
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com | Page 1

Cost-Aware Resource Allocation and Execution Scheduler (Cares)

Prof. Sandarsh Gowda M M 1 , Hemanth Raj N 2

1 Assistant Professor, Department of MCA, Bangalore Institute of Technology, Karnataka, India

2 Student, Department of MCA, Bangalore Institute of Technology, Karnataka, India

ABSTRACT

This paper presents CARES (Cost-Aware Resource

Allocation and Execution Scheduler), a distributed

computing platform engineered to optimize function

execution across a dynamic cluster of nodes. CARES

introduces a cost-aware scheduling algorithm that

leverages real-time CPU and memory metrics to

achieve efficient load balancing and reduce operational

costs. Built in Go, the system integrates Docker for

containerized execution, gRPC for inter-node

communication, and a modern Terminal User Interface

(TUI) for real-time monitoring. CARES demonstrates

advanced concepts in distributed systems, including

service discovery, dynamic resource allocation, and

fault tolerance, providing both a practical orchestration

solution and an educational tool for understanding the

complexities of distributed architectures.

I. INTRODUCTION
The rapid shift toward cloud-native architectures—

driven by microservices, serverless computing, and

containerization—has fundamentally transformed how

distributed systems are designed and deployed. These

paradigms enable organizations to achieve elastic

scalability, rapid deployment, and operational

resilience, but they also pose significant challenges in

resource management, cost efficiency, and workload

scheduling. In highly dynamic environments, where

workloads fluctuate and resources are heterogeneous,

achieving optimal utilization while minimizing costs

becomes a non-trivial task.

Traditional orchestrators such as Kubernetes, Docker

Swarm, and Apache Mesos provide powerful

abstractions for container orchestration and cluster

management. However, these systems often introduce

operational complexity, steep learning curves, and

opaque scheduling decisions, making them less suitable

for lightweight research and experimental deployments.

In particular, their scheduling mechanisms are either

static (e.g., round-robin, random allocation) or

optimized for generalized workloads, which may not

adapt well to real-time fluctuations in resource usage.

To address these limitations, we propose CARES

(Cost-Aware Resource Allocation and Execution

Scheduler), a distributed orchestration framework that

emphasizes transparency, cost-awareness, and real-time

decision-making. CARES integrates fine-grained

resource monitoring with a custom scheduling

algorithm that considers both CPU and memory

utilization metrics to determine the most cost-effective

node for function execution. Unlike traditional black-

box orchestrators, CARES provides an interactive

Terminal User Interface (TUI) that enables developers

and system administrators to visualize cluster health,

resource consumption trends, and scheduling outcomes

in real-time.

Moreover, CARES is built using Go for high

concurrency and lightweight execution, gRPC for

efficient inter-node communication, and Docker Engine

for container-native execution of user-defined

functions. This combination of technologies enables

CARES to deliver a minimal yet extensible platform

that is particularly well-suited for academic research,

small-scale deployments, and environments where

visibility, adaptability, and cost efficiency are critical.

By bridging the gap between complex large-scale

orchestrators and lightweight experimental frameworks,

CARES demonstrates how distributed scheduling can

be made both intuitive and effective.

II. RELATED WORK

Research in distributed scheduling and container

orchestration has been shaped by systems like Google’s

Borg [1], Apache Mesos [2], Kubernetes [1], Docker

Swarm [3], and Nomad [4]. While Borg pioneered

large-scale centralized scheduling, Mesos introduced

two-level scheduling. Kubernetes became the industry

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com | Page 2

standard but often operates as a black box. CARES

differentiates itself by focusing on transparency and

real-time cost-aware decisions. Prior surveys [7]

highlight the limitations of static load-balancing

strategies like round robin, motivating CARES’s

dynamic approach.

III. PROBLEM STATEMENT

Distributed systems face the NP-hard challenge of

allocating heterogeneous resources efficiently across

clusters. Traditional schedulers fail to account for real-

time fluctuations, leading to resource fragmentation,

bottlenecks, and inflated costs. CARES aims to resolve

these issues by implementing a cost-aware scheduler

that dynamically assigns tasks to optimal worker nodes

using CPU and memory usage as core metrics.

