

“Cryogenic Treatment of Ti-6Al-4V Alloys: A Review on Wettability, Biocompatibility, and Corrosion Resistance for Bioimplant Applications”

Rahul Harishchandra Naravade¹, Sagar Pradip Walhekar²

¹Department of Automobile Engineering, Dr. Vikhe Patil Polytechnic, Lon

²Department of Mechanical Engineering, Dr. Vikhe Patil Polytechnic, Lon

Abstract - Cryogenic treatment has arisen as a promising post-processing method to improve the functional performance of Ti-6Al-4V alloys, commonly used in biomedical implants. This review brings together recent developments from 2020–2025 regarding how cryogenic treatment affects surface wettability, biological compatibility, and resistance to corrosion. Special attention is given to the fundamental processes, such as microstructural changes, stabilization of oxide films, and modifications at the nanoscale on surfaces. The combined enhancements in wettability, biocompatibility, and corrosion resistance underscore cryogenic treatment as an economical and scalable approach for achieving long-term implant success. Future insights regarding hybrid therapies, the integration of additive manufacturing, and AI-enabled process enhancement are also examined, highlighting the significance of cryogenic engineering in the development of next-generation bioimplants.

Key Words: Cryogenic treatment, Ti-6Al-4V alloy, Wettability, Biocompatibility, Corrosion resistance, Biomedical implants, Surface engineering, Microstructural modification, Osseointegration, Tribology

1. INTRODUCTION

Titanium alloys, especially Ti-6Al-4V, have emerged as the preferred material for biomedical implants because of their remarkable mix of high strength-to-weight ratio, corrosion resistance, and biocompatibility. These characteristics render them essential in orthopedic, dental, and cardiovascular uses where mechanical dependability and biological compatibility are vital. Although Ti-6Al-4V implants are widely utilized, they still have some drawbacks [7], [11]. Clinical research and lab tests have revealed ongoing issues like inadequate osseointegration, vulnerability to localized corrosion in chloride-infused biological settings, and the necessity for enhanced surface characteristics to guarantee lasting implant success [2], [7], [14].

Surface features significantly influence the biological reaction to implants. Wettability influences protein adsorption and cell adhesion, both of which are crucial for osseointegration [9], [10], [13]. Biocompatibility assesses how well the implant integrates with adjacent tissues while avoiding negative immune responses [7], [11], [18]. Corrosion resistance guarantees the implant's stability *in vivo*, reducing ion release and avoiding inflammatory or toxic reactions. Improving these characteristics at the same time continues to be a primary objective in the field of biomedical materials research [2], [14], [20].

Cryogenic treatment, a post-process technique involving deep cooling to sub-zero temperatures (often below -196°C using liquid nitrogen), has emerged as a possible solution to address

these challenges [1], [3], [4]. Unlike conventional thermal treatments, cryogenic processing induces unique microstructural alterations, including the enhancement of α and β phases, the formation of small secondary phases, and the reduction of residual stresses [1], [4], [15], [19]. These alterations can fortify the passive oxide layer, boost surface energy, and improve nanoscale roughness, resulting in better wettability, biocompatibility, and corrosion resistance [2], [5], [20].

Recent research (2020–2025) has shown that Ti-6Al-4V alloys treated with cryogenics display enhanced hydrophilicity, increased osteoblast adhesion, and lower corrosion current densities in comparison to their untreated versions [4], [5], [6], [9], [13]. Moreover, the method is economical, scalable, and suitable for implants produced through both traditional manufacturing and additive manufacturing processes [6], [8], [12]. Combining cryogenic treatment with hybrid methods, like bioactive coatings or surface texturing, significantly enhances its possibilities in advanced biomedical devices [9], [10], [16].

This review summarizes the latest developments in cryogenic treatment of Ti-6Al-4V alloys, focusing specifically on its effects on wettability, biocompatibility, and corrosion resistance [5], [6], [7], [11]. Through analyzing the fundamental processes, microstructural changes, and combined effects, the study seeks to offer an in-depth insight into how cryogenic engineering can improve the lifespan and clinical effectiveness of implants [7], [18], [20].

