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Abstract— It is always desirable to detect an 

epidemic/pandemic in a timely and accurate manner in order 

to prevent its spread. There can be several approaches to 

detecting any illness, including deep learning models. 

Transparency/interpretability of a deep learning model's 

reasoning process in relation to health science, on the other 

hand, is a must. As a result, we provide Gen-ProtoPNet, an 

interpretable deep learning model.The distance function L2 

and prototypes of spacial dimension 1 1 are used in the last 

two models. In our approach, we employ an extended version 

of the distance function L2 that allows us to categorise an 

input using prototypes of any sort of spatial dimension, such 

as square and rectangular dimensions. 

. 

Domain – Deep Learning 

 

 

I. INTRODUCTION 

The global pandemic of Covid-19 and its variations, such as 

B.1.1.7, B.1.351, and P.1, is currently ongoing [18]. Efforts to 

manage and limit the illness have taken several forms. The 

virus is being detected as part of these efforts. Many methods 

for detecting Covid-19 from medical photos have been 

proposed, see e [4], [12], [22], [23], [25], [36], [37], [40], 

[58].The interpretability of these models' predictions is 

lacking, yet the interpretability of models connected to public 

health is critical. The goal of this project is to develop an 

interpretable approach for picture classification so that we can 

understand why an image is categorised as it is. In this paper, 

we describe the generalised prototype component network 

(Gen-ProtoPNet), an interpretable deep learning model, and 

test it on a dataset of three different classes of X-rays (see 

Section). 

For example, most of the X-ray images have some part black 

as a background, see Figure 2. Therefore, the use of  

 

prototypical parts of spacial dimensions 1 × 1 can give good  

 

 

similarity scores between patches of an input image and patches of 

images from wrong classes, because all the images have some part 

black. Another example, images of birds from different sea bird 

species can share same background on most part of the images. So, 

the use of prototypes of spacial dimension 1 × 1 can wrongly give 

high similarity score between patches of a test image and patches of 

images form wrong classes, because mostly such images have water 

as a background. 

 

Second, photographs of items from entirely distinct classes have no 

tiny patches in common, thus image classification may be done 

only on the basis of the backdrop in the photos rather than 

recognising the objects themselves. Any patch of photographs of 

sea birds, for example, is unlike any patch of images of jungle 

birds. As a result, instead of recognising the birds themselves, the 

prototype sections of the spacial dimensions 1 1 may discern a sea 

bird image from a jungle bird image based on the background in the 

photographs. 

 

On the other hand, employing prototype components with the 

largest feasible spatial dimension might impair accuracy since the 

prototypical part will be an image in and of itself rather than a 

portion of an image. As a result, there can only be a few photos that 

are highly similar to such a prototype whose size is comparable to 

the size of an image, but a smaller portion of an image can be 

similar to sections of many other images. Because a prototype is a 

representation of a component of a picture, the ideal value for the 

prototype's spatial dimensions is between 1 and 1. 
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II. PROPOSED SYSTEM: 

 

A. Working Principle  : 

 

 

On the other hand, employing prototype components with the 

largest feasible spatial dimension might impair accuracy since 

the prototypical part will be an image in and of itself rather 

than a portion of an image. As a result, there can only be a 

few photos that are highly similar to such a prototype whose 

size is comparable to the size of an image, but a smaller 

portion of an image can be similar to sections of many other 

images. Because a prototype is a representation of a 

component of a picture, the ideal value for the prototype's 

spatial dimensions is between 1 and 1 

 

 

 

 

B. Methodology: 

 

 

VGG-16, VGG-19 [44], ResNet-34, ResNet-152 [17], 

DenseNet-121, or DenseNet-161 [20] (initialised with 

filters pretrained on ImageNet [9]) are the models we 

use to build our model. These models are referred to as 

baseline or basic models. 

In Figure 3, we can see that the model is made up of 

the convolution layers of any of the three base models, 

followed by an extra 11 layer (we call these 

convolution layers c, and their parameters are all the 

same). 

 

The patch p1 is the part of the original image, that is enclosed 

in a rectangle with green boundaries. Similarly, the patches 

p11 and p30 are parts of the original images given in the same row 

in the Figure 3. For the output z = c(x) of a test image x, the r-th 

prototypical unit ppr in pp calculates (with the generalized version 

of L2) distances between the prototypical part pr and each patch of 

z. These distances are inverted into similarity scores which results 

in an activation map of similarity scores. More the activation value, 

stronger the presence of a prototype in the image x. This activation 

map preserves the spatial relation of the convolutional output, and 

can be upsampled to the size of the input image to produce a heat 

map that identifies which part of the input image is most similar to 

the learned prototype [7]. These regions are enclosed in the green 

rectangles on the source images. The activation map is max-pooled 

to reduce to a single similarity score, that is, there is only one 

similarity score for each prototype. In the fully connected layer m, 

the similarity scores produced with global max-pooling are 

multiplied with the matrix wtm to get the logits, then these logits 

give prediction after normalization with softmax. 