IV. PROPOSED SYSTEM

CARES follows a master-worker architecture where the

Orchestrator maintains a live node registry, executes

scheduling logic, and exposes REST APIs. Worker

nodes act as execution agents, reporting resource usage

via gRPC and running containerized functions. A

unique feature of CARES is its interactive TUI built

with Bubble Tea, enabling real-time visualization of

CPU/memory graphs, node health, and logs. CARES

ensures:

- Cost-Aware Scheduling

- Real-Time Monitoring

- Fault Tolerance

- Container-Native Execution

- Transparent User Interfaces

V. METHODOLOGY AND

IMPLEMENTATION

The CARES implementation leverages Go (v1.24.5) as

its primary language, chosen for its strong concurrency

model through goroutines and channels, which ensures

high throughput and low latency in distributed

environments. gRPC with Protocol Buffers is employed

for inter-node communication, enabling bidirectional

streaming between the orchestrator and worker nodes

for metrics updates, heartbeats, and function execution

requests. For execution, the system integrates

seamlessly with the Docker Engine, which provides

isolation, reproducibility, and rapid deployment of

containerized functions.

At the heart of the system lies the Scheduler, which

evaluates real-time metrics collected from workers to

determine the optimal node for executing a given

function. The orchestrator maintains two registries: a

Node Registry, which tracks active worker nodes and

their health status, and a Function Registry, which

stores metadata about uploaded functions. When a new

execution request is received, the scheduler computes a

weighted cost function:

Cost=(Wcpu×CPUUsage)+(Wmem×MemUsage)

Where Wcpu and Wmem are configurable weights

that balance between CPU and memory utilization.

This ensures that workload placement accounts for both

computational and memory constraints, avoiding

hotspots and underutilization.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com | Page 3

Worker nodes run lightweight Agent Services that

continuously collect resource metrics using the gopsutil

library. These agents report CPU, memory, and system

load information to the orchestrator at regular intervals,

enabling the system to react quickly to changing

resource conditions. Functions are executed inside

Docker containers, with the Function Runner module

managing lifecycle operations including image pull,

container start, log capture, and cleanup.

The Terminal User Interface (TUI), built with Bubble

Tea and styled using Lipgloss, provides real-time

visualization of system performance. Features include

dynamic ASCII graphs for CPU/memory usage trends,

color-coded logs, interactive menus, and cluster

topology displays. The TUI adapts to terminal resizing

and supports responsive layouts, ensuring usability

across environments. Together, these components

enable CARES to deliver a lightweight yet powerful

orchestration platform with strong transparency and

cost-aware decision-making.

VI. RESULTS AND EVALUATION

CARES has been validated in a Docker-based multi-

container environment. The cluster successfully

executed distributed workloads with real-time

monitoring. Results demonstrate low-latency

scheduling, graceful handling of node failures, and

transparent monitoring through the TUI. Key outcomes

include:

- Efficient workload distribution based on real-time

cost metrics

- Real-time visualization of CPU and memory usage

- Fault-tolerant cluster healing

- Low scheduling latency (<100 ms)

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com | Page 4

VII. CONCLUSION AND FUTURE

WORK

CARES demonstrates a practical and educational

approach to distributed orchestration. It integrates cost-

aware scheduling, real-time monitoring, and

containerized execution into a lightweight platform.

The project proves the feasibility of balancing

workloads intelligently without the overhead of larger

orchestration frameworks. Future work includes

integration with Prometheus for advanced monitoring,

TLS for secure communication, and high-availability

orchestration via replicated masters.

REFERENCES

[1] Verma, A., et al. “Large-scale cluster management

at Google with Borg.” EuroSys, 2015.

[2] Hindman, B., et al. “Mesos: A Platform for Fine-

Grained Resource Sharing in the Data Center.” NSDI,

2011.

[3] Merkel, D. “Docker: Lightweight Linux Containers

for Consistent Development and Deployment.” Linux

Journal, 2014.

[4] HashiCorp. Nomad: A Flexible Orchestration

System, 2015.

[5] Ongaro, D., and Ousterhout, J. “In Search of an

Understandable Consensus Algorithm (Raft).”

USENIX ATC, 2014.

[6] Google. gRPC: A High Performance, Open Source

Universal RPC Framework.

[7] Sharma, S., et al. “A Survey of Load Balancing

Algorithms in Distributed Systems.” IJCA, 2016.

[8] Bubble Tea Framework. Charm.sh. Available at:

https://github.com/charmbracelet/bubbletea

[9] Gopsutil Library. Available at:

https://github.com/shirou/gopsutil

https://ijsrem.com/
https://github.com/shirou/gopsutil

