
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM14371 | Page 1

CREDIT CARD FRAUD DETECTION USING ISOLATION FOREST AND LOCAL

OUTLIER FACTOR

RISHIKESHAN O V1, SAKALA SAI KIRAN2, PRASATH S3, ANITHA M4

1,2,3 UG Scholar, Department of CSE, Kingston College, Vellore-59
4Asst.Professor, Department of CSE, Kingston College, Vellore-59

---***---
Abstract - Nowadays, card fraud is increasing due to the

prevalence of modern technology. Thus, Automatic systems to

detect and prevent against card fraud are a significant tool in
the financial industries battle against card crime. Machine

learning and novelty detection techniques approaches are

taken in Credit Card Fraud Detection field, since they are

effective technologies and methodologies and easy to apply at

the same time. It is used in order to reduce fraud activities.

The main aim of this project was to create a program that

detects and Identifies potentially fraudulent credit card

transactions from a given data set, and evaluate its

performance to be compared with other classifiers with

evaluation metric.

The program was trained with the given data set,
based on the some of the most popular Machine Learning and

Deep Learning Classification algorithms which are; Random

Forest, Isolation Forest and Neural Networks Algorithm Load

Balancing and Feature Selection were maintained throughout

the project, and it was implemented using Python

programming language. However, there were no autonomous

system that will be able to categorically define a transaction as

fraud. The objective was to highlight those transactions that

have a high probability of being fraudulent based on some

criteria, known or otherwise learnt.

Key Words: isolation forest and local outlier factor, Pandas,
Json, Matplotlib and seaborn.

1. INTRODUCTION

This chapter consists of, a preface that includes a brief

background of credit card fraud detection topic, followed by

aims and scope of the project, motivation, the main intended

beneficiaries, and a listing of the report structure.

1.1 PREFACE

Nowadays, card fraud is increasing due to the prevalence

of modern technology. As the card fraud losses total was

around 567 million in 2015, and there was a 9% increase in

2016 with a loss of 618 million. Enterprises and public

institutions must be well prepared to defend against such

frauds that cause the loss of billions of dollars worldwide

annually. Automatic systems to detect and prevent against
card fraud are a significant tool in the financial industry’s

battle against card crime. However, it is not easy, or always

possible to detect fraudulent patterns in transaction data by

programmatic rules-based systems or inspection by fraud

analysts; especially in large data sets. Credit card usage is

increasing year on year, and the credit card and card payments

market plays a huge role in today’s economy. Predicted

statistics by indicated that credit card payments will increase

over the next decade. The predicted transactions growth is to

3.7 billion in 2026, from 2.8 billion in 2016. Which

consequently indicated that economic growth is one of the

significant drivers of the credit card volumes and values

future. Moreover, credit card usage has well known
advantages such as; simplicity of payment, access to credit,

purchase guarantees and financial management to name a few,

unfortunately these do not come without the risk of becoming

a victim of fraudulent transactions. To reduce credit card

fraud, it is important to use expert rules and statistical based

models, such as rules based detection engines, machine

learning and novelty detection techniques such as Clustering,

Classification based and Nearest Neighbor, that can be used to

distinguish potential and genuine fraud. Thus, classification is

the one will be mainly used in order to solve this problem so it

will be discussed in further details later. Moreover, effective
technologies and methodologies that can detect fraud and

illegal activities such as; money laundering have been

delivered and applied. Machine learning algorithms have

existing efficient fraudulent patterns (patterns will be

discussed in detail at a later section), which typically found in

data to be uncovered, or sometimes they do not, and predict

possible fraudulent transactions, as it is a critical part of the

fraud detection toolkit. A real or representative data set plays

a significant role when it comes to build a system in machine

learning as well. Specifically, to have a better fraud detection

model there must be a large set of data to be used.

