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Abstract - Nowadays, card fraud is increasing due to the 

prevalence of modern technology. Thus, Automatic systems to 

detect and prevent against card fraud are a significant tool in 
the financial industries battle against card crime. Machine 

learning and novelty detection techniques approaches are 

taken in Credit Card Fraud Detection field, since they are 

effective technologies and methodologies and easy to apply at 

the same time. It is used in order to reduce fraud activities. 

The main aim of this project was to create a program that 

detects and Identifies potentially fraudulent credit card 

transactions from a given data set, and evaluate its 

performance to be compared with other classifiers with 

evaluation metric.  

The program was trained with the given data set, 
based on the some of the most popular Machine Learning and 

Deep Learning Classification algorithms which are; Random 

Forest, Isolation Forest and Neural Networks Algorithm Load 

Balancing and Feature Selection were maintained throughout 

the project, and it was implemented using Python 

programming language. However, there were no autonomous 

system that will be able to categorically define a transaction as 

fraud. The objective was to highlight those transactions that 

have a high probability of being fraudulent based on some 

criteria, known or otherwise learnt. 

 

Key Words:  isolation forest and local outlier factor, Pandas, 
Json, Matplotlib and seaborn. 

 

 

 

1. INTRODUCTION 

 
This chapter consists of, a preface that includes a brief 

background of credit card fraud detection topic, followed by 

aims and scope of the project, motivation, the main intended 

beneficiaries, and a listing of the report structure. 

 

1.1 PREFACE 

Nowadays, card fraud is increasing due to the prevalence 

of modern technology. As the card fraud losses total was 

around 567 million in 2015, and there was a 9% increase in 

2016 with a loss of 618 million. Enterprises and public 

institutions must be well prepared to defend against such 

frauds that cause the loss of billions of dollars worldwide 

annually. Automatic systems to detect and prevent against 
card fraud are a significant tool in the financial industry’s 

battle against card crime. However, it is not easy, or always 

possible to detect fraudulent patterns in transaction data by 

programmatic rules-based systems or inspection by fraud 

analysts; especially in large data sets. Credit card usage is 

increasing year on year, and the credit card and card payments 

market plays a huge role in today’s economy. Predicted 

statistics by indicated that credit card payments will increase 

over the next decade. The predicted transactions growth is to 

3.7 billion in 2026, from 2.8 billion in 2016. Which 

consequently indicated that economic growth is one of the 

significant drivers of the credit card volumes and values 

future. Moreover, credit card usage has well known 
advantages such as; simplicity of payment, access to credit, 

purchase guarantees and financial management to name a few, 

unfortunately these do not come without the risk of becoming 

a victim of fraudulent transactions. To reduce credit card 

fraud, it is important to use expert rules and statistical based 

models, such as rules based detection engines, machine 

learning and novelty detection techniques such as Clustering, 

Classification based and Nearest Neighbor, that can be used to 

distinguish potential and genuine fraud. Thus, classification is 

the one will be mainly used in order to solve this problem so it 

will be discussed in further details later. Moreover, effective 
technologies and methodologies that can detect fraud and 

illegal activities such as; money laundering have been 

delivered and applied. Machine learning algorithms have 

existing efficient fraudulent patterns (patterns will be 

discussed in detail at a later section), which typically found in 

data to be uncovered, or sometimes they do not, and predict 

possible fraudulent transactions, as it is a critical part of the 

fraud detection toolkit. A real or representative data set plays 

a significant role when it comes to build a system in machine 

learning as well. Specifically, to have a better fraud detection 

model there must be a large set of data to be used. 

 
Figure 1: Preface image of project 

 

1.2 AIM AND SCOPE 

The main aims of this project are to establish a 

background in fraud detection novelty techniques and 

machine learning methodologies that will be used to complete 

this project, followed by detecting potentially fraudulent 

credit card transactions and classify both legitimate and 

fraudulent transactions from a given data set, where 

supervised and unsupervised Machine Learning Classification 
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Algorithms and Novelty Detection Techniques are used on 
training the models. In the given data set, each individual 

