

Correlation between Optical Basicity and Oxide ion Polarizability

In Glass formers and Glass modifiers (Review)

D.B.Thombre

Ex. Associate Professor, Department of Physics, Jagdamba Mahavidyalaya, Achalpur City, India

***_____

Abstract - The oxide ion polarizability and Optical Basicity approach in the glasses has been studied detail by V. Dimitrov and T. Komatsu, V. Dimitro and S. Sakka Duffy. Here a review is taken on the basics of their literature values. The average values of ion polarizability and average values of optical basicity given on the basics of refractive index and energy gap is correlated in glass formers, conditional glass formers, alkaline and alkaline earth oxides glass modifiers.

Key Words: Ionic polarizability, Basicity, Glass formers, Conditional glass formers, alkaline and alkaline earth oxides glass modifiers.

1. INTRODUCTION

Glass forming oxides are classically described as a network composed by building entities such as SiO₂, B₂O₃, P₂O₅, GeO₂, As₂O₃, and Sb₂O₃. There are also other glass former oxides called as conditional glass former oxides. Here I have studied it in to two groups. From group of periodic table III (A,B) & IV (A,B); Y₂O₃, HfO₂, ZrO₂, Sc₂O₃, TiO₂, Al₂O₃, In₂O₃, Ga₂O₃, SnO₂ are considered as conditional glass former oxides (I).and from group V(A,B) & VI(A,B); Ta₂O₅, Nb₂O₅, V₂O₅, Cr₂O₃, Bi₂O₃, TeO₂, MoO₃, As₂O₃, WO₃, Se₂O₃ are considered as conditional as glass forming oxides (II). Li₂O, Na₂O, K₂O, Rb₂O, Cs₂O CaO, MgO, and SrO, BeO, MnO, CoO, ZnO, CuO, NiO, CdO, PbO, BaO ^[1, 2]; are Glass modifier alkali oxides and alkaline earth modifier oxides respectively.

All conditional glass former oxides (I) and (II) are according to Pauling's packing rule, Goldschmidt radius ratio rule, Zachariasen's random network theory, and Sun's single bond strength theory. For Glass formers $r_c/r_a = 0.142-0.314$ [except P_2O_5 (0.642)].For conditional glass formers (I) radius ratio $r_c/r_a = 0.250-0.492$. For Conditional glass formers (II) radius ratio $r_c/r_a = 0.528-0.875$, and single bond strength greater than 90 Kcal/mol. According to Sun's, high bond strength oxides are not good glass formers because they themselves do not forms glass; but when they forms small ring in the melt of these materials which result in easy crystallization.

The polarizability approach has shown renewed interest because of the need to design optical functional materials and to search for novel glasses with higher optical performances such as oxide glasses. Dimitrov and Sakka^[1] calculated the electronic oxide ion polarizability (α_{o2} .) of larger number of single component oxides on the basis of linear refractive index (n_o) and energy gap (E_g). It was established that there is general tendency of increase oxide ion polarizability with increasing refractive index and decreasing energy gap. Dimitrov and Komatsu ^[2] extended this approach for numerous binary oxide glasses and have found similar trend. Optical basicity as proposed by Duffy and Ingram ^[3, 4] is used with transition metal and heavy metal oxides. Reddy et al.^[5]

calculates the basicity on the basics of average electronegativity for simple oxides, binary oxides, alkaline and alkaline earth oxide glasses. Zhao et al.^[6] on the basics of optical electronegativity for binary oxides glasses.

The purpose of the article is to consider the status of the oxide ion polarizability approach in the glass science and to emphasize the role of the optical basicity helpful to the new researchers.

2. THEORETICAL CONSIDERATIONS

Dimitrov and Sakka ^[1] have determined the optical basicity for numerous single oxides on the basis of their refractive index $\Lambda(n_0)$ and Energy gap $\Lambda(E_s)$.

$$\alpha_{o2^{-}}(\mathbf{n}_{o}) = \left[\left(V_{m}/2.52 \right) \left(\mathbf{n}_{o}^{2} - 1 \right) / \left(\mathbf{n}_{o}^{2} + 2 \right) - p\alpha_{i} \right] (\mathbf{q})^{-1}$$
(1)
$$\alpha_{a} \left(\mathbf{E}_{i} \right) = \left[\left(V_{m}/2.52 \right) \left(1 - \left(\mathbf{E}_{i}/20 \right) \right)^{1/2} \right] - p\alpha_{i} \left(\mathbf{q} \right)^{-1}$$
(2)

 α_{o2} (E_g) = [(V_m/2.52) (1-(E_g/20)^{1/2}) – $p\alpha_i$] (q)⁻¹ (2) In above equations V_m is molar volume, n_o is refractive index, p & q are cations and oxide ions in the chemical formula of oxide A_pO_q, α_i is cation polarizability, E_g is energy gap, and α_{o2} polarizability of the oxide ion.