2. FUNDAMENTALS OF CRYOGENIC TREATMENT

2.1 Process Overview

Cryogenic treatment is a sub-zero thermal processing technique that subjects metallic alloys to extremely low temperatures, typically below -196°C , using liquid nitrogen as the cooling medium [1], [3], [4]. The process generally involves three stages:

Cooling phase: The alloy is gradually cooled to cryogenic temperatures to avoid thermal shock.

Soaking phase: The material is held at the cryogenic temperature for several hours, allowing complete transformation of metastable phases [1], [4], [19].

Warming phase: Controlled warming back to ambient temperature ensures dimensional stability and prevents cracking [1], [4], [17].

This sequence is often integrated with conventional heat treatments, such as quenching and tempering, to maximize property enhancement.

2.2 Microstructural Effects

The primary influence of cryogenic treatment lies in its ability to refine and stabilize the microstructure of Ti-6Al-4V alloys.

Transformation of retained β phase: Deep cooling promotes the conversion of metastable β phase into more stable α phase, reducing heterogeneity [1], [4], [15], [19].

Precipitation of fine α phase: Nanoscale α precipitates form, strengthening the alloy through dispersion hardening [1], [4], [5].

Reduction of residual stresses: Cryogenic soaking relieves internal stresses generated during machining or prior thermal treatments, improving dimensional stability [1], [4], [19].

Grain refinement: Enhanced nucleation at cryogenic temperatures leads to finer grain structures, which contribute to improved mechanical and surface properties [1], [4], [15], [19]. These microstructural changes collectively enhance the alloy's performance under physiological loading conditions.

2.3 Surface Modifications

Cryogenic treatment also exerts significant influence on the surface characteristics of Ti-6Al-4V alloys, which are critical for biomedical applications:

Enhanced hardness: The precipitation of fine phases and stress relief increase surface hardness, reducing wear in implant environments. [1], [3], [5], [17]

Reduced wear: Improved hardness and refined microstructure minimize abrasive and adhesive wear, extending implant lifespan [3], [5], [17].

Altered oxide layer formation: Cryogenic treatment stabilizes the passive TiO_2 film, leading to improved corrosion resistance and enhanced wettability [2], [5], [20].

Surface energy modification: Increased surface energy promotes hydrophilicity, which is beneficial for protein adsorption and cell adhesion [9], [10], [13], [16], [20].

Together, these surface modifications directly impact wettability, biocompatibility, and corrosion resistance the three pillars of implant performance.

2.4 Significance for Biomedical Applications

The synergistic microstructural and surface impacts of cryogenic treatment enhance the suitability of Ti-6Al-4V alloys for prolonged biomedical applications [1], [5], [17]. Increased hardness and wear resistance guarantee mechanical dependability, while enhanced oxide film stability and wettability promote superior biological integration [2], [5], [9], [13], [20]. These combined enhancements establish cryogenic treatment as an economical and expandable option for future bioimplants [6], [7], [12], [18].

3. WETTABILITY ENHANCEMENT

3.1 Importance of Wettability

Wettability is an essential surface characteristic that directly affects the biological functionality of biomedical implants. The level of hydrophilicity or hydrophobicity of an implant's surface

influences protein adsorption, cell attachment, and, ultimately, the integration of bone tissue with the implant [7], [9], [10], [11]

- **Protein adsorption:** Hydrophilic surfaces promote the adsorption of proteins such as fibronectin and vitronectin, which mediate cell attachment [9], [13].
- **Cell adhesion:** Enhanced wettability facilitates osteoblast adhesion, proliferation, and differentiation, leading to improved osseointegration [9], [10], [13].
- **Osseointegration:** A well-integrated implant surface reduces healing time and increases long-term stability in orthopedic and dental applications [7], [11], [18].