transaction is already allocated to a different known class, 

either for fraud or for legit. Finally, offering discussion, 

comparison between the techniques, and evaluation of the 

solution produced. However, it is important to remember 

during the whole project, that no autonomous system will be 

able to categorically define a transaction as fraud. The 

objective will be to highlight those transactions that have a 

high probability of being fraudulent based on some criteria, 

known or otherwise learnt. Correspondingly, the scope of this 

project focuses on creating a well-functioned software system 

model depending on known behaviors or feature variables. It 
allows the beneficiaries to inspect the performance or the 

accuracy of the various machine learning classification 

algorithms which can classify the transactions in training and 

testing sets into either fraud or legit in real time. The data 

given is highly unbalanced data set, therefore, the approach 

used in this project is to implement different machine learning 

algorithms, which are: Random Forest as there are many cases 

where it has been used successfully, Isolation Forest and 

Neural Networks. 

2. RELATED WORKS 

[1] The work done by the author, N.Kalaiselvi, 

S.Rajalakshmi, J.Padmavathi, Joyce B.Karthiga, “Credit Card 

Fraud Detection using learning to Rank Approach” in the year 
2018. 

 

An infrastructure build in the neural network 

platform is reliable to detect the fraudulence in credit card 

system for transaction. The issues resulting from the fraud in 

credit card transaction may involve a number of customers 

who drift their habits evolve and fraudsters who change their 

strategies over time. The vast majority of learning algorithms 

that have been proposed for fraud detection rely on 

assumptions that hardly hold in a real-world fraud-detection 

system. This includes the classification of data imbalance 
which is used to verify their hidden transaction, track the 

location of the fraudsters and to capture their image. The 

implementation of learning algorithm will precisely predict 

and rank alerts based on the scores allotted to each alert. 

Initially, we propose transaction blocking rule to ensure the 

security of the transaction. Secondly, we design scoring rules 

that involve pattern matching based on frequent data mining 

techniques. Finally, the machine is trained and updated with 

the dataset to timely investigate the transaction thereby 

earning credit card holder's satisfaction. 

 

[2] The work done by the author, X. Yu, "Integrated 
Approach for Nonintrusive Detection of Driver Drowsiness", 

in the year 2012. 

 

This project is the extension of Northland Advanced 

Transportation System Research Laboratory (NATSRL) FY 

2008 and FY 2009 projects titled, “Real-time Nonintrusive 

Detection of Driver Drowsiness,” which aims to develop a 

real-time, nonintrusive driver drowsiness detection system to 

reduce drowsiness-caused accidents. In our previous research, 

nonintrusive sensors for drivers' heart beat measurement were 

developed and implemented on the vehicle steering wheel. 
Heart rate variability (HRV) was analyzed from the heart beat 

pulse signals for the detection of driver drowsiness. Promising 
results were obtained. However, one of the major issues with 

the previous system is using only one parameter, Low-

Frequency(LF)/High-frequency(HF) ratio of HRV, to access 

the driver’s status, which has relative high variability and has 

different changing patterns for different drivers. In this 

project, we used multiple parameters for the drowsiness 

detection, including the LF/HF ratio, steering wheel reversal 

rate (SWRR) and steering wheel R2 (R2 = Pos2 +w2 , Pos is 

steering position and w is steering wheel moving speed), and 

EEG frequency band power ratio (Poweralpha+Powertheta)/ 

Power beta. Two-hour driving simulation tests were 

conducted on thirteen human subjects in a driving simulator. 
The driving simulation results show that large amplitude 

bursts of R2 value represent driving errors, which mostly 

happen after a significant decrease of SWRR. Also, bursts of 

the EEG ratio, which represent increased levels of drowsiness, 

happen after a fairly long-term decrease of ECG LF/HF ratio, 

as do the bursts of SWRR, which represents driving errors. 

The correlation above means that the information contained in 

these parameters time history can be used in drivers' 

drowsiness detection. Future work is needed to develop a 

complete and robust model to utilize these parameters to 

evaluate the drowsiness level of a driver during a long-time 
driving task. 

 

[3] The work done by the author, Sahil Dhankhad, Emad 

Mohammed, Behrouz Far, “Supervised Machine Learning 

Algorithms for Credit Card Fraudulent Transaction Detection: 

A Comparative Study”, in the year 2018. 