Figure 1: Preface image of project

1.2 AIM AND SCOPE

The main aims of this project are to establish a

background in fraud detection novelty techniques and

machine learning methodologies that will be used to complete

this project, followed by detecting potentially fraudulent

credit card transactions and classify both legitimate and

fraudulent transactions from a given data set, where

supervised and unsupervised Machine Learning Classification

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM14371 | Page 2

Algorithms and Novelty Detection Techniques are used on
training the models. In the given data set, each individual

transaction is already allocated to a different known class,

either for fraud or for legit. Finally, offering discussion,

comparison between the techniques, and evaluation of the

solution produced. However, it is important to remember

during the whole project, that no autonomous system will be

able to categorically define a transaction as fraud. The

objective will be to highlight those transactions that have a

high probability of being fraudulent based on some criteria,

known or otherwise learnt. Correspondingly, the scope of this

project focuses on creating a well-functioned software system

model depending on known behaviors or feature variables. It
allows the beneficiaries to inspect the performance or the

accuracy of the various machine learning classification

algorithms which can classify the transactions in training and

testing sets into either fraud or legit in real time. The data

given is highly unbalanced data set, therefore, the approach

used in this project is to implement different machine learning

algorithms, which are: Random Forest as there are many cases

where it has been used successfully, Isolation Forest and

Neural Networks.

2. RELATED WORKS

[1] The work done by the author, N.Kalaiselvi,

S.Rajalakshmi, J.Padmavathi, Joyce B.Karthiga, “Credit Card

Fraud Detection using learning to Rank Approach” in the year
2018.

An infrastructure build in the neural network

platform is reliable to detect the fraudulence in credit card

system for transaction. The issues resulting from the fraud in

credit card transaction may involve a number of customers

who drift their habits evolve and fraudsters who change their

strategies over time. The vast majority of learning algorithms

that have been proposed for fraud detection rely on

assumptions that hardly hold in a real-world fraud-detection

system. This includes the classification of data imbalance
which is used to verify their hidden transaction, track the

location of the fraudsters and to capture their image. The

implementation of learning algorithm will precisely predict

and rank alerts based on the scores allotted to each alert.

Initially, we propose transaction blocking rule to ensure the

security of the transaction. Secondly, we design scoring rules

that involve pattern matching based on frequent data mining

techniques. Finally, the machine is trained and updated with

the dataset to timely investigate the transaction thereby

earning credit card holder's satisfaction.

[2] The work done by the author, X. Yu, "Integrated
Approach for Nonintrusive Detection of Driver Drowsiness",

in the year 2012.

This project is the extension of Northland Advanced

Transportation System Research Laboratory (NATSRL) FY

2008 and FY 2009 projects titled, “Real-time Nonintrusive

Detection of Driver Drowsiness,” which aims to develop a

real-time, nonintrusive driver drowsiness detection system to

reduce drowsiness-caused accidents. In our previous research,

nonintrusive sensors for drivers' heart beat measurement were

developed and implemented on the vehicle steering wheel.
Heart rate variability (HRV) was analyzed from the heart beat

pulse signals for the detection of driver drowsiness. Promising
results were obtained. However, one of the major issues with

the previous system is using only one parameter, Low-

Frequency(LF)/High-frequency(HF) ratio of HRV, to access

the driver’s status, which has relative high variability and has

different changing patterns for different drivers. In this

project, we used multiple parameters for the drowsiness

detection, including the LF/HF ratio, steering wheel reversal

rate (SWRR) and steering wheel R2 (R2 = Pos2 +w2 , Pos is

steering position and w is steering wheel moving speed), and

EEG frequency band power ratio (Poweralpha+Powertheta)/

Power beta. Two-hour driving simulation tests were

conducted on thirteen human subjects in a driving simulator.
The driving simulation results show that large amplitude

bursts of R2 value represent driving errors, which mostly

happen after a significant decrease of SWRR. Also, bursts of

the EEG ratio, which represent increased levels of drowsiness,

happen after a fairly long-term decrease of ECG LF/HF ratio,

as do the bursts of SWRR, which represents driving errors.

