhance accuracy . Community 

Reporting: Crowd-sourced image data to improve training datasets. Region-Specific Recommendations: Localization of 

supplement suggestions based on available agro-products. 

Future Directions:   

 To address the limitations identified, future research should prioritize: Dataset Expansion: Creating datasets that capture 

images under varying lighting, environmental, and crop conditions to improve real-world applicability. Develop datasets 

with images captured under diverse environmental conditions, including variable lighting, multiple crop types, and 

varying disease stages. Expand datasets with diverse climatic and geographical representations. Integration with IoT: 

Combining AI models with IoT devices, such as drones and sensors, for real-time monitoring of large-scale agricultural 

fields. Integrate IoT devices and drones equipped with advanced sensors and AI models for real-time disease monitoring 

in agricultural fields.  Lightweight Models: Developing models optimized for deployment on low-power devices, ensuring 

accessibility in resource-limited areas.  Create efficient, scalable models that can run on low-power devices without 

compromising accuracy.  Build integrated platforms that not only detect diseases but also suggest pesticide dosages, 
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organic treatments, and crop rotation schedules. Multimodal Data Analysis: Incorporating data from sensors measuring 

soil moisture, temperature, and humidity to provide a holistic view of plant health.  

Combine visual data with other data types, such as soil moisture, temperature, and humidity, for holistic disease 

monitoring.Introduce multilingual interfaces and voice-enabled apps for rural adoption. Explainability: Enhancing AI 

model interpretability to ensure that predictions can be understood and trusted by farmers and agronomists. Enhance 

interpretability of AI models to help farmers and agronomists understand predictions and take actionable steps. As AI 

continues to evolve, the integration of deep learning in agriculture represents a paradigm shift toward precision farming. 

Future systems must not only detect and classify but also advise and educate. By blending CNN-based vision systems 

with agronomic intelligence and contextual data, we can build powerful tools that democratize access to expert-level 

decision-making and foster sustainable agricultural Develop interpretable CNN models using techniques like Grad-CAM 

for visualizing decision maps. Further advancements should include enhancing model interpretability using techniques 

like Grad-CAM to visualize decision-making processes, which builds trust among farmers and agronomists. Beyond 

detection, future systems should offer prescriptive analytics, recommending pesticide dosages, organic treatments, or crop 

rotation strategies. Creating multilingual, voice-enabled applications with offline capabilities can promote adoption in 

rural communities.  

Conclusion:   

Tomato plant disease detection using CNNs offers a scalable, cost-effective, and accurate solution for modern agriculture. 

This review has highlighted the potential and challenges in leveraging CNNs for leaf image analysis and supplement 

recommendations. Future work should focus on enhancing real-world adaptability, expanding datasets, and making the 

systems more transparent and accessible to end-users. The application of AI in plant disease detection has shown 

significant promise, with CNNs and advanced preprocessing techniques leading the way. However, challenges such as 

dataset limitations, environmental variability, and computational requirements hinder real-world deployment. 

Collaborative efforts among researchers, industry stakeholders, and policymakers can address these challenges, paving 

the way for scalable, efficient, and accurate disease detection systems. Such advancements will play a critical role in 

safeguarding global food security and promoting sustainable agricultural practices. The findings from these eight studies 

underline the transformative potential of AI and computer vision in agriculture. While current methodologies provide 

promising results, significant challenges remain in terms of dataset diversity, real-world scalability, and computational 

efficiency. Addressing these issues through collaborative efforts, such as industry-academia partnerships, can pave the 

way for innovative, sustainable solutions.   
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