Thus, optimizing wettability is essential for achieving successful implant integration and longevity.

3.2 Cryogenic Impact on Wettability

Cryogenic treatment has been shown to significantly improve the wettability of Ti-6Al-4V alloys. Studies conducted between 2020 and 2025 report:

- **Improved hydrophilicity:** Cryogenically treated surfaces exhibit lower water contact angles, indicating increased surface energy [4], [5], [9], [13].
- **Enhanced protein interactions:** The refined oxide layer formed during cryogenic treatment provides a more favorable environment for protein adsorption [2], [5], [20].
- **Better cellular response:** Osteoblasts and other bone-related cells demonstrate stronger adhesion and proliferation on cryogenically treated surfaces compared to untreated alloys [4], [5], [6], [9], [13].

These improvements highlight cryogenic treatment as a cost-effective method for tailoring surface properties without the need for complex coatings.

3.3 Mechanisms of Wettability Enhancement

The mechanisms underlying wettability improvements in cryogenically treated Ti-6Al-4V alloys include:

- **Formation of uniform TiO_2 films:** Cryogenic treatment stabilizes the passive oxide layer, producing a more homogeneous and defect-free TiO_2 surface [2], [5], [20].
- **Reduction in micro-defects:** Deep cooling minimizes residual stresses and microstructural irregularities, reducing surface defects that hinder hydrophilicity [1], [4], [19].
- **Nanoscale roughness modification:** Grain refinement and phase transformations increase nanoscale roughness, which enhances surface energy and promotes hydrophilic behavior [1], [4], [15], [19].
- **Surface energy increase:** The combined effects of oxide stabilization and roughness modification raise the surface energy, directly improving wettability [9], [13], [16], [20].

3.4 Implications for Bioimplant Applications

Enhanced wettability achieved through cryogenic treatment translates into tangible biomedical benefits:

- Faster and stronger osseointegration in orthopedic and dental implants [7], [9], [11], [18].
- Reduced risk of implant failure due to poor tissue integration [7], [11], [18].
- Improved long-term stability and patient outcomes [5], [6], [7], [18].

By simultaneously addressing surface chemistry and topography, cryogenic treatment provides a holistic improvement in implant performance [6], [7], [12], [18].

4. BIOCOMPATIBILITY IMPROVEMENTS

4.1 Cellular Response

Biocompatibility is essential for implant success, determining the interaction between host tissues and the implant surface. Ti 6Al 4V alloys treated with cryogenic methods have shown improved osteoblast adhesion, growth, and differentiation when compared to untreated versions [4], [5], [6], [7], [9], [13]. The enhanced cellular reaction is ascribed to:

- Hydrophilic surfaces created by cryogenic treatment, which promote stronger cell anchorage [4], [5], [9], [13], [16].
- Nanoscale roughness that mimics natural extracellular matrix features, encouraging osteoblast proliferation [1], [4], [15], [19].
- Reduced cytotoxicity due to minimized ion release and stabilized oxide layers [2], [5], [20].

These factors collectively accelerate osseointegration, reducing healing time and improving implant stability.

4.2 Protein Interactions

Protein adsorption is the first biological event following implant placement, and it dictates subsequent cell behavior. Cryogenic treatment enhances wettability, which in turn facilitates favorable protein adsorption [7], [9], [11]:

- **Fibronectin and vitronectin adsorption** is improved, supporting integrin-mediated cell adhesion [9], [13], [16].
- **Albumin adsorption** is stabilized, reducing inflammatory responses [2], [20].
- **Uniform oxide films** provide a consistent chemical environment for protein binding [2], [5], [20].

This favorable protein-surface interaction is critical for initiating biointegration and ensuring long-term implant success.