The correlation above means that the information contained in

these parameters time history can be used in drivers'

drowsiness detection. Future work is needed to develop a

complete and robust model to utilize these parameters to

evaluate the drowsiness level of a driver during a long-time
driving task.

[3] The work done by the author, Sahil Dhankhad, Emad

Mohammed, Behrouz Far, “Supervised Machine Learning

Algorithms for Credit Card Fraudulent Transaction Detection:

A Comparative Study”, in the year 2018.

The goal of data analytics is to delineate hidden

patterns and use them to support informed decisions in a

variety of situations. Credit card fraud is escalating

significantly with the advancement of the modernized
technology and become an easy target for fraudulent. Credit

card fraud is a severe problem in the financial service and

costs billions of a dollar every year. The design of fraud

detection algorithm is a challenging task with the lack of real-

world transaction dataset because of confidentiality and the

highly imbalanced publicly available datasets. In this paper,

we apply different supervised machine learning algorithms to

detect credit card fraudulent transaction using a real-world

dataset. Furthermore, we employ these algorithms to

implement a super classifier using ensemble learning

methods. We identify the most important variables that may

lead to higher accuracy in credit card fraudulent transaction
detection. Additionally, we compare and discuss the

performance of various supervised machine learning

algorithms exist in literature against the super classifier that

we implemented in this paper.

3. METHODOLOGY

In order to tackle the software system that has to be

developed and tested in the limited time given, a development

methodology had to be followed. The development

methodology ensures that developing and testing of the

software system are managed, and at the end of the project a

functioned prototype will be delivered. Thus, Agile software

development strategy was chosen to be followed in this

project, as shown in figure. Agile development strategy is a

suitable method, as it focuses on incremental delivery,

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM14371 | Page 3

continual planning and continual learning. It divides the
project into iterations, small incremental builds. An advantage

of the life cycle model is that the client will be able to see the

working outcome straight after each iteration. This

methodology was chosen in preference to Waterfall, for

example, because if Waterfall was adopted then the

implementation stage cannot take place unless the planning

stage is done, and due to the fixed structure of the required

steps. Which will not be suitable for this project as the

timescale is not flexible at all, and the moderation of the

requirements belong to this project is at a high risk of

changing. However, in Agile any requirements modification at

any stage of the process can be integrated even in late
development process with no risking losing the entire work.

Moreover, a way faster and successive iteration of a working

software system will be produced regularly, and viewed by

the client at a consistent pace, which results in client

satisfaction with the rapid releases of the project. Lastly, after

each iteration the client will be sending feedback that provide

a huge opportunity to modify and improve the software in the

upcoming iterations. Although Agile is a more teamwork

methodology, planning is easier with a single developer. Most

of the work came naturally, and I followed it to broke down

the tasks that should be done, prioritizing the tasks based on
feedback given by the supervisor in the meetings, set the

intended goals and being flexible to change and modify along

the project since the work was partitioned in weekly sprints.

Figure 2: Methodology Diagram

Five iterations have been utilized over the project timescale,

objectives and deliverables of each iteration are listed below

along with each iteration,

• First Iteration focused on implementing, loading and

processing the data needed for each classifier.

– Deliverable from this iteration was preparing and
splitting the training and testing sets to be ready to use in

classification processes.

• Second Iteration focused on implementing the three

separated classifiers from three different algorithms. Using the

data set resulted from the first iteration allow the classifiers to

be trained and tested.

 – Deliverable from this iteration was producing three

classifiers that are able tobe trained and tested.

• Third Iteration focused on the Load Balancing of both test

and train sets.
– Deliverable from this iteration was balance the

fraudulent and legitimate transactions to have a well balance

model.

• Fourth Iteration focused on Feature Selection to train the

model.

 – Deliverable from this iteration was selecting the

features manually or by using the best k features selection

method.

• Fifth Iteration focused on a simple command-line interface

application.