 

VGG-16, VGG-19 [44], ResNet-34, ResNet-152 [17], DenseNet-

121, or DenseNet-161 [20] (initialised with filters pretrained on 

ImageNet [9]) are the models we use to build our model. These 

models are referred to as baseline or basic models. 

In Figure 3, we can see that the model is made up of the 

convolution layers of any of the three base models, followed by an 

extra 11 layer (we call these convolution layers c, and their 

parameters are all the same). 

 

A. MATHEMATICAL FORMULATION AND GEN-

PROTOPNET TRAINING 

 

The generalisation of the distance function L2 (Euclidean distance) 

using the basic model VGG-16 is described in this section. 

We also provide the mathematical formulation and training 

processes of our generalised distance function method. 

The normal convolution layers whose output channels have a 

spatial dimension of 7 7 are used to build Gen-ProtoPNet (see 

Section V). Assume that x is an input picture. Let z (= c(x)) have 

the shape (D, 7, 7), with D denoting the depth of c. (x). Consider 

the shape's prototype p. (D, h, w). Let I j) and (l, m) pixels of the 

kth tensor of z and p, respectively, be zijk and plmk. 

By convolving p over z with stride, we get zp.size 

equal to 1. Then zp is a tensor of the shape (D, 8 − h, 8 − w). 

Therefore, each feature map of zp has (8 − h)(8 − w) pixels. 

For 0 ≤ i ≤ 7 − h, 0 ≤ j ≤ 7 − w and 0 ≤ k ≤ D − 1; (i, j) 

pixel (zp)ijk of the kth feature map of zp is given by: 

http://www.ijsrem.com/
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zijkp00k + . . . + zi(j+w−1) 

kp0(w−1) 

k 

+ z(i+1)jkp10k + . . . + z(i+1)(j+w−1) kp1(w−1)k 

+ . . . 

+ z(i+h−1)jkp(h−1) k + . . . + z(i+h−1)(j+w−1)kp(h−1)(w−1)k 

. 

(1) 

Let z 

2 be obtained from the Hadamard multiplication of 

feature maps ofz with themselves. Let Z 

2 be obtained from z 

2 

by convolving (overz 

2 

) all 1’s filter of the shape of prototypes 

with stride size equal to 1. Note that, Z 

2 

is the sum of the 

patches of z 

2 of the shape h × w over all feature maps. 

Therefore, the shape of Z 

2 

is (8 − h) × (8 − w), and (i, j) 

pixel Z 

2 

ij of Z 

2 

is given by: 

D 

X−1 

k=0 

 

z 

2 

ijk + z 

2 

i(j+1)k + . . . + z 

2 

i(j+w−1)k 

+ z 

2 

(i+1)jk + z 

2 

(i+1)(j+1)k + . . . + z 

2 

(i+1)(j+w−1)k 

+ . . . 

Note that, z has (8 − h)(8 − w) patches of the spacial dimension 

h×w. Hence, the distance d 2 (Zij, p) between (i, j) patch Zij (say) 

of z and a prototype p is given by: d 2 (Zij, p) = Z 2 ij − 2 D X−1 

k=0 (zp)ijk + D X−1 k=0 X h l=1 Xw m=1 p 2 lmk . (3) The 

equations 1 and 2 give the values of (zp)ijk and Z 2 ij. Thus, (zp)ijk 

= h P−1 l=0 wP−1 m=0 z(i+l)(j+m)kp(1+l)(1+m)k and Z 2 ij = D 

P−1 k=0 h P−1 l=0 wP−1 m=0 z 2 (i+l)(j+m)k . Therefore, by 

equation 3, d 2 (Zij, p) = X h−1 l=0 wX−1 m=0 D X−1 k=0 

||z(i+l)(j+m)k − p(1+l)(1+m)k ||2 2 . If the spacial dimension of a 

prototype p is 1 × 1 then h = w = 1 and d 2 (Zij, p) = D P−1 k=0 

||zijk − p11k ||2 2 , which is the square of L2 distance between a 

patch of z and the prototype p, where p11k ' pk . Therefore, if the 

spacial dimensions of p are not equal to 1 × 1 then d 2 is a 

generalization of the distance function L2. The distance function L2 

is used in both ProtoPNet and NP-ProtoPNet to find distances of 

prototypes (spacial dimension 1 × 1) and the patches of images. The 

prototypical unit pp calculates: pp(z) = max 0≤i≤7−h, 0≤j≤7−w log 

d 2 (Zij, p) + 1 d 2 (Zij, p) + . Alternatively, pp(z) = max Z∈  

patches(z) log_x0012_ d 2 (Z, p) + 1 d 2 (Z, p) +  

 