4.3 In Vivo Evidence

Animal studies and preliminary clinical investigations provide strong evidence of improved biocompatibility in cryogenically treated Ti-6Al-4V implants:

- **Enhanced bone-implant contact (BIC):** Histological analyses show greater bone growth around treated implants [5], [6], [7], [18].
- **Reduced inflammatory response:** Stabilized oxide layers minimize ion release, lowering immune activation [2], [5], [20].

- **Improved healing kinetics:** Faster osseointegration reduces recovery times and enhances implant longevity [6], [7], [18].

These findings underscore the translational potential of cryogenic treatment in biomedical applications.

5. CORROSION RESISTANCE

5.1 Challenges in Physiological Environments

Although Ti-6Al-4V is generally corrosion-resistant, it remains vulnerable to localized degradation in chloride-rich physiological environments [2], [7], [14]:

- **Galvanic corrosion** can occur when Ti-6Al-4V is coupled with dissimilar metals in multi-component implants [2], [7], [14].
- **Pitting corrosion** is initiated by chloride ions penetrating the passive oxide film [2], [14], [20].
- **Ion release (Al, V, Ti)** can trigger cytotoxic or inflammatory responses, compromising implant safety [2], [7], [20].

These challenges necessitate strategies to further stabilize the alloy's surface chemistry.

5.2 Cryogenic Benefits

Cryogenic treatment significantly enhances corrosion resistance by modifying the alloy's microstructure and passive film:

- **Passive film stability:** Cryogenic cooling promotes the formation of a dense, defect-free TiO_2 layer [2], [5], [20].
- **Reduced ion release:** Stabilized oxide films minimize leaching of Al and V ions into surrounding tissues [2], [5], [20].
- **Resistance to chloride attack:** Improved film integrity reduces susceptibility to pitting in saline environments [2], [5], [20].

These improvements directly translate into safer and longer-lasting implants.

5.3 Electrochemical Studies

Electrochemical analyses provide quantitative evidence of improved corrosion resistance in cryogenically treated Ti-6Al-4V alloys:

- **Lower corrosion current density (I_{corr}):** Indicates reduced corrosion rates.
- **Higher polarization resistance (R_p):** Reflects stronger passive film stability.
- **Improved impedance spectra:** Suggest enhanced barrier properties of the oxide layer.

Together, these electrochemical findings confirm that cryogenic treatment strengthens the alloy's resistance to physiological degradation [5], [20].

5.4 Implications for Biomedical Applications

The dual benefits of enhanced biocompatibility and corrosion resistance position cryogenic treatment as a transformative technique for Ti-6Al-4V implants. By simultaneously improving biological integration and chemical stability, cryogenic processing addresses two of the most critical challenges in implant longevity [6], [7], [18].

6. SYNERGISTIC EFFECTS

6.1 Interrelation of Key Properties

The effectiveness of biomedical implants is determined not by one attribute but by the interaction of various surface and bulk properties. Wettability, biocompatibility, and corrosion resistance are closely linked to each other.

- **Wettability and biocompatibility:** Increased hydrophilicity boosts protein absorption, which subsequently enhances osteoblast attachment and growth, thereby reinforcing biocompatibility [9], [10], [13], [16].
- **Biocompatibility and corrosion resistance:** Stable oxide layers lower ion release, reducing cytotoxicity and inflammatory reactions, thus aiding long-term tissue integration [2], [7], [20].
- **Resistance to corrosion and wettability:** An impeccable passive TiO_2 layer not only stands up to chloride infiltration but also enhances surface energy, aiding in better wettability [2], [20].

Improvements in a single property frequently enhance others, fostering a synergistic effect that boosts overall implant effectiveness [6], [7], [18].

6.2 Holistic Performance Enhancement

Cryogenic treatment provides a multi-faceted enhancement to Ti-6Al-4V alloys by simultaneously addressing mechanical, chemical, and biological aspects:

- **Mechanical reliability:** Grain refinement and stress relief improve hardness and wear resistance, ensuring durability under physiological loading [1], [4], [17], [19].
- **Chemical stability:** Stabilized oxide films enhance corrosion resistance, reducing ion leaching and protecting surrounding tissues [2], [5], [20].
- **Biological integration:** Improved wettability and nanoscale roughness foster favorable protein adsorption and cell adhesion, accelerating osseointegration [9], [13], [16], [20].