 

The goal of data analytics is to delineate hidden 

patterns and use them to support informed decisions in a 

variety of situations. Credit card fraud is escalating 

significantly with the advancement of the modernized 
technology and become an easy target for fraudulent. Credit 

card fraud is a severe problem in the financial service and 

costs billions of a dollar every year. The design of fraud 

detection algorithm is a challenging task with the lack of real-

world transaction dataset because of confidentiality and the 

highly imbalanced publicly available datasets. In this paper, 

we apply different supervised machine learning algorithms to 

detect credit card fraudulent transaction using a real-world 

dataset. Furthermore, we employ these algorithms to 

implement a super classifier using ensemble learning 

methods. We identify the most important variables that may 

lead to higher accuracy in credit card fraudulent transaction 
detection. Additionally, we compare and discuss the 

performance of various supervised machine learning 

algorithms exist in literature against the super classifier that 

we implemented in this paper. 

 

3. METHODOLOGY 

In order to tackle the software system that has to be 

developed and tested in the limited time given, a development 

methodology had to be followed. The development 

methodology ensures that developing and testing of the 

software system are managed, and at the end of the project a 

functioned prototype will be delivered. Thus, Agile software 

development strategy was chosen to be followed in this 

project, as shown in figure. Agile development strategy is a 

suitable method, as it focuses on incremental delivery, 
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continual planning and continual learning. It divides the 
project into iterations, small incremental builds. An advantage 

of the life cycle model is that the client will be able to see the 

working outcome straight after each iteration. This 

methodology was chosen in preference to Waterfall, for 

example, because if Waterfall was adopted then the 

implementation stage cannot take place unless the planning 

stage is done, and due to the fixed structure of the required 

steps. Which will not be suitable for this project as the 

timescale is not flexible at all, and the moderation of the 

requirements belong to this project is at a high risk of 

changing. However, in Agile any requirements modification at 

any stage of the process can be integrated even in late 
development process with no risking losing the entire work. 

Moreover, a way faster and successive iteration of a working 

software system will be produced regularly, and viewed by 

the client at a consistent pace, which results in client 

satisfaction with the rapid releases of the project. Lastly, after 

each iteration the client will be sending feedback that provide 

a huge opportunity to modify and improve the software in the 

upcoming iterations. Although Agile is a more teamwork 

methodology, planning is easier with a single developer. Most 

of the work came naturally, and I followed it to broke down 

the tasks that should be done, prioritizing the tasks based on 
feedback given by the supervisor in the meetings, set the 

intended goals and being flexible to change and modify along 

the project since the work was partitioned in weekly sprints. 

 
Figure 2: Methodology Diagram 

Five iterations have been utilized over the project timescale, 

objectives and deliverables of each iteration are listed below 

along with each iteration,  

• First Iteration focused on implementing, loading and 

processing the data needed for each classifier.  

– Deliverable from this iteration was preparing and 
splitting the training and testing sets to be ready to use in 

classification processes.  

• Second Iteration focused on implementing the three 

separated classifiers from three different algorithms. Using the 

data set resulted from the first iteration allow the classifiers to 

be trained and tested. 

  – Deliverable from this iteration was producing three 

classifiers that are able tobe trained and tested. 

• Third Iteration focused on the Load Balancing of both test 

and train sets.  
– Deliverable from this iteration was balance the 

fraudulent and legitimate transactions to have a well balance 

model.  

• Fourth Iteration focused on Feature Selection to train the 

model. 

 – Deliverable from this iteration was selecting the 

features manually or by using the best k features selection 

method.  

• Fifth Iteration focused on a simple command-line interface 

application.  

– Deliverable from this iteration was the user 
interface, in order to provide user interaction with the 

software, by containing the usage of the three previous 

iterations. 

 

4. IMPLEMENTATION DETAILS 

This chapter will discuss the implementation of the 
software system provided with the code. The main parts of the 

implemented code will be specified with the related tools 

used. 

 

4.1 PROJECT STRUCTURE 
 

This project was organized by splitting the code into separated 

small parts using Python modular programming, to produce a 

reliable, readable, and maintainable software system. The 
small parts are represented in classes, that can be collected 

later to produce a complete software system. Thus, the re-

usability of the code is facilitated by the usage of the 

classifiers, and it ease the access for a specific functionality in 

the code. Thus, the final solution is implemented and 

structured in CCFD package that contains six different files 

demonstrated as follows,  

• Random Forest: this classifier file represents a 

learning model based on Random Forest classification 

algorithm. 