  . (4) The equation 4 tells us that if Z is similar to p then d 2 (Z, p) 

is smaller. The following three steps are performed to train our 

algorithm. 

 

1) STOCHASTIC GRADIENT DESCENT (SGD) OF EVERY 

LAYER BEFORE DENSE LAYER At this stage of learning, Gen-

ProtoPNet aim to learns important features of the image while 

salient parts cluster near their respective classes. To attain this aim, 

Gen-ProtoPNet collectively using SGD. Let X = {x1 . . . xn} be a 

http://www.ijsrem.com/
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set of image and Y = {y1 . . . yn} is a set of corresponding 

labels, and D = {(xr, yr) : xr 늿 X, yr 늿 Y }. Our goal is to 

solve the following optimization problem: min P,cconv 1 n 

Xn r=1 CrsEnt(h 뿦 pp 뿦 c(xr), yr) + 貫1ClstCt + 貫2SepCt, 

(5) where ClstCt and SepCt are as follows: ClstCt = 1 n Xn 

r=1 min s:ps늿Pyr min Z늿patches(c(xr)) d 2 (Z, ps); (SepCt = 

− 1 n Xn r=1 min s:ps6∈Pyr min Z∈ patches(c(xr)) d 2 (Z, ps). 

(7) The decrease in cluster cost clusters prototypical parts 

around their correct class, see equation 6, whereas the 

decrease in separation cost attempts to separate prototypical 

parts from their incorrect class [7], see equation 7. The 

decrease in the cross entropy gives better classifications, see 

equation 5. The coefficients λ1 is set equal to 0.8 and the 

coefficient λ2 belongs to the interval (0.08, 0.8). Let Pr be the 

set of prototypical parts of the images that belong to r-th class. 

For a class r, we put wt(r,s) m = 1 for all s with ps ∈  Pr and 

wt(r,s) m = −0.5 for all s with ps 6∈  Pr . Since similarity 

scores are nonnegative, in this way Gen-ProtoPNet learns a 

meaningful latent space [7]. 2) PUSH OF PROTOTYPICAL 

PARTS To see which part of the training images are used as 

prototypes, Gen-ProtoPNet projects every prototype ps onto 

the patch of the output c(x) that has smallest distance from ps , 

and x belong to class of ps [7]. That is, for every prototype ps 

of class r, Gen-ProtoPNet perform the following update: ps 

←− min {Z:Z∈ patches(c(xk )) ∀ k s.t. yk=r} d 2 (Z, ps). 3) 

OPTIMIZATION OF THE LAST LAYER To rely only on 

positive connections between prototypes and logits. We aim 

to make negative connection wt(r,s) m to 0 for all s with ps 

6∈  Pr . We perform this process after fixing all the parameters 

of convolution layers and prototype layer, and aim to optimize 

[7]: min P,cconv 1 n Xn k=1 CrsEnt(h ◦ pp ◦ c(xk ), yk )+λ X 

3 r=1 X s:ps6∈Pr |wt(r,s) m |. 

 

 

B. SELECTION OF AN IMAGE PATCH AS A 

PROTOTYPE Suppose x is the source image of a prototype 

pr . The patch of x that is most activated by the prototype pr is 

used for the visualization of pr . Its activation value must be at 

least 92nd percentile of all the activation values (before max-

pooling) of ppr [7]. 