– Deliverable from this iteration was the user
interface, in order to provide user interaction with the

software, by containing the usage of the three previous

iterations.

4. IMPLEMENTATION DETAILS

This chapter will discuss the implementation of the
software system provided with the code. The main parts of the

implemented code will be specified with the related tools

used.

4.1 PROJECT STRUCTURE

This project was organized by splitting the code into separated

small parts using Python modular programming, to produce a

reliable, readable, and maintainable software system. The
small parts are represented in classes, that can be collected

later to produce a complete software system. Thus, the re-

usability of the code is facilitated by the usage of the

classifiers, and it ease the access for a specific functionality in

the code. Thus, the final solution is implemented and

structured in CCFD package that contains six different files

demonstrated as follows,

• Random Forest: this classifier file represents a

learning model based on Random Forest classification

algorithm.

 • Isolation Forest: this classifier file represents a
learning model based on Isolation Forest classification

algorithm.

• Neural Networks: this classifier file represents a

learning model based on Neural Networks classification

algorithm.

• Split Data: this file is responsible for load

balancing, loading the historic data given by the user as an

input, prepare them to be classified and split them into

fraudulent and legitimate transactions.

• Evaluation: this file is responsible for model

evaluation as it provides the evaluation techniques metric.

• Classification app: this file represents a simple
command line application, that takes the inputs including the

directory path of the file and the classifier from the user as

arguments, classifies the data, loads and saves the final results

of each classifier into models directory, along with the saved

output pickled files.

4.2 DATA PREPARATION & PROCESSING

This section will mainly discuss how data set was

prepared and processed to be used in each classifier.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM14371 | Page 4

4.2.1 DATA LOADING

Loading necessary data is the first step in the field of

machine learning and its approaches. Since the data consists

of historic labelled transactions in csv format, and it must be

prepared for the classification algorithms, (built-in function)
from csv module, read csv() was imported and called using

pandas. The csv file directory will be taken as an argument

from the user and will be converted into a Data Frame using

pandas for further processing unit.

It is highly unbalanced data, whereas fraud and

legitimate transactions are represented respectively, by

approximately 2% and 98% as illustrated in the following

code block,

Figure 3: Data Distribution

The data set contains only numerical (continues) input

variables resulted from a Principal Component Analysis

(PCA) feature selection transformation in 28 major

components out of the 30 components utilized in this project.

The behavioral characteristics of the card is represented by, a

variable of each profile usage represents the spending

behaviors of the customer linked with hours, and days of the

month, as well as geographical locations or the merchant type

where the transaction happens. Therefore, to distinguish

fraudulent activities these variables are used later.

Unfortunately, the details and background information of the
provided features cannot be specified due to confidentiality

issues. The Time feature involves the seconds passed between

each transaction and the first transaction occurrence. The

Amount feature represents the amount of the transactions, and

it has a relatively small mean of all the transactions made

which is 88.3 as in the code shown below, and the Class

feature is the response variable, as it distinguishes the

transactions by labelling them into zeros and ones.

Figure 4: Features descriptive statistics

4.2.2 TRAIN AND TEST SPLIT

Data set used for classifiers is usually split into

training and test data sets. This process has been done to avoid

over fitting problem detailed in the background section.

Testing the accuracy of a classifier in its prediction of

fraudulent transaction using the test set is essential, to know

how well the model learned on the training set. Scikit-learn

provides useful functions, fit() and predict(), for train and test

the classifiers. Usually, a 70/30 or 80/20 split is used for train

and test. However, a load balancing has been conducted in
this project instead, and detailed in the next section.

Moreover, the training and testing sets will be constructed at

the end as dataset train, and dataset test, to be used and

divided into transactions and labels for both training and test

sets, as the code in figure shown below.

Figure 5: Train and test sets

4.2.3 LOAD BALANCING

For this project, it can be seen from the above

mentioned information that the data set is highly unbalanced.