  • Isolation Forest: this classifier file represents a 
learning model based on Isolation Forest classification 

algorithm.  

• Neural Networks: this classifier file represents a 

learning model based on Neural Networks classification 

algorithm. 

• Split Data: this file is responsible for load 

balancing, loading the historic data given by the user as an 

input, prepare them to be classified and split them into 

fraudulent and legitimate transactions.  

• Evaluation: this file is responsible for model 

evaluation as it provides the evaluation techniques metric.  

• Classification app: this file represents a simple 
command line application, that takes the inputs including the 

directory path of the file and the classifier from the user as 

arguments, classifies the data, loads and saves the final results 

of each classifier into models directory, along with the saved 

output pickled files. 

 

4.2 DATA PREPARATION & PROCESSING 

This section will mainly discuss how data set was 

prepared and processed to be used in each classifier. 
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4.2.1 DATA LOADING 

Loading necessary data is the first step in the field of 

machine learning and its approaches. Since the data consists 

of historic labelled transactions in csv format, and it must be 

prepared for the classification algorithms, (built-in function) 
from csv module, read csv() was imported and called using 

pandas. The csv file directory will be taken as an argument 

from the user and will be converted into a Data Frame using 

pandas for further processing unit. 

It is highly unbalanced data, whereas fraud and 

legitimate transactions are represented respectively, by 

approximately 2% and 98% as illustrated in the following 

code block, 

 
Figure 3: Data Distribution 

The data set contains only numerical (continues) input 

variables resulted from a Principal Component Analysis 

(PCA) feature selection transformation in 28 major 

components out of the 30 components utilized in this project. 

The behavioral characteristics of the card is represented by, a 

variable of each profile usage represents the spending 

behaviors of the customer linked with hours, and days of the 

month, as well as geographical locations or the merchant type 

where the transaction happens. Therefore, to distinguish 

fraudulent activities these variables are used later. 

Unfortunately, the details and background information of the 
provided features cannot be specified due to confidentiality 

issues. The Time feature involves the seconds passed between 

each transaction and the first transaction occurrence. The 

Amount feature represents the amount of the transactions, and 

it has a relatively small mean of all the transactions made 

which is 88.3 as in the code shown below, and the Class 

feature is the response variable, as it distinguishes the 

transactions by labelling them into zeros and ones. 

 
Figure 4: Features descriptive statistics 

 

4.2.2 TRAIN AND TEST SPLIT 

Data set used for classifiers is usually split into 

training and test data sets. This process has been done to avoid 

over fitting problem detailed in the background section. 

Testing the accuracy of a classifier in its prediction of 

fraudulent transaction using the test set is essential, to know 

how well the model learned on the training set. Scikit-learn 

provides useful functions, fit() and predict(), for train and test 

the classifiers. Usually, a 70/30 or 80/20 split is used for train 

and test. However, a load balancing has been conducted in 
this project instead, and detailed in the next section. 

Moreover, the training and testing sets will be constructed at 

the end as dataset train, and dataset test, to be used and 

divided into transactions and labels for both training and test 

sets, as the code in figure shown below. 

 
Figure 5: Train and test sets 

 

4.2.3 LOAD BALANCING 

For this project, it can be seen from the above 

mentioned information that the data set is highly unbalanced. 

Attempting to train a model with the given data combination, 

will result in over fitting as the model will conveniently 
converge into classifying everything as legitimate. 

Consequently, the high accuracy of training sets will be 

resulted as the fraudulent transactions are so few and the 

outlier fraudulent transactions will never be detected. So, in 

order to balance the data, the number of zero instances which 

represent legitimate transactions, and one instances which 

represents fraudulent transactions used must be balanced. For 

test sets the amount was fixed to 42 instances for both zeros 

and ones so that it is could assess how the model classifies 

true positives and true negatives accurately. In regards to the 

training sets, the number of one instances was set to 450 as 
there was no other option, and the number of zeros was 

adjusted into the data combination chosen throughout 

different experiments. The number of zero labelled rows was 

randomly chosen and experiments were run a number of times 

for each data mixture in order to understand the fluctuation of 

accuracy due to the varied data samples. A sample of the 

instance distribution can be seen in figure shown below. 