 

 

VI. EXPLANATION OF THE REASONING PROCESS OF 

GEN-PROTOPNET WITH AN EXAMPLE 

 We constructed our model over six baseline models. We 

trained and tested our model for 500 epochs. The model 

VGG-16 is used as a baseline model to run the experiments 

explained in this example. However, the measures of the 

performance of the model with the other baseline model are 

given in the Table 1. In the Figure 4, the test image in the first 

column is a member of the Covid class. In next column, each image 

is the test image with a rectangle (at a certain place) on it. The 

rectangles have green boundaries. The pixels enclosed by such a 

rectangle on an image in the second column correspond to the 

pixels on the original image in the fourth column and same 

 

 

of Covid class. Since Covid is a first class these weight are entries 

of first row of wtm. The multiplication of the first row of the weight 

matrix wtm with S gives logit for the Covid class. Similarly, logit 

for Normal and Pneumonia classes can be obtained by multiplying 

second and third row of the weight matrix wtm with the matrix S, 

respectively. Hence, the logits for the first, second and third classes 

are 0.752591, −0.627040 and −0.623544, respectively. The matrix 

S and 

 

 

VII. THE PERFORMANCE DESCRIPTION WITH CONFUSION 

MATRICES The comparison of the performance of Gen-ProtoPNet 

with NP-ProtoPNet, ProtoPNet and the base models is made with 

some metrics, such as: accuracy, precision, recall and F1-score. The 

confusion matrices are also used to outline the performance of Gen-

ProtoPNet. A confusion matrix is an array that is used to describe 

the performance of a classification model on a set of test data for 

which the true values are known [54]. True positive (TP) is the 

number of items correctly labeled as belonging to the positive class, 

that is, the items are predicted to belong to a class when they 

actually belong to that class. True negative (TN) is the number of 

items for which the model correctly predict the negative classes, 

that is, the items are predicted to not belonging to a class when they 

actually belong to other classes, see [55]. Note that, in non-binary 

classifications, TP and TN are the diagonal entries of the confusion 

matrix. False positive (FP) is the number of items incorrectly 

predicted as belonging to the positive class. False negative (FN) is 

the number of items incorrectly predicted as not belonging to the 

positive class, see [52]. The metrics accuracy, precision and recall 

in terms of the above positives and negatives are: TP + TN Total 

Cases , TP TP + FP and TP TP + FN , respectively. F1-score is the 

harmonic mean of precision and recall, that is, F1-score = 2 

Precision−1 + Recall−1 , see [53]. In figures 5-10, the confusion 

matrices give visualization of the performance of Gen-ProtoPNet 

with the six baselines. Let H be any of the following six confusion 

matrices. Suppose (r,s) entry of the confusion matrix H is given by 

H[r][s]. Therefore, TP for the first class (Covid) are H[0][0], and 

TN are H[1][1] + H[2][2]. In addition, FP and FN for the first class 

are H[0][1] + H[0][2] and H[1][0] + H[2][0] respectively. Next, we 

describe the confusion matrix (given in Figure 5) for Gen-

ProtoPNet when constructed over baseline VGG-16. Total correct 

predictions made by Gen-ProtoPNet with baseline VGG-16 are 749 

(=242 + 119 + 388), see Figure 5. Total number of test images are 

872, see Section V. Thus, the accuracy is 85.89%. The above 

http://www.ijsrem.com/
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definitions and Figure 5 give us the precision, recall and 

FIGURE 5. Gen-ProtoPNet with base VGG-16. F 

 

 

 

 

III. RESULTS & DISCUSSION 

 

 

 