Attempting to train a model with the given data combination,

will result in over fitting as the model will conveniently
converge into classifying everything as legitimate.

Consequently, the high accuracy of training sets will be

resulted as the fraudulent transactions are so few and the

outlier fraudulent transactions will never be detected. So, in

order to balance the data, the number of zero instances which

represent legitimate transactions, and one instances which

represents fraudulent transactions used must be balanced. For

test sets the amount was fixed to 42 instances for both zeros

and ones so that it is could assess how the model classifies

true positives and true negatives accurately. In regards to the

training sets, the number of one instances was set to 450 as
there was no other option, and the number of zeros was

adjusted into the data combination chosen throughout

different experiments. The number of zero labelled rows was

randomly chosen and experiments were run a number of times

for each data mixture in order to understand the fluctuation of

accuracy due to the varied data samples. A sample of the

instance distribution can be seen in figure shown below.

Figure 6: Instance distribution in split data ()

4.2.4 FEATURE IMPORTANCE

 As mentioned about features selection in the background

section, feature importance is a significant quality in ensemble

algorithms, specifically in random forests. It is being utilized in

this project because it measures the relative importance of each

feature in the prediction. The attribute feature importance was

implemented in Random Forest class; it returns an array of

numbers of each feature importance determining the splits.
Therefore, a combination of Seaborn and Matplotlib libraries

were used for a good visualization of the results in ascending

order, the code is shown in figure below.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM14371 | Page 5

Figure 7: Feature importance

4.2.5 FEATURE SELECTION

 Another important step of data preparation is the feature

selection process. This data set provides 32 data headers

(features). Experiments were run to choose the k best features

of this feature set using SelectKBest() from Scikit-learn

library. Choosing features can either be done manually by
changing the k value of each classifier in each try, or by setting

the k value into None which basically selects all features

except the labels, and this option allows the classifier to be

trained using the features with the highest scores. The code

shown in figure below, also indicates that the method takes

two attributes, f classify which represents the ANOVA F-value

between a label or feature for the classification tasks, and the k

value that represents the features.

Figure 8: SelectKBest()

4.2.6 TRAINING AND EVALUATING THE

MODEL

 The selected features variable shown in figure below, in

train and test split section, will contain the whole list of
features except the labels represented by feature. The labels are

assigned by both variables y train and y test. However, this

will result in having the training set represented by X train and

y train, and test represented by X test and y test. All the

variables will be returned by the split data() method. To train

the classifier and fit it into the training set the function fit() has

been implemented in each model. This function requires

passing the training set transactions and the labels as

arguments. The predict() function was also used by the

classifiers in the evaluation part to classify the received data

points from unseen data, or a testing test in some cases.

4.2.7 PRE-PROCESSED DATA

 Since random sampling is used in load balance the training

data set, a random sample in training set is reproduced in each

run of the code. However, for model optimization the same

input data must be used, to avoid producing two different
results. Moreover, the observed change in the accuracy is

resulted from changing the parameters of the chosen algorithm

not from the change of input data. So, pickle is used to save

data in orderto ensure that the experiments done are

reproducible, also to ensure that the input data has not been

changed. This will lead to deterministic results, which allows

running the same experiment with the same parameters twice

and obtain exactly the same results. Since pickle is a

persistence model, it was implemented in split data() method.

Pickle created object files that will contain classifier models
created previously, and it can be saved and loaded. In order to

store an object externally, for a classifier object, pickle uses the

pickle.dump() function to save the data. Whereas in loading

the object , pickle.load() will be used to de-serialise the data.

This allows the user to use a previously saved objectof the

chosen classifier, if the read from pickle Boolean variable

shown in figure1 is set to True, the code in figure2 will be

executed to handle loading the saved classifiers for training

and testing. Otherwise, False, will allow the system to create

new objects for both training and testing, that can be used in

similar further experiments.

