

Credit Risk Model: Research on Credit Risk Categorization model using XGBoost

Puneet Singh¹, Shubha Mishra², Gargi Porwal³, Prakhar Saxena⁴, Rishabh Tripathi⁵

¹Bachelor of Technology in Computer Science Engineering, Babu Banarasi Das Institute of Technology and Management, Lucknow

²Assistant Professor, Computer Science Engineering, Babu Banarasi Das Institute of Technology and Management, Lucknow

³Bachelor of Technology in Computer Science Engineering, Babu Banarasi Das Institute of Technology and Management, Lucknow

⁴Bachelor of Technology in Computer Science Engineering, Babu Banarasi Das Institute of Technology and Management, Lucknow

⁵Bachelor of Technology in Computer Science Engineering, Babu Banarasi Das Institute of Technology and Management, Lucknow

Abstract - Machine Learning is a subset of Artificial Intelligence technology that enables systems to learn and make decisions on their own. These systems can make accurate decisions by analyzing datasets and information without the need for explicit programming. This paper mainly introduces the application of machine learning algorithm (XGBoost) in credit risk assessment in the financial industry. Credit risk assessment is a significant challenge for banks to assess credit worthiness among many applicants and plays a very crucial role in the profitability of banks.

Our research paper addresses the limitations and complexities in the current models in the market that lack interpretability and transparency. The methodology section introduces the application of the random forest model in financial quantification, including the model principle, feature importance calculation and experimental design. Utilizing the dataset comprising of more than one lakh users from the CIBIL and other banks and then through the exploratory data analysis, feature selection and model construction of the credit risk prediction dataset, the construction and evaluation process of the CRM model is demonstrated.

Finally, the performance of the XGBoost model after hyperparameter tuning is evaluated and compared with other models to demonstrate its advantages and applicability in financial quantification.

Key Words: XGBoost, Machine Learning, Credit Risk Model, Random Forest

1.INTRODUCTION

In the financial system risk refers to the likelihood of a borrower defaulting in their obligations. It is a critical area of concern for institutions which is important to ensure informed lending, decisions, portfolio stability and profitability. However traditional methods like credit score and logistic regression have been increasingly challenged by the complexity of modern borrower profiles and dynamic nature of financial markets. The approach relies heavily on historical data and often fails to adapt emerging trends or hidden patterns. Machine Learning had emerged as a transformative tool in financial analytics and decision making, leveraging its ability to process vast datasets and make accurate data-driven predictions. It helps in enhancing predictive data accuracy and automation of repetitive decision-making process this minimizing manual intervention.

The research is focused on proposing a robust credit risk model based on advanced machine learning techniques for overcoming weaknesses of conventional credit risk models

2. Body of Paper 1 MATERIALS AND METHODS

XGBoost is an optimized implementation of Gradient Boosting and is a type of ensemble learning method that is designed for efficiency, speed and high performance. It uses decision tree as its base leaners and combines them sequentially to improve model's performance. Now each subsequent tree is trained to correct the errors made by the previous tree.

The reason for using this algorithm is that XGBoost has builtin parallel processing to train models on large datasets quickly. It is also highly scalable and efficient to be able to handle large datasets. It also provides various regularization techniques that we will be using later in the tuning process.

1.1 Data Pre-processing: Data to be used has been collected from CIBIL and few other sources from the banking institution which comprises of more than 50 columns and over one lakh users. This data needs to be processed as it contains various inconsistencies. Firstly, null values are removed and in case of columns having a large percentage of values as NULL, we would remove the column itself. The initial preprocessing results in preparation of two main data- One from CIBIL and Second from other sources.

Fig - 1 shows the data from banking institutions and Fig - 2 is the dataset collected from the CIBIL sources.

SJIF Rating: 8.586

ISSN: 2582-3930

Data columns	(total	25	columns):	
--------------	--------	----	-----------	--

#	Column	Non-Null Count	Dtype			
0	PROSPECTID	51196 non-null	int64			
1	Total_TL	51196 non-null	int64			
2	Tot_Closed_TL	51196 non-null	int64			
3	Tot_Active_TL	51196 non-null	int64			
4	Total_TL_opened_L6M	51196 non-null	int64			
5	Tot_TL_closed_L6M	51196 non-null	int64			
6	<pre>pct_tl_open_L6M</pre>	51196 non-null	float64			
7	pct_tl_closed_L6M	51196 non-null	float64			
8	<pre>pct_active_tl</pre>	51196 non-null	float64			
9	<pre>pct_closed_tl</pre>	51196 non-null	float64			
10	Total_TL_opened_L12M	51196 non-null	int64			
11	Tot_TL_closed_L12M	51196 non-null	int64			
12	<pre>pct_tl_open_L12M</pre>	51196 non-null	float64			
13	<pre>pct_tl_closed_L12M</pre>	51196 non-null	float64			
14	Tot_Missed_Pmnt	51196 non-null	int64			
15	Auto_TL	51196 non-null	int64			
16	CC_TL	51196 non-null	int64			
17	Consumer_TL	51196 non-null	int64			
18	Gold_TL	51196 non-null	int64			
19	Home_TL	51196 non-null	int64			
20	PL_TL	51196 non-null	int64			
21	Secured_TL	51196 non-null	int64			
22	Other_TL	51196 non-null	int64			
23	Age_Oldest_TL	51196 non-null	int64			
24	Age_Newest_TL	51196 non-null	int64			
dtyp	dtypes: float64(6), int64(19)					