VIII. COMPARISON OF THE PERFORMANCE OF GEN-

PROTOPNET WITH THE PERFORMANCE OF NP-

PROTOPNET, PROTOPNET AND THE BASELINES The 

convolution layers of several neural networks can be used to 

build the models Gen-ProtoPNet, NP-ProtoPNet and 

ProtoPNet. As stated in Section V, we trained and tested Gen-

ProtoPNet with the baseline models over the datesets of the 

X-rays [13], [24]. Also, NP-ProtoPNet and ProtoPNet were 

examined over the same datasets and with the same base 

models. We trained and tested all models that are compared in 

Table 1 for 500 epochs. The measures of the performances of 

the models (GenProtoPNet, NP-ProtoPNet and ProtoPNet 

with the six base models) in the metrics can be found in Table 

1. Also, the measures of the performance the base models 

themselves are given in Table 1. We explain the Table 1 with 

an account of the performance of each of these models with 

base model VGG-16. However, the measures of the 

performance of these models with the other five base models 

are also given in Table 1. In the second column of the Table 1, 

the spacial dimensions of prototypes corresponding to each 

base model are given. For example, when Gen-ProtoPNet is 

constructed over the base model VGG-16, and prototypes 

have spacial dimension 4 脳 6 then the accuracy, precision, 

recall and F1-score of Gen-ProtoPNet are 85.89, 0.99, 0.98 

and 0.98, respectively. Similarly, the measures of the 

performances of the models NP-ProtoPNet and ProtoPNet 

with baseline model VGG-16 in the metrics accuracy, 

precision, recall and F1-score are 84.63, 0.97, 0.99, 0.97, and 

79.93, 0.87, 0.92, 0.89, respectively. Also, the measures of the 

performances of VGG-16 itself (Base only) in the metrics 

accuracy, precision, recall and F1-score are 82.45, 0.97, 0.98 

and 0.97, respectively. The performance of Gen-ProtoPNet is 

improved over ProtoPNet with all the base models. Also, the 

performance of Gen-ProtoPNet is better than the performance 

of NP-ProtoPNet with some baseline models, and in two cases 

its performance is better than the performance of the baseline 

models themselves. 

 

VIII. COMPARISON OF THE PERFORMANCE OF GEN-

PROTOPNET WITH THE PERFORMANCE OF NP-

PROTOPNET, PROTOPNET AND THE BASELINES The 

convolution layers of several neural networks can be used to build 

the models Gen-ProtoPNet, NP-ProtoPNet and ProtoPNet. As 

stated in Section V, we trained and tested Gen-ProtoPNet with the 

baseline models over the datesets of the X-rays [13], [24]. Also, 

NP-ProtoPNet and ProtoPNet were examined over the same 

datasets and with the same base models. We trained and tested all 

models that are compared in Table 1 for 500 epochs. The measures 

of the performances of the models (GenProtoPNet, NP-ProtoPNet 

and ProtoPNet with the six base models) in the metrics can be 

found in Table 1. Also, the measures of the performance the base 

models themselves are given in Table 1. We explain the Table 1 

with an account of the performance of each of these models with 

base model VGG-16. However, the measures of the performance of 

these models with the other five base models are also given in 

Table 1. In the second column of the Table 1, the spacial 

dimensions of prototypes corresponding to each base model are 

given. For example, when Gen-ProtoPNet is constructed over the 

base model VGG-16, and prototypes have spacial dimension 4 脳 6 

then the accuracy, precision, recall and F1-score of Gen-ProtoPNet 

are 85.89, 0.99, 0.98 and 0.98, respectively. Similarly, the measures 

of the performances of the models NP-ProtoPNet and ProtoPNet 

with baseline model VGG-16 in the metrics accuracy, precision, 

recall and F1-score are 84.63, 0.97, 0.99, 0.97, and 79.93, 0.87, 

0.92, 0.89, respectively. Also, the measures of the performances of 

VGG-16 itself (Base only) in the metrics accuracy, precision, recall 

and F1-score are 82.45, 0.97, 0.98 and 0.97, respectively. The 

performance of Gen-ProtoPNet is improved over ProtoPNet with all 

the base models. Also, the performance of Gen-ProtoPNet is better 

than the performance of NP-ProtoPNet with some baseline models, 

and in two cases its performance is better than the performance of 

the baseline models themselves. 

IX. GRAPHICAL COMPARISON OF THE ACCURACIES OF 

THE MODELS In this section, a graphical comparison of the 

accuracies of Gen-ProtoPNet with the other models is provided 

over 100 epochs. In the figures 11-16, the curves of colors purple, 

yellow, blue and brown sketch the accuracies of GenProtoPNet, 

NP-ProtoPNet, ProtoPNet and the baselines. For example, in Figure 

11, the accuracies of Gen-ProtoPNet, NP-ProtoPNet and ProtoPNet 

with the base model VGG-16, and the base model VGG-16 itself 

are depicted. The performance in accuracy of Gen-ProtoPNet is the 

highest with the baseline model VGG-16 and second highest for the 

remaining base models except VGG-19. Therefore, the curve 

depicting the accuracy for Gen-PrortoPNet is the highest for base 

model VGG-16 and second highest for the other base models. 
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IV. CONCLUSION 

 

In the light of the rapidly growing COVID-19 pandemic,the 

need for an expeditious diagnosis of COVID-19 infection 

became essential. The immediate diagnosis will allow the 

initiation of the isolation process and adequate treatment as 

well. While the standard test used for the diagnosis of 

COVID-19 disease (RT-PCR) is usually time consuming (6 

hours up to days in some centers)the need for a highly 

sensitive test became essential. Many studies have illustrated 

the utility of chest CT scan in the diagnoses of COVID-19. 

This paper evaluates the value of classical Deep learning 

techniques and the convolutional neural networks in aiding 

physicians to further classify patients into either COVID-19 

positive or negative according to their chest CT findings, and 

thus facilitating their work. 
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