Figure 9: Pickle Objects

4.3 CLASSIFIERS

 For the purpose of this project, three types of classifiers

have been created, and constructed as three separated classes

that implement split data() function from Split Data.py and

evaluate classification() function from Evaluation.py.Scikit-
learn classifiers have been also imported where each classifier

class implements the associated model of its learning

algorithm.

 Hence, RandomForestClassifier has been constructed from

Scikit-learn to represent the model of Random Forest

classifier. IsolationForest has been also con- structed for

Isolation Forest classifier, and for Neural Networks Sequential

model has been imported from Keras library.

4.3.1 RANDOM FOREST

 Random Forest algorithm is the supervised classifier

chosen to predict whether a transaction is legitimate or

fraudulent. In order to classify fraudulent transactions by this

classifier, RandomForestClassifier has been imported from

Scikit-learn ensemble module along with pickle module. As

shown in figure, the hyper-parameters chosen in the

implemented code were, the n estimators, representing the tree

numbers, and set to 100. Also, random state was set to 0 and
the max depth was set to None. Additionally, both X-train and

y train were used into fit() function to create the model.

Figure 10: Random Forest Classifier

4.3.2 ISOLATION FOREST

 Isolation Forest is unsupervised classifier, created to be

compared to the supervised and the deep learning algorithm

implemented in this project. Along with pickle module,

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM14371 | Page 6

IsolationForest was imported from Scikit-learn to create the
model by training the data using fit() function that takes X train

as a parameter. As shown in figure below, the hyper

parameters chosen in this classifier were random state which

was set to zero,and n estimators was set to 100.

4.3.3 NEUTRAL NETWORKS

To construct a Neural Network model, Sequential model API
alongside a network of dense layers were imported from Keras

library. Keras was also imported from Tensorflow as canbe

seen in figure,

Figure 11: Imported Libraries

 The first step was building the classifier using Sequential

constructor that will have layers added to it using the function

add () as shown in figure. The layers added are of type Dense,

the 30 represents the output size, whereas 15 represents the

output in the second Dense layer, and both can be changed as

preference. The option relu, Rectified Linear Unit, was chosen

as an activation function. Whereas, the last layer presents the

predictions using sigmoid which is a smoother function to get

more accurate probabilities for classification. The k best

feature can also be utilized using neural networks if the

features used in the k value are set to all, using the value None,

that allows passing all features for the SelectKBest().

 The method compile () of the Sequential model was used,

and it requires three arguments to be passed, a loss function, an

optimizer which set to Adamant a list of metrics. The three

passed arguments are presented in figure below. Last step was

fitting the model using fit() function which requires at least

two arguments: input and target tensors, noting that only a

single iteration of the training data will be performed when

passing two arguments. In the case of this project, it is shown

below that five arguments have been passed, X test and y test

representing the training set, epochs which represents the
number of batches, batch size which is the number of the

samples passed, and verbose which is the output logging. The

evaluation performance was calculated and printed out using

the evaluate classification () function as what have been done

with the other classifiers.

4.3.4 CLASSIFIERS EVALUTON

 In order to evaluate the implemented classifiers, the

evaluation method evaluate classification()function was

imported from Evaluation.py. Scikit-learn Confusion Matrix,

Accuracy, Precision and Recall classification metric functions

have been imported in this class, and utilised as specified in the

learning evaluation section in the background. Each evaluation

function requires passing the classification algorithm along

with the testing sets and the predictions. However, the

prediction is calculated differently for each algorithm as illus-

trated in figure shown below. For random forest, for example,

it is declared to be used as the default, whereas in neural
networks and isolation forests, -1 will be returned for outliers

(Fraudulent), and 1 (Legitimate) for inlier outputs. Therefore,

this alteration was done to ensure that classification outputs are
consistent across all three algorithms and that the system will

automatically trigger the chosen one. Prediction along with

other necessary variables are used in the method. This method

calculates and prints out the confusion matrix, and construct

the accuracy, recall, and precision scores, that will be listed for

each classifier results later on the Evaluation section.