 
Figure 6: Instance distribution in split data () 

  

4.2.4 FEATURE IMPORTANCE 

 As mentioned about features selection in the background 

section, feature importance is a significant quality in ensemble 

algorithms, specifically in random forests. It is being utilized in 

this project because it measures the relative importance of each 

feature in the prediction. The attribute feature importance was 

implemented in Random Forest class; it returns an array of 

numbers of each feature importance determining the splits. 
Therefore, a combination of Seaborn and Matplotlib libraries 

were used for a good visualization of the results in ascending 

order, the code is shown in figure below. 
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Figure 7: Feature importance 

4.2.5 FEATURE SELECTION 

 Another important step of data preparation is the feature 

selection process. This data set provides 32 data headers 

(features). Experiments were run to choose the k best features 

of this feature set using SelectKBest() from Scikit-learn 

library. Choosing features can either be done manually by 
changing the k value of each classifier in each try, or by setting 

the k value into None which basically selects all features 

except the labels, and this option allows the classifier to be 

trained using the features with the highest scores. The code 

shown in figure below, also indicates that the method takes 

two attributes, f classify which represents the ANOVA F-value 

between a label or feature for the classification tasks, and the k 

value that represents the features. 

 

Figure 8: SelectKBest() 

 

4.2.6 TRAINING AND EVALUATING THE 

MODEL 

 The selected features variable shown in figure below, in 

train and test split section, will contain the whole list of 
features except the labels represented by feature. The labels are 

assigned by both variables y train and y test. However, this 

will result in having the training set represented by X train and 

y train, and test represented by X test and y test. All the 

variables will be returned by the split data() method. To train 

the classifier and fit it into the training set the function fit() has 

been implemented in each model. This function requires 

passing the training set transactions and the labels as 

arguments. The predict() function was also used by the 

classifiers in the evaluation part to classify the received data 

points from unseen data, or a testing test in some cases. 

 

4.2.7 PRE-PROCESSED DATA 

 Since random sampling is used in load balance the training 

data set, a random sample in training set is reproduced in each 

run of the code. However, for model optimization the same 

input data must be used, to avoid producing two different 
results. Moreover, the observed change in the accuracy is 

resulted from changing the parameters of the chosen algorithm 

not from the change of input data. So, pickle is used to save 

data in orderto ensure that the experiments done are 

reproducible, also to ensure that the input data has not been 

changed. This will lead to deterministic results, which allows 

running the same experiment with the same parameters twice 

and obtain exactly the same results. Since pickle is a 

persistence model, it was implemented in split data() method. 

Pickle created object files that will contain classifier models 
created previously, and it can be saved and loaded. In order to 

store an object externally, for a classifier object, pickle uses the 

pickle.dump() function to save the data. Whereas in loading 

the object , pickle.load() will be used to de-serialise the data. 

This allows the user to use a previously saved objectof the 

chosen classifier, if the read from pickle Boolean variable 

shown in figure1 is set to True, the code in figure2 will be 

executed to handle loading the saved classifiers for training 

and testing. Otherwise, False, will allow the system to create 

new objects for both training and testing, that can be used in 

similar further experiments. 

 

Figure 9: Pickle Objects 

4.3 CLASSIFIERS 

 For the purpose of this project, three types of classifiers 

have been created, and constructed as three separated classes 

that implement split data() function from Split Data.py and 

evaluate classification() function from Evaluation.py.Scikit-
learn classifiers have been also imported where each classifier 

class implements the associated model of its learning 

algorithm. 

 Hence, RandomForestClassifier has been constructed from 

Scikit-learn to represent the model of Random Forest 

classifier. IsolationForest has been also con- structed for 

Isolation Forest classifier, and for Neural Networks Sequential 

model has been imported from Keras library. 

4.3.1 RANDOM FOREST 

 Random Forest algorithm is the supervised classifier 

chosen to predict whether a transaction is legitimate or 

fraudulent. In order to classify fraudulent transactions by this 

classifier, RandomForestClassifier has been imported from 

Scikit-learn ensemble module along with pickle module. As 

shown in figure, the hyper-parameters chosen in the 

implemented code were, the n estimators, representing the tree 

numbers, and set to 100. Also, random state was set to 0 and 
the max depth was set to None. Additionally, both X-train and 

y train were used into fit() function to create the model. 