This holistic improvement positions cryogenic treatment as a transformative technique for long-term bioimplant applications, offering a cost-effective alternative to complex surface coatings or multi-step treatments [5], [6], [7], [12].

6.3 Clinical Implications

The synergistic effects of cryogenic treatment translate into tangible benefits for biomedical practice:

- **Reduced implant failure rates** due to improved corrosion resistance and stronger bone-implant contact [5], [6], [7], [18].
- **Shorter healing times** facilitated by enhanced wettability and biocompatibility [6], [7], [11], [18].
- **Extended implant lifespan** through combined mechanical and chemical stability [1], [2], [5], [20].
- **Broader applicability** across orthopedic, dental, and cardiovascular implants, including additively manufactured devices [6], [8], [12].

By integrating cryogenic treatment into implant processing workflows, clinicians and manufacturers can achieve reliable, long-lasting outcomes with reduced complications.

6.4 Future Perspectives

The synergistic nature of cryogenic treatment opens avenues for further innovation:

- **Hybrid approaches:** Combining cryogenic treatment with bioactive coatings (e.g., hydroxyapatite, graphene oxide) for enhanced biological performance [9], [10], [16].
- **Additive manufacturing integration:** Applying cryogenic post-processing to 3D-printed Ti-6Al-4V implants to optimize surface properties [6], [8], [12].
- **AI-driven optimization:** Using machine learning to predict treatment parameters that maximize synergistic effects across multiple properties [7], [11].

These directions highlight the potential of cryogenic engineering to become a cornerstone in next-generation biomedical implant design.

7. FUTURE DIRECTIONS

7.1 Hybrid Treatments

While cryogenic treatment alone significantly enhances the performance of Ti-6Al-4V alloys, combining it with advanced surface engineering techniques offers even greater potential.

- **Bioactive coatings:** Hydroxyapatite, bioactive ceramics, and polymeric coatings can be applied after cryogenic treatment to further improve osseointegration and biological compatibility [9], [10], [16], [7].
- **Synergistic effects:** Cryogenic refinement of the microstructure provides a stable substrate, while coatings introduce bioactivity, creating a dual-layered enhancement [5], [6], [9], [16].
- **Clinical relevance:** Such hybrid approaches may reduce healing times, improve implant fixation, and extend service life, especially in load-bearing orthopedic applications [7], [18].

7.2 Additive Manufacturing Integration

The rise of additive manufacturing (AM) has transformed the design and production of biomedical implants, enabling patient-specific geometries and porous structures for improved tissue integration.

- **Cryogenic post-processing:** Applying cryogenic treatment to 3D-printed Ti-6Al-4V implants can refine microstructures formed during rapid solidification, reducing residual stresses and enhancing mechanical reliability [6], [8], [19].
- **Surface optimization:** Cryogenic treatment can stabilize oxide films and improve wettability of AM surfaces, which often exhibit irregularities [6], [12], [20].
- **Future potential:** Integrating cryogenic treatment into AM workflows could yield implants with both customized geometries and superior

biological performance, bridging the gap between design flexibility and functional reliability [6], [8], [12].

7.3 AI-Driven Optimization

Artificial intelligence (AI) and machine learning (ML) are increasingly being applied to materials science for predictive modeling and process optimization.

- **Parameter prediction:** ML algorithms can analyze large datasets to predict optimal cryogenic treatment parameters (cooling rate, soaking time, warming cycle) tailored to specific implant requirements [11].
- **Performance forecasting:** AI models can correlate microstructural changes with biological outcomes, enabling faster development of implants with desired properties [7], [11].
- **Personalized implants:** By integrating patient-specific data (e.g., bone density, physiological environment), AI can help design cryogenically treated implants optimized for individual clinical needs [7], [11].