Duffy ^[7] has established an relation exists between electronic polarizability of the oxide ions α_{o2} and optical basicity of the oxide medium Λ , as given by equation

 $\Lambda = 1.67(1-(1/\alpha_{o2-})) \tag{3}$ By using equation (3) Dimitrov and Sakka ^[1] also calculates optical basicity, on the basis of their refractive index $\Lambda(n_o)$ and Energy gap $\Lambda(E_g)$.

Duffy and Ingram ^[3,4] calculates the basicity on the basics of Pauling electronegativity by using equation for metal oxides as well as for alkaline earth oxides.

$$\Lambda = 0.75/(\chi - 0.25)$$
 (4)

where χ is Pauling electronegativity.

Sun ^[8] has given a general treatment to all kinds of glasses, particularly oxide glasses. His observations reveal that the bond strengths of is greater than 80 kcal/mol foe all the glass formers.

3. RESULT AND DISCUSSION

In the review of this article $\alpha_{o2}.^{av}$ $(A^o)^3$ is the average values of oxide ion polarizability calculated from refractive index ($\alpha_{o2}.$ ($n_o)$) and energy gap ($\alpha_{o2}.(E_g)$). Similarly Λ^{av} is the average values of optical basicity calculated from refractive index $\Lambda(n_o)$ and energy gap $\Lambda(E_g)$ by Dimitrov and Sakka^{[1]}. The average values of basicity given by Duffy^{[7]} are considered. Classifying oxides and arranging basicity values in ascending order, the result and discussion is as follow;

3.1 Glass formers:

For Glass formers SiO₂, B_2O_3 , P_2O_5 , GeO₂, $r_c/r_a = 0.142$ -0.314 [except P_2O_5 (0.642)].

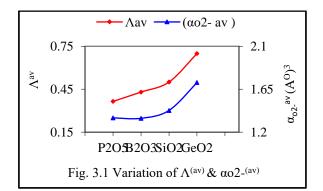


Figure 3.1 shows that oxide ion polarizability increases from 1.345 to 1.72 $(A^{\circ})^3$ and optical basicity also increases from 0.365-0.7 i.e. oxide ion polarizability increases on increasing the optical basicity with glass formers.

Table 3.1:

Glass formers	Λ^{av}	(αο2- ^{av})
P ₂ O ₅	0.365	1.350
B_2O_3	0.430	1.345
SiO ₂	0.500	1.427
GeO ₂	0.700	1.720

Table 3.1 Glass formers, optical basicity (Λ^{av}) and oxide ion polarizability (α_{o2}) of simple oxides.

3.2 Conditional glass formers (I):

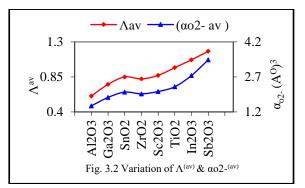


Figure 3.2 shows that oxide ion polarizability increases from 1.46 to 3.492 $(A^{\circ})^3$ and optical basicity also increases from 0.605 to 1.18 i.e. in conditional glass formers (I) oxide ion polarizability also increases on increasing the optical basicity. **Table 3.2:**

Cond.glass formers (I)	Λ^{av}	(αο2- ^{av})
Al ₂ O ₃	0.605	1.460
Ga ₂ O ₃	0.755	1.822
SnO ₂	0.850	2.050
ZrO ₂	0.825	1.975
Sc_2O_3	0.870	2.075
TiO ₂	0.970	2.278
In ₂ O ₃	1.070	2.762
Sb ₂ O ₃	1.180	3.429

Table 3.2 Cond. glass formers (I), optical basicity (Λ^{av}), and oxide ion polarizability (α_{o2} -^{av}) of simple oxides.

3.3 Conditional glass formers (II):

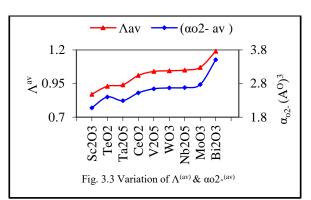


Figure 3.3 shows that oxide ion polarizability increases from 2.075-3.507 (A°)³, basicity increases from 0.87-1.19 i.e. in conditional glass formers (II) oxide ion polarizability also increases on increasing the optical basicity. **Table 3.3:**

Cond. glass	Λ^{av}	(αο2- ^{av})
formers (II)		
Sc_2O_3	0.87	2.075
TeO ₂	0.93	2.401
Ta ₂ O ₅	0.94	2.291
CeO ₂	1.01	2.522
V ₂ O ₅	1.04	2.643
WO ₃	1.045	2.670
Nb ₂ O ₅	1.05	2.679
MoO ₃	1.07	2.769
Bi ₂ O ₃	1.19	3.507

Table 3.3 Cond. glass formers (II), optical basicity (Λ^{av}) , oxide ion polarizability (α_{o2} -^{av}) of simple oxides.

3.4 Alkaline and Alkaline earth glass oxide modifiers: Alkaline and alkaline earth oxide glass modifiers are mostly used in glasses to modify the network to study the so many properties.