 

Figure 10: Random Forest Classifier 

4.3.2 ISOLATION FOREST 

 Isolation Forest is unsupervised classifier, created to be 

compared to the supervised and the deep learning algorithm 

implemented in this project. Along with pickle module, 
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IsolationForest was imported from Scikit-learn to create the 
model by training the data using fit() function that takes X train 

as a parameter. As shown in figure below, the hyper 

parameters chosen in this classifier were random state which 

was set to zero,and n estimators was set to 100. 

4.3.3 NEUTRAL NETWORKS 

To construct a Neural Network model, Sequential model API 
alongside a network of dense layers were imported from Keras 

library. Keras was also imported from Tensorflow as canbe 

seen in figure, 

 

Figure 11: Imported Libraries 

 The first step was building the classifier using Sequential 

constructor that will have layers added to it using the function 

add () as shown in figure. The layers added are of type Dense, 

the 30 represents the output size, whereas 15 represents the 

output in the second Dense layer, and both can be changed as 

preference. The option relu, Rectified Linear Unit, was chosen 

as an activation function. Whereas, the last layer presents the 

predictions using sigmoid which is a smoother function to get 

more accurate probabilities for classification. The k best 

feature can also be utilized using neural networks if the 

features used in the k value are set to all, using the value None, 

that allows passing all features for the SelectKBest(). 

 The method compile () of the Sequential model was used, 

and it requires three arguments to be passed, a loss function, an 

optimizer which set to Adamant a list of metrics. The three 

passed arguments are presented in figure below. Last step was 

fitting the model using fit() function which requires at least 

two arguments: input and target tensors, noting that only a 

single iteration of the training data will be performed when 

passing two arguments. In the case of this project, it is shown 

below that five arguments have been passed, X test and y test 

representing the training set, epochs which represents the 
number of batches, batch size which is the number of the 

samples passed, and verbose which is the output logging. The 

evaluation performance was calculated and printed out using 

the evaluate classification () function as what have been done 

with the other classifiers. 

 

4.3.4 CLASSIFIERS EVALUTON 

 In order to evaluate the implemented classifiers, the 

evaluation method evaluate classification()function was 

imported from Evaluation.py. Scikit-learn Confusion Matrix, 

Accuracy, Precision and Recall classification metric functions 

have been imported in this class, and utilised as specified in the 

learning evaluation section in the background. Each evaluation 

function requires passing the classification algorithm along 

with the testing sets and the predictions. However, the 

prediction is calculated differently for each algorithm as illus- 

trated in figure shown below. For random forest, for example, 

it is declared to be used as the default, whereas in neural 
networks and isolation forests, -1 will be returned for outliers 

(Fraudulent), and 1 (Legitimate) for inlier outputs. Therefore, 

this alteration was done to ensure that classification outputs are 
consistent across all three algorithms and that the system will 

automatically trigger the chosen one. Prediction along with 

other necessary variables are used in the method. This method 

calculates and prints out the confusion matrix, and construct 

the accuracy, recall, and precision scores, that will be listed for 

each classifier results later on the Evaluation section. 

Each evaluation metric with the function used from Scikit-

learn, is listed below,  

• Confusion Matrix: confusion matrix()  

• Accuracy: accuracy score()  

• Precision: precision score()  

• Recall: recall score() 

 

4.4 CLASSIFIERS COMMAND-LINE INTERFACE 

 A simple command-line interface classification application 

was utilized, as discussed in the specification and design part 

previously. It has been utilized for number of reasons. Firstly, 
it is user-friendly and easy to use, it provides different 

classification algorithms can be chosen by the user depending 

on the entered argument, it automatically generates help and 

usage messages as well, and provide issues errors when the 

user input invalid arguments. To support this solution, argparse 

python module was utilized, and the simple command line 

application has been implemented in classification app.py. The 

get args() function has ArgumentParser which is an object that 

holds all the needed information to parse a command line into 

python data types, and it has a list of arguments with different 

options available added using add argument() function, figure 

below shows the implemented code of this part. Moreover, the 
information is saved and used by parse args() function. The 

arguments will be added up using the accumulate () function. 

In order to run the application, the user must pass two 

arguments to the command line, the model of choice (ie. 

Random forest, Neural networks or Isolation forests) and the 

path of the file containing the data set to classify. Once the 

arguments are passed, the app chooses the corresponding 

serialized classification model as well as the selected feature 

indexes for it, which have been saved as serialized pickled 

objects after training. For this reason, it is important that any 

new data set, must follow the same structure as the training 

data set given. 