Fig - 1

Data	columns (total 54 columns):				
#	Column	Non-Null Count	Dtype		
		•••••			
0	PROSPECTID	41966 non-null	int64		
1	time_since_recent_payment	41966 non-null	int64		
2	num_times_delinquent	41966 non-null	int64		
3	max recent level of delig	41966 non-null	int64		
4	num delig 6mts	41966 non-null	int64		
5	num delig 12mts	41966 non-null	int64		
6	num delig 6 12mts	41966 pop-pull	int64		
7	num times 300 dod	41966 non-null	int64		
9	num times 60n dod	41966 pop-pull	int64		
0	num_cimes_oup_upu	41966 pag-pull	int64		
10	num_std Cate	41966 non-null	int64		
10	num_std_titete	41966 nun-null	1004		
11	num_std_12mts	41966 non-null	10164		
12	hum_sub	41966 non-null	10164		
13	num_sub_emts	41966 non-null	10164		
14	num_sub_12mts	41966 non-null	int64		
15	num_dbt	41966 non-null	1nt64		
16	num_dbt_6mts	41966 non-null	int64		
17	num_dbt_12mts	41966 non-null	int64		
18	num_lss	41966 non-null	int64		
19	num_lss_6mts	41966 non-null	int64		
20	num_lss_12mts	41966 non-null	int64		
21	recent_level_of_deliq	41966 non-null	int64		
22	tot_enq	41966 non-null	int64		
23	CC_enq	41966 non-null	int64		
24	CC_enq_L6m	41966 non-null	int64		
25	CC_enq_L12m	41966 non-null	int64		
26	PL_eng	41966 non-null	int64		
27	PL_eng_L6m	41966 non-null	int64		
28	PL_enq_L12m	41966 non-null	int64		
29	time_since_recent_enq	41966 non-null	int64		
30	eng L12m	41966 non-null	int64		
31	enq_L6m	41966 non-null	int64		
32	eng L3m	41966 non-null	int64		
33	MARITALSTATUS	41966 non-null	object		
34	EDUCATION	41966 non-null	object		
35	AGE	41966 non-null	int64		
36	GENDER	41966 non-null	object		
37	NETMONTHLYINCOME	41966 non-null	int64		
38	Time With Curr Empr	41966 non-null	int64		
39	pct of active TLs even	41966 non-null	float64		
40	pct opened TLs L6m of L12m	41966 non-null	float64		
41	nct currentBal all IL	41966 non-null	float64		
42	CC Flag	41966 non-null	int64		
43	PL Flag	41966 pop-pull	int64		
44	pct PL eng L6m of L12m	41966 non-null	float64		
45	nct CC eng L6m of L12m	41966 non-null	float64		
46	nct PL and L6m of even	41966 pop-pull	float64		
47	nct CC eng L6m of even	41966 pop-pull	float64		
49	HI Flag	41966 pop-pull	int64		
40	GL Elan	41966 per-pull	int64		
50	last pood ong?	41966 pop-pull	object		
50	first prod and?	41955 per-pull	object		
51	Condit Score	41966 pop-pull	int64		
53	Approved Flag	41966 pop-pull	object		
dture	reproved_ring	Hast(6)	object		
dtypes: float64(7), int64(41), object(6)					

Fig - 2

1.2 Exploratory Data Analysis: After data cleaning we will merge the datasets using inner join and perform EDA to understand and extract information from the dataset. These insights will be helpful while processing and working with features. The figures below represent the distribution of data among various features like gender(Fig -6), approved flag (Fig - 3), marital status (Fig - 5) and last prod_enq2 (Fig - 4).

SJIF Rating: 8.586

ISSN: 2582-3930

Fig - 5

Fig - 6

1.3 Feature Selection: This article will focus on the key steps of feature selection and extraction that will be needed for building an efficient model. We will be using correlation analysis and feature coding to extract key information.

Firstly, we will perform CHI square test for the categorical columns to determine whether there is a statistically significant difference between the expected frequencies and the observed frequencies in one or more categories of a contingency table. Then for the numerical values we will perform VIF (Variance Inflation Factor) to check how correlated predicator variable is with other variables. For this specific model we have considered the variables with VIF values less than or equal to 6 which suits the idea of the model.

Next, we will perform Anova to compare the amount of variation between the group means to the amount of variation within each group. If the between-group variation is substantially larger than the within-group variation, it suggests that the group means are likely different. Fig - 7 shows the correlation of 'Age_Oldest_TL' with other columns and Fig - 8 represents the correlation matrix.'