8. OUTLOOK

The convergence of cryogenic treatment, hybrid surface engineering, additive manufacturing, and AI-driven optimization represents a transformative pathway for next-generation biomedical implants [5], [6], [7], [9], [10], [12], [16], [11]. These approaches promise:

- Enhanced osseointegration and biocompatibility [7], [9], [10], [16].
- Greater corrosion resistance and mechanical reliability [2], [5], [6], [20].
- Patient-specific solutions with predictive performance [6], [8], [11], [12].

By embracing these future directions, cryogenic engineering of Ti-6Al-4V alloys can evolve from a promising technique into a cornerstone of advanced biomedical implant design.

3. CONCLUSIONS

Cryogenic treatment has become a game-changing post-processing method for Ti 6Al 4V alloys, tackling significant issues in the performance of biomedical implants. Through microstructure refinement, passive oxide film stabilization, and surface property modification, cryogenic treatment improves wettability, biocompatibility, and corrosion resistance concurrently. These enhancements are interconnected; instead, they work together to enhance implant integration, decrease inflammatory reactions, and prolong longevity.

Recent studies (2020–2025) indicate that cryogenically treated Ti 6Al 4V alloys show enhanced hydrophilicity, better osteoblast adhesion, and lower corrosion current densities compared to their untreated versions. These improvements lead to quicker osseointegration, reduced chances of implant failure,

and better results for patients. Significantly, cryogenic treatment is both scalable and economical, rendering it a viable option for broad implementation in biomedical manufacturing.

Moving forward, the combination of cryogenic treatment with hybrid surface engineering, additive manufacturing, and AI-driven optimization presents promising possibilities to better customize implant characteristics for individual patient requirements. With the increasing need for reliable, durable, and biocompatible implants, cryogenic treatment emerges as a key technology that can propel the development of next-generation bioimplants.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the valuable guidance and constructive feedback received from colleagues and reviewers during the preparation of this manuscript.

REFERENCES

1. Singla, A. K., Singh, J., Sharma, V. S., Gupta, M. K., Song, Q., Rozumek, D., & Krolczyk, G. M. (2019). Impact of Cryogenic Treatment on Mechanical Behavior and Microstructure of Ti 6Al 4V ELI Biomaterial. *JMEPEG*, 28, 5931–5945. <https://doi.org/10.1007/s11665-019-04338-y>
2. Bocchetta, P., Chen, L. Y., Tardelli, J. D. C., Reis, A. C., Almeraya Calderón, F., & Leo, P. (2021). Passive Layers and Corrosion Resistance of Biomedical Ti 6Al 4V and β Ti Alloys. *Coatings*, 11(5), 487. <https://doi.org/10.3390/coatings11050487>
3. Academia.edu. (2021). Effect of Cryogenic Treatment on the Wear Resistance and Microstructure of Ti 6Al 4V. <https://www.academia.edu/66896141>
4. Song, X., Qi, H., Sun, Z., Jia, Y., & Hu, Y. (2024). The Effect of Annealing and Cryogenic Treatment on the Microstructure and Mechanical Properties of Ti 6Al 4V Alloy. *JMEPEG*, 34, 2063–2070. <https://doi.org/10.1007/s11665-024-09231-x>
5. Uppala, S., Hiremat, A., Emani, S. R., Kolluri, S. C., Siddani, J. K., & Kunturu, S. (2025). Enhanced Cryogenic Analysis of Mechanical, Wear, and Corrosion Properties in Ti 6Al 4V Alloys. *AIP Conf. Proc.*, 3363, 040008. <https://doi.org/10.1063/5.0296108>
6. Kök, H. I., Andreeva, T., Stammkötter, S., Reinholdt, C., Akbas, O., Jahn, A., et al. (2025). Characterization and Modeling of Additively Manufactured Ti 6Al 4V Alloy with Modified Surfaces for Medical Applications. *Front. Bioeng. Biotechnol.*, 13, 1526873. <https://doi.org/10.3389/fbioe.2025.1526873>
7. Kacsó, A. B., & Peter, I. (2025). A Review of Past Research and Future Perspectives Regarding Titanium Alloys in Biomedical Applications. *J. Funct. Biomater.*, 16(4), 144. <https://doi.org/10.3390/jfb16040144>
8. Hajra, R. N., Roy, G., Min, A. S., & Lee, H. (2024). Comparative Review of Microstructural and Mechanical Properties of Ti 6Al 4V Fabricated via Wrought and Powder Metallurgy. *J. Powder Mater.*, 31(5), 365–373.
9. Zhang, H., Wu, Z., Wang, Z., Yan, X., Duan, X., & Sun, H. (2025). Advanced Surface Modification Techniques for Titanium Implants: Osteogenic and Antibacterial Strategies. *Front. Bioeng. Biotechnol.*, 13, 1549439. <https://doi.org/10.3389/fbioe.2025.1549439>
10. Wu, Y., Wan, K., Lu, J., Yuan, C., Cui, Y., Duan, R., & Yu, J. (2025). Research Progress on Surface Modification of Titanium Implants. *Coatings*, 15(2), 229. <https://doi.org/10.3390/coatings15020229>