Each evaluation metric with the function used from Scikit-

learn, is listed below,

• Confusion Matrix: confusion matrix()

• Accuracy: accuracy score()

• Precision: precision score()

• Recall: recall score()

4.4 CLASSIFIERS COMMAND-LINE INTERFACE

 A simple command-line interface classification application

was utilized, as discussed in the specification and design part

previously. It has been utilized for number of reasons. Firstly,
it is user-friendly and easy to use, it provides different

classification algorithms can be chosen by the user depending

on the entered argument, it automatically generates help and

usage messages as well, and provide issues errors when the

user input invalid arguments. To support this solution, argparse

python module was utilized, and the simple command line

application has been implemented in classification app.py. The

get args() function has ArgumentParser which is an object that

holds all the needed information to parse a command line into

python data types, and it has a list of arguments with different

options available added using add argument() function, figure

below shows the implemented code of this part. Moreover, the
information is saved and used by parse args() function. The

arguments will be added up using the accumulate () function.

In order to run the application, the user must pass two

arguments to the command line, the model of choice (ie.

Random forest, Neural networks or Isolation forests) and the

path of the file containing the data set to classify. Once the

arguments are passed, the app chooses the corresponding

serialized classification model as well as the selected feature

indexes for it, which have been saved as serialized pickled

objects after training. For this reason, it is important that any

new data set, must follow the same structure as the training

data set given.

5. SYSTEM DESIGN

 A Unified Modelling Language (UML) is created to have a

better understanding of the system. UML diagrams also

provide the developer with a template as a guide used to
construct the software system, and it present a visual

representation of the software system and how it is intended to

be. Therefore, this section will present diagrams that have

beencreated and provided from UML below, the class diagram

shown below in figure 3.1 presents the interaction of different

classes in the software system, and the internal structure of it.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM14371 | Page 7

Figure 12: Class Diagram

Figure 13: Use Case Diagram

Figure 14: Activity Diagram of Software System

A brief explanation of the most important classes will be listed

below,

 • Evaluation: this class represents the main part of

evaluating how good is a classifier model, this will be

represented by providing the evaluation performance

techniques, which are confusion matrix, accuracy, recall and

precision.

 • Split Data: this class is responsible for load and prepare

the data set and split it into training and testing sets. By pre-

processing the data and creates a Data Frame pandas, it allows

loading the data into the system and provides a necessary
representation of the data as features and labels to be used later

in the software system by the classifiers. It is also important for

load balance the fraudulent and legiti- mate transactions which

helps to produce a better model. Also, information about the

data sets will be provided including the distribution amount of

fraudulent and legitimate transactions used in training and

testing.

 • Classification app: This class represents a simple

command-line interface to allow the user to provide a data set,

and choose a classifier alongside the arguments needed for the

data splitting process to create a load balanced training and
testing sets, to be used by the chosen classifier. And it

represents the final results of the classifier. Moreover, the use

case diagram shown in figure 3.2 represents a grouped set of

possible interactions between the system and the user in the

software system, where possible classifying options are

illustrated. The three available options are Random Forest,

Isolation Forest and Neural Networks. Furthermore, figure

represents the approach involving dynamic aspects of the

implemented software system as an activity diagram. The

flowchart involves the steps taken which are; load the data

from the given file, load balance the data, split data into
training and test sets, select the best features, and finally

classify the data using one of the available models. As

mentioned previously, the models are Random Forest,

Isolation Forest and Neural Networks. Finally, the predicted

test set will be resulted and evaluated using the evaluation

metrics. Additionally, this section provides all the functional

requirements represented in an easy format to read and track.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM14371 | Page 8

6. RESULTS

Figure 15: Fraudulent Check Screen

Figure 16: Proper Check Screen

Figure 17: Indication of fraudulent through mail

7. CONCLUSIONS

To conclude, throughout this report, multiple tests

were performed on the above mentioned implemented

classifiers, in order to evaluate and find the best one that can

classify credit card fraudulent and legitimate transactions

using machine learning and deep learning techniques. This

part was solved by three different models, and evaluated using

the performance metrics including accuracy, precision and
recall. In terms of accuracy, according to the results shown in

the summary above, different experiments were utilized and

resulted in high accuracy scores achieved by both random

forest and neural networks models in different experiments.