 

5. SYSTEM DESIGN 

 A Unified Modelling Language (UML) is created to have a 

better understanding of the system. UML diagrams also 

provide the developer with a template as a guide used to 
construct the software system, and it present a visual 

representation of the software system and how it is intended to 

be. Therefore, this section will present diagrams that have 

beencreated and provided from UML below, the class diagram 

shown below in figure 3.1 presents the interaction of different 

classes in the software system, and the internal structure of it. 
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Figure 12: Class Diagram 

 

 

Figure 13: Use Case Diagram 

 

 

Figure 14: Activity Diagram of Software System 

A brief explanation of the most important classes will be listed 

below,  

 • Evaluation: this class represents the main part of 

evaluating how good is a classifier model, this will be 

represented by providing the evaluation performance 

techniques, which are confusion matrix, accuracy, recall and 

precision.  

 • Split Data: this class is responsible for load and prepare 

the data set and split it into training and testing sets. By pre-

processing the data and creates a Data Frame pandas, it allows 

loading the data into the system and provides a necessary 
representation of the data as features and labels to be used later 

in the software system by the classifiers. It is also important for 

load balance the fraudulent and legiti- mate transactions which 

helps to produce a better model. Also, information about the 

data sets will be provided including the distribution amount of 

fraudulent and legitimate transactions used in training and 

testing.  

 • Classification app: This class represents a simple 

command-line interface to allow the user to provide a data set, 

and choose a classifier alongside the arguments needed for the 

data splitting process to create a load balanced training and 
testing sets, to be used by the chosen classifier. And it 

represents the final results of the classifier. Moreover, the use 

case diagram shown in figure 3.2 represents a grouped set of 

possible interactions between the system and the user in the 

software system, where possible classifying options are 

illustrated. The three available options are Random Forest, 

Isolation Forest and Neural Networks. Furthermore, figure 

represents the approach involving dynamic aspects of the 

implemented software system as an activity diagram. The 

flowchart involves the steps taken which are; load the data 

from the given file, load balance the data, split data into 
training and test sets, select the best features, and finally 

classify the data using one of the available models. As 

mentioned previously, the models are Random Forest, 

Isolation Forest and Neural Networks. Finally, the predicted 

test set will be resulted and evaluated using the evaluation 

metrics. Additionally, this section provides all the functional 

requirements represented in an easy format to read and track. 
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6. RESULTS 

 

Figure 15:  Fraudulent Check Screen 

 

Figure 16: Proper Check Screen 

 

Figure 17: Indication of fraudulent through mail 

 

7. CONCLUSIONS 

 
To conclude, throughout this report, multiple tests 

were performed on the above mentioned implemented 

classifiers, in order to evaluate and find the best one that can 

classify credit card fraudulent and legitimate transactions 

using machine learning and deep learning techniques. This 

part was solved by three different models, and evaluated using 

the performance metrics including accuracy, precision and 
recall. In terms of accuracy, according to the results shown in 

the summary above, different experiments were utilized and 

resulted in high accuracy scores achieved by both random 

forest and neural networks models in different experiments. 

The lowest accuracy score achieved over the experiments was 

by Isolation Forest model. Whereas, as Random Forest 

achieved the highest. A simple command-line interface was 

also utilized to run the created engine and to evaluate each 

classifier independently, as the user chose. However, the 

accuracy of the output is linked to the quality of the training 

phase, which is in itself is no simple task, and yet the stated 

output is to a large extent inexplicable. Therefore, it cannot be 
decided which is most suitable classifier in both, solving the 

credit card fraud detection problem and predicting fraudulent 

transactions correctly as it depends on the data set given and 

the experiments applied. However, on the plus side unlocking 

the power of the CPU is done to continuously evaluate and re-

evaluate data sets, to find things or achieve things that at this 

time there is no other way to do it. A very large simulated 

brain is used to identify patterns and then highlight them as 

useful results. This obviously opens up opportunities in areas 

such as speech recognition, big data analysis studies etc. The 

learning aspect here avoids the programmers of having to 
describe language to the computer for example, or to 

programmatically instruct a computer exactly what card fraud 

will look like based on the current knowledge. 
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