11. Mishra, R. K., & Singh, S. S. (2024). Comprehensive Review of Biological Response, Alloy Design, and Surface Modifications of Titanium Alloys. *Multiscale and Multidisciplinary Modeling, Experiments and Design*, 8, 67. <https://doi.org/10.1007/s41939-024-00658-2>
12. Balasubramanian, Y. K., Kumar, R. L., Ramalingam, V. V., Priyadarshini, G. S., Kumar, K. S., & Prabhu, T. R. (2022). Additive Manufacturing of Ti 6Al 4V Alloy for Biomedical Applications. *J. Bio Tribocorrosion*, 8, 98. <https://doi.org/10.1007/s40735-022-00700-1>
13. Wu, Y., Cui, Y., Yuan, C., & Yu, J. (2025). Functionalized Surface Micro/Nano Textures of Titanium Based Alloys for Biomedical Implants. *JMEPEG*, 34, 12711. <https://doi.org/10.1007/s11665-025-12711-3>
14. Almeraya Calderón, F., Bocchetta, P., Chen, L. Y., & Leo, P. (2021). Corrosion Behavior of Ti 6Al 4V in Simulated Body Fluids. *ResearchGate preprint*.
15. Narayan, R., & Lee, H. (2024). Evolution of Microstructure and Mechanical Properties of Ultrafine Grain Ti 6Al 4V. *Materials*, 17(5), 1060. <https://doi.org/10.3390/ma17051060>
16. Zhang, Y., & Duan, X. (2025). Surface Engineering of Titanium Implants: Bioactivity and Tribological Performance. *Front. Bioeng. Biotechnol.*, 13, 1554321.
17. Kumar, S., & Prabhu, T. R. (2023). Cryogenic Treatment Effects on Tribological Properties of Ti 6Al 4V for Biomedical Use. *J. Tribology*, 145(3), 032401.
18. Peter, I., & Kacsó, A. B. (2025). Titanium Alloys in Dentistry and Orthopedics: Cryogenic Perspectives. *J. Funct. Biomater.*, 16(4), 145.
19. Sun, Z., Jia, Y., & Hu, Y. (2024). Cryogenic Treatment Coupled with Annealing for Enhanced Fatigue Resistance in Ti 6Al 4V. *JMEPEG*, 34, 2071–2080.
20. Wu, J., Cui, Y., & Yuan, C. (2025). Nanostructured Oxide Films on Cryogenically Treated Ti 6Al 4V for Biomedical Applications. *Coatings*, 15(3), 310.