The lowest accuracy score achieved over the experiments was

by Isolation Forest model. Whereas, as Random Forest

achieved the highest. A simple command-line interface was

also utilized to run the created engine and to evaluate each

classifier independently, as the user chose. However, the

accuracy of the output is linked to the quality of the training

phase, which is in itself is no simple task, and yet the stated

output is to a large extent inexplicable. Therefore, it cannot be
decided which is most suitable classifier in both, solving the

credit card fraud detection problem and predicting fraudulent

transactions correctly as it depends on the data set given and

the experiments applied. However, on the plus side unlocking

the power of the CPU is done to continuously evaluate and re-

evaluate data sets, to find things or achieve things that at this

time there is no other way to do it. A very large simulated

brain is used to identify patterns and then highlight them as

useful results. This obviously opens up opportunities in areas

such as speech recognition, big data analysis studies etc. The

learning aspect here avoids the programmers of having to
describe language to the computer for example, or to

programmatically instruct a computer exactly what card fraud

will look like based on the current knowledge.

ACKNOWLEDGEMENT

The authors would like to thank Ms. M Anitha for his
suggestions and excellent guidance throughout the project

period.

REFERENCES

[1]. Credit Card Fraud Detection using learning to Rank

Approach”, N.Kalaiselvi, S.Rajalakshmi, J.Padmavathi, Joyce
B.Karthiga, 2018.

[2]. X. Yu, "Integrated Approach for Nonintrusive Detection

of Driver Drowsiness," University of Minnesota Duluth

October 2012 2012.

[3].Supervised Machine Learning Algorithms for Credit Card

Fraudulent Transaction Detection: A Comparative Study”,

Sahil Dhankhad, Emad Mohammed , Behrouz Far, 2018 IEEE

International Conference on Information Reuse and

Integration(IRI).

[4]. ”A Novel approach for Credit Card Fraud Detection”,

Ayushi Agrawal, Shiv Kumar, Amit Kumar Mishra, 2015 2nd

International Conference on Computing for Sustainable

Global Development(INDIACom).

[5].Almarsoomi, H. and Kurnaz S. 2019. Credit Card Fraud

Detection Us-ing Machine Learning Methodology.

International Journal of ComputerScience and Mobile

Computing,[Online] 8(3),pp.25760.

Availableat:https://www.academia.edu/38608138/Credit_Card

_Fraud_Detection_usin g_ Machine_Learning_Methodology_

[Accessed 9 Apr. 2019].

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM14371 | Page 9

[6]. Asaithambi, S. 2018. Why, How and When to apply
Feature Selection [Online].Available

at:https://towardsdatascience.com/ why-how-and-when-

toapply-feature-selection-e9c69adfabf2 [Accessed 23 Apr.

2019].

[7]. Breiman, L. 2001. Random Forests. Machine Learning,

45, 5-32 [Online]. Available at:

http://dx.doi.org/10.1023/A:1010933404324 [Accessed 5 Apr.

2019].

[8]. Bronlee, J. 2017. How to Use the Keras Functional API

for Deep Learning [Online]. Available at:
https://machinelearningmastery.com/ keras-functionalapi-

deep-learning/ [Accessed: 26 Apr. 2019]

[9]. Brown G. 2009. Ensemble learning. C. Sammut, G. Webb

(Eds.) Encyclopedia of Machine Learning, Springer

[Online].Available at: http://www.springer.com/

computer/artificial/book/978-0-387-30768-8. [Accessed: 7

Apr. 2019]

http://www.ijsrem.com/