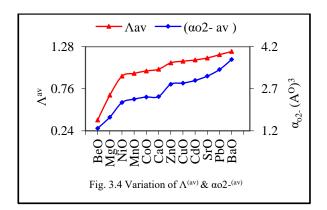


Figure 3.4 shows that oxide ion polarizability increases from 2.075-3.507 (A°)3, basicity increases from 0.87-1.19 i.e. in conditional glass formers (II) oxide ion polarizability also increases on increasing the optical basicity.

Volume: 07 Issue: 12 | December - 2023

SJIF Rating: 8.176

ISSN: 2582-3930

Table	3.4:
-------	------

Alkaline & Alkaline	Λ^{av}	(αο2- ^{av})
earth oxides BeO	0.375	1.290
MgO	0.680	1.687
NiO	0.915	2.210
MnO	0.950	2.330
CoO	0.980	2.405
CaO	1.000	2.420
ZnO	1.080	2.859
CuO	1.100	2.900
CdO	1.115	2.993
SrO	1.140	3.150
PbO	1.180	3.381
BaO	1.220	3.741

Table 3.4 Alkaline & Alkaline earth oxides, optical basicity (Λ^{av}) , and oxide ion polarizability $(\alpha_{o2}{}^{av})$ of simple oxides.

3.5 Mix glass formers: The relation between refractive index and energy gap for mix glass formers gives,

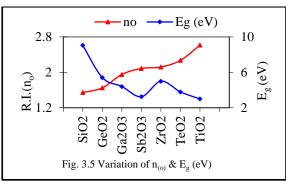


Figure 3.5 shows that the refractive index (n_o) increases from 1.544-2.616 where as energy gap (E_g) decreases from 9.05-3 (eV) i.e. in mix glass formers refractive index and energy gap are inversely varying.

Table 3.5:

Mix glass	R.I.(n _o)	Eg(eV)
formers		
SiO ₂	1.544	9.05
GeO ₂	1.650	5.40
Ga ₂ O ₃	1.952	4.40
Sb ₂ O ₃	2.087	3.25
ZrO_2	2.120	5.00
TeO ₂	2.270	3.79
TiO ₂	2.616	3.00

Table 3.5 Mix glass formers, Refractive index (n_o), Energy gap $E_g \ (eV)$ of simple oxides

3.6 Alkaline and Alkaline earth glass oxide modifiers: The relation between refractive index and energy gap for alkaline and alkaline earth oxide glass modifiers gives,

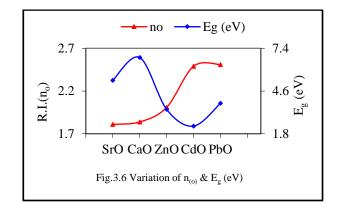


Figure 3.6 shows that the refractive index (n_o) increases from 1.81-2.51 where as energy gap (E_g) decreases from 3.8-6.8 (eV) i.e. in alkaline and alkaline earth oxides refractive index and energy gap are also inversely varying. **Table 3.6:**

Alkaline & Alkaline earth oxides	R.I. (n _o)	E _g (eV)
SrO	1.81	5.3
CaO	1.838	6.8
ZnO	2.008	3.4
CdO	2.49	2.3
PbO	2.51	3.8

Table 3.6 Alkaline & Alkaline earth oxides, Refractive index (n_o), Energy gap $E_{\rm g}$ (eV) of simple oxides.

CONCLUSION

It is all ready concluded by Dimitrov & Sakka, and Duffy that is, increase of refractive index increases optical basicity and oxide ion polarizability. In case of mix glass formers and alkaline & alkaline earth oxide modifiers energy gap is decreasing on increasing refractive index.

REFERENCES

- [1] V.Dimitrov and S. Sakka, J. Appl. Phys. 79(1996) 1736
- [2] V.Dimitrov and T. Komatsu, Journal of the University of Chemical Technology and Metallurgy. 45, 3, (2010), 219-250.
- [3] J.A. Duffy and M.D. Ingram, optical properties of glasses, Eds. D. Uhlman, N. Kreidl, Am. Ceram. Soc, Westervill, (1991).
- [4] J.A. Duffy and M.D. Ingram, in Electrochemistry of Glasses and Glass Melts, Including Glass electrodes, Eds. H. Bach, F. Baucke, D. Krause, Springer, (2000).
- [5] R.R. Reddy, Y. Nazeer Ahammed, P. Abdul Azeem, K. Rama Gopal, T.V.R.Rao, J. Non-Cryst. Solids, 286, (2001), 169.
- [6] X. Zhao. X. Wang, H. Lin, Z. Wang, Physica B, 403, (2008), 2450.
- [7] J.A. Duffy, Phys.Chem.Glasses, 30(1989) 1
- [8] K. H. Sun. J. Am. Ceram. Soc., 30, (1947), 277.
- [9] Goldschmidt V M Naturwiss 21 (1926), 477
- [10] W. Zachariasen. J. Am. Chem. Soc., 54, (1932), 3841.