Fig - 7

I

SJIF Rating: 8.586

ISSN: 2582-3930

- **1.4 Label Encoding:** Label encoding is necessary as there are some categorical columns in the data. We will convert these categorical data into numerical so that they can be fitted by machine learning models which can only take numerical data. Fig 9 shows the list of categorical columns present int the dataset.
 - List of Categorical columns : MARITALSTATUS EDUCATION GENDER last_prod_enq2 first_prod_enq2 Approved_Flag

Fig - 9

1.5 Model Building: Now different models are trained based on random forest, XGBoost and decision tree and their accuracy are checked. It is noted that XGBoost shows best results for this dataset among other algorithms. XGBoost shows the Test Accuracy of 0.77779 with the parameters 'learning_rate': 0.2, 'max_depth': 3, 'estimator's': 200.

Fig - 10 shows the XGBoost performance indicators for the important features.

1.6 Hyperparameter Tuning: To further increase accuracy Hyperparameter tuning is done to find the best set of hyperparameters for the CRM model. Hyperparameter tuning allows us to tweak model performance for optimal results. So we construct the parameter grid and then iterate the algorithm on each set of combinations in the grid and check for the optimal values of the parameter where the model gives better results.

After the iteration we get the optimal values for the parameters that are: num class=4,

colsample_bytree=0.9, learning_rate=1, max_depth=3, alpha=10, n_estimators=100 and the accuracy of the model increases to 0.8101.

2 RESULTS AND DISCUSSION

In the given data, the performance of the XGBoost algorithm as seen from the results on unseen data (Test data) is very satisfactory. According to the results as shown in Fig -11 XGBoost offers accuracy of 0.77 which after hyperparameter tuning increases up to 0.82 which is higher than both Random Forest and decision tree and also works well for p2 and p3 classes. The proposed model provides a comprehensive approach to credit risk analysis that leverages advances ML

T

SJIF Rating: 8.586

ISSN: 2582-3930

techniques and incorporates features to meet both industry needs as well as regulatory needs.

The ability to handle unbalanced datasets and superior accuracy even in complex and tough situations is what makes XGBoost our choice to use for credit risk model building. XGBoost uses sequential ensemble learning with tree and is highly scalable and efficient. Therefore, in the credit risk assessment where a large dataset is processed and accuracy is important, XGBoost has been used and comparison with other similar models has been done to provide a better comprehension of the application of models in Fintech problems.

Table -1 clearly compares the accuracy of the models and their performance for the different classes where XGBoost is better in most cases compared to other models.

 Table -1: Comparison of Models

Metric	Random	Decision	XGBoost
	Forest	Tree	
Accuracy	0.7604	0.7100	0.7700
Class p1	0.8247	0.7270	0.8121
Precision			
Class p1	0.6989	0.7314	0.7782
Recall			
Class p1	0.7566	0.7292	0.7948
F1 Score			
Class p2	0.7929	0.8084	0.8191
Precision			
Class p2	0.9263	0.8288	0.9086
Recall			
Class p2	0.8545	0.8184	0.8615
F1 Score			
Class p3	0.4269	0.3448	0.4511
Precision			
Class p3	0.2033	0.3023	0.2857
Recall			
Class p3	0.2755	0.3221	0.3498
F1 Score			
Class p4	0.7249	0.6340	0.7429
Precision			
Class p4	0.7185	0.6520	0.7234
Recall			
Class p4	0.7216	0.6429	0.7330
F1 Score			

3. CONCLUSIONS

To sum up, this paper clearly discusses the application of XGBoost in Credit risk model and the paper also proves the efficiency and effectiveness of model in prediction of credit risk. With the continuous development in AI technology and emergence of new technologies like big data and Blockchain there is always a need of further improvement to increase the model effectiveness with changing scenarios and applications. On the other hand, the risks and challenges are also increasing that must be faced with responsible use of the technologies. In the upcoming times we need to keep further exploring the ways of enhancing the security and the accuracy of the model. Through continuous innovation and improvement of artificial intelligence technology, we can keep this model updated and reliable even with the changing times because as financial markets evolve, models that can continuously learn, integrate diverse data sources and big data, and provide actionable insights will be indispensable.

REFERENCES

 Uddin, M. S., Chi, G., Al Janabi, M. A. M., & Habib, T. (2023). Leveraging Random Forest in Micro-Enterprises Credit Risk Modeling for Accuracy and Interpretability.
 Yu, C., Jin, Y., Xing, Q., Zhang, Y., Guo, S., & Meng, S. (2024). Advanced User Credit Risk Prediction Model using LightGBM, XGBoost and Tabnet with SMOTEENN. arXiv preprint, 2408.
 Bielecki, T. R., & Rutkowski, M. (2021). Credit Risk: Modeling,

Valuation, and Hedging. Springer-Verlag. 4. Doko, F., Kalajdziski, S., & Mishkovski, I. (2021). Credit Risk Model Based on Central Bank Credit Registry Data. Journal of Risk and Financial Management, 14(138). MDPI.

5. Cao, L., Yang, Q., & Yu, P. S. (2021). Data Science and AI in FinTech: An Overview. International Journal of Data Science and Analytics, 12(1), 81